]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/rtc8564/pd.py
Use consistent __init__() format across all PDs.
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22from srdhelper import bcd2int
23
24def reg_list():
25 l = []
26 for i in range(8 + 1):
27 l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i))
28
29 return tuple(l)
30
31class Decoder(srd.Decoder):
32 api_version = 2
33 id = 'rtc8564'
34 name = 'RTC-8564'
35 longname = 'Epson RTC-8564 JE/NB'
36 desc = 'Realtime clock module protocol.'
37 license = 'gplv2+'
38 inputs = ['i2c']
39 outputs = ['rtc8564']
40 annotations = reg_list() + (
41 ('read', 'Read date/time'),
42 ('write', 'Write date/time'),
43 ('bit-reserved', 'Reserved bit'),
44 ('bit-vl', 'VL bit'),
45 ('bit-century', 'Century bit'),
46 ('reg-read', 'Register read'),
47 ('reg-write', 'Register write'),
48 )
49 annotation_rows = (
50 ('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)),
51 ('regs', 'Register access', (14, 15)),
52 ('date-time', 'Date/time', (9, 10)),
53 )
54
55 def __init__(self):
56 self.state = 'IDLE'
57 self.hours = -1
58 self.minutes = -1
59 self.seconds = -1
60 self.days = -1
61 self.weekdays = -1
62 self.months = -1
63 self.years = -1
64 self.bits = []
65
66 def start(self):
67 self.out_ann = self.register(srd.OUTPUT_ANN)
68
69 def putx(self, data):
70 self.put(self.ss, self.es, self.out_ann, data)
71
72 def putd(self, bit1, bit2, data):
73 self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
74
75 def putr(self, bit):
76 self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
77 [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
78
79 def handle_reg_0x00(self, b): # Control register 1
80 pass
81
82 def handle_reg_0x01(self, b): # Control register 2
83 ti_tp = 1 if (b & (1 << 4)) else 0
84 af = 1 if (b & (1 << 3)) else 0
85 tf = 1 if (b & (1 << 2)) else 0
86 aie = 1 if (b & (1 << 1)) else 0
87 tie = 1 if (b & (1 << 0)) else 0
88
89 ann = ''
90
91 s = 'repeated' if ti_tp else 'single-shot'
92 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
93 'events\n' % (ti_tp, s)
94 s = '' if af else 'no '
95 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
96 s = '' if tf else 'no '
97 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
98 s = 'enabled' if aie else 'prohibited'
99 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
100 'occurs\n' % (aie, s)
101 s = 'enabled' if tie else 'prohibited'
102 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
103 'event occurs\n' % (tie, s)
104
105 self.putx([1, [ann]])
106
107 def handle_reg_0x02(self, b): # Seconds / Voltage-low bit
108 vl = 1 if (b & (1 << 7)) else 0
109 self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl,
110 'VL: %d' % vl, 'VL']])
111 s = self.seconds = bcd2int(b & 0x7f)
112 self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
113
114 def handle_reg_0x03(self, b): # Minutes
115 self.putr(7)
116 m = self.minutes = bcd2int(b & 0x7f)
117 self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
118
119 def handle_reg_0x04(self, b): # Hours
120 self.putr(7)
121 self.putr(6)
122 h = self.hours = bcd2int(b & 0x3f)
123 self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']])
124
125 def handle_reg_0x05(self, b): # Days
126 self.putr(7)
127 self.putr(6)
128 d = self.days = bcd2int(b & 0x3f)
129 self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']])
130
131 def handle_reg_0x06(self, b): # Weekdays
132 for i in (7, 6, 5, 4, 3):
133 self.putr(i)
134 w = self.weekdays = bcd2int(b & 0x07)
135 self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']])
136
137 def handle_reg_0x07(self, b): # Months / century bit
138 c = 1 if (b & (1 << 7)) else 0
139 self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c,
140 'Cent: %d' % c, 'C: %d' % c, 'C']])
141 self.putr(6)
142 self.putr(5)
143 m = self.months = bcd2int(b & 0x1f)
144 self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
145
146 def handle_reg_0x08(self, b): # Years
147 y = self.years = bcd2int(b & 0xff)
148 self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
149
150 def handle_reg_0x09(self, b): # Alarm, minute
151 pass
152
153 def handle_reg_0x0a(self, b): # Alarm, hour
154 pass
155
156 def handle_reg_0x0b(self, b): # Alarm, day
157 pass
158
159 def handle_reg_0x0c(self, b): # Alarm, weekday
160 pass
161
162 def handle_reg_0x0d(self, b): # CLKOUT output
163 pass
164
165 def handle_reg_0x0e(self, b): # Timer setting
166 pass
167
168 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
169 pass
170
171 def decode(self, ss, es, data):
172 cmd, databyte = data
173
174 # Collect the 'BITS' packet, then return. The next packet is
175 # guaranteed to belong to these bits we just stored.
176 if cmd == 'BITS':
177 self.bits = databyte
178 return
179
180 # Store the start/end samples of this I²C packet.
181 self.ss, self.es = ss, es
182
183 # State machine.
184 if self.state == 'IDLE':
185 # Wait for an I²C START condition.
186 if cmd != 'START':
187 return
188 self.state = 'GET SLAVE ADDR'
189 self.ss_block = ss
190 elif self.state == 'GET SLAVE ADDR':
191 # Wait for an address write operation.
192 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
193 if cmd != 'ADDRESS WRITE':
194 return
195 self.state = 'GET REG ADDR'
196 elif self.state == 'GET REG ADDR':
197 # Wait for a data write (master selects the slave register).
198 if cmd != 'DATA WRITE':
199 return
200 self.reg = databyte
201 self.state = 'WRITE RTC REGS'
202 elif self.state == 'WRITE RTC REGS':
203 # If we see a Repeated Start here, it's probably an RTC read.
204 if cmd == 'START REPEAT':
205 self.state = 'READ RTC REGS'
206 return
207 # Otherwise: Get data bytes until a STOP condition occurs.
208 if cmd == 'DATA WRITE':
209 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
210 self.putx([15, ['Write register %s' % s, 'Write reg %s' % s,
211 'WR %s' % s, 'WR', 'W']])
212 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
213 handle_reg(databyte)
214 self.reg += 1
215 # TODO: Check for NACK!
216 elif cmd == 'STOP':
217 # TODO: Handle read/write of only parts of these items.
218 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
219 self.years, self.hours, self.minutes, self.seconds)
220 self.put(self.ss_block, es, self.out_ann,
221 [9, ['Write date/time: %s' % d, 'Write: %s' % d,
222 'W: %s' % d]])
223 self.state = 'IDLE'
224 else:
225 pass # TODO
226 elif self.state == 'READ RTC REGS':
227 # Wait for an address read operation.
228 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
229 if cmd == 'ADDRESS READ':
230 self.state = 'READ RTC REGS2'
231 return
232 else:
233 pass # TODO
234 elif self.state == 'READ RTC REGS2':
235 if cmd == 'DATA READ':
236 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
237 self.putx([15, ['Read register %s' % s, 'Read reg %s' % s,
238 'RR %s' % s, 'RR', 'R']])
239 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
240 handle_reg(databyte)
241 self.reg += 1
242 # TODO: Check for NACK!
243 elif cmd == 'STOP':
244 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
245 self.years, self.hours, self.minutes, self.seconds)
246 self.put(self.ss_block, es, self.out_ann,
247 [10, ['Read date/time: %s' % d, 'Read: %s' % d,
248 'R: %s' % d]])
249 self.state = 'IDLE'
250 else:
251 pass # TODO?