]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/rtc8564/pd.py
all decoders: introduce a reset() method
[libsigrokdecode.git] / decoders / rtc8564 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012-2014 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from common.srdhelper import bcd2int
22
23def reg_list():
24 l = []
25 for i in range(8 + 1):
26 l.append(('reg-0x%02x' % i, 'Register 0x%02x' % i))
27
28 return tuple(l)
29
30class Decoder(srd.Decoder):
31 api_version = 3
32 id = 'rtc8564'
33 name = 'RTC-8564'
34 longname = 'Epson RTC-8564 JE/NB'
35 desc = 'Realtime clock module protocol.'
36 license = 'gplv2+'
37 inputs = ['i2c']
38 outputs = ['rtc8564']
39 annotations = reg_list() + (
40 ('read', 'Read date/time'),
41 ('write', 'Write date/time'),
42 ('bit-reserved', 'Reserved bit'),
43 ('bit-vl', 'VL bit'),
44 ('bit-century', 'Century bit'),
45 ('reg-read', 'Register read'),
46 ('reg-write', 'Register write'),
47 )
48 annotation_rows = (
49 ('bits', 'Bits', tuple(range(0, 8 + 1)) + (11, 12, 13)),
50 ('regs', 'Register access', (14, 15)),
51 ('date-time', 'Date/time', (9, 10)),
52 )
53
54 def __init__(self):
55 self.reset()
56
57 def reset(self):
58 self.state = 'IDLE'
59 self.hours = -1
60 self.minutes = -1
61 self.seconds = -1
62 self.days = -1
63 self.weekdays = -1
64 self.months = -1
65 self.years = -1
66 self.bits = []
67
68 def start(self):
69 self.out_ann = self.register(srd.OUTPUT_ANN)
70
71 def putx(self, data):
72 self.put(self.ss, self.es, self.out_ann, data)
73
74 def putd(self, bit1, bit2, data):
75 self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
76
77 def putr(self, bit):
78 self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
79 [11, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
80
81 def handle_reg_0x00(self, b): # Control register 1
82 pass
83
84 def handle_reg_0x01(self, b): # Control register 2
85 ti_tp = 1 if (b & (1 << 4)) else 0
86 af = 1 if (b & (1 << 3)) else 0
87 tf = 1 if (b & (1 << 2)) else 0
88 aie = 1 if (b & (1 << 1)) else 0
89 tie = 1 if (b & (1 << 0)) else 0
90
91 ann = ''
92
93 s = 'repeated' if ti_tp else 'single-shot'
94 ann += 'TI/TP = %d: %s operation upon fixed-cycle timer interrupt '\
95 'events\n' % (ti_tp, s)
96 s = '' if af else 'no '
97 ann += 'AF = %d: %salarm interrupt detected\n' % (af, s)
98 s = '' if tf else 'no '
99 ann += 'TF = %d: %sfixed-cycle timer interrupt detected\n' % (tf, s)
100 s = 'enabled' if aie else 'prohibited'
101 ann += 'AIE = %d: INT# pin output %s when an alarm interrupt '\
102 'occurs\n' % (aie, s)
103 s = 'enabled' if tie else 'prohibited'
104 ann += 'TIE = %d: INT# pin output %s when a fixed-cycle interrupt '\
105 'event occurs\n' % (tie, s)
106
107 self.putx([1, [ann]])
108
109 def handle_reg_0x02(self, b): # Seconds / Voltage-low bit
110 vl = 1 if (b & (1 << 7)) else 0
111 self.putd(7, 7, [12, ['Voltage low: %d' % vl, 'Volt. low: %d' % vl,
112 'VL: %d' % vl, 'VL']])
113 s = self.seconds = bcd2int(b & 0x7f)
114 self.putd(6, 0, [2, ['Second: %d' % s, 'Sec: %d' % s, 'S: %d' % s, 'S']])
115
116 def handle_reg_0x03(self, b): # Minutes
117 self.putr(7)
118 m = self.minutes = bcd2int(b & 0x7f)
119 self.putd(6, 0, [3, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
120
121 def handle_reg_0x04(self, b): # Hours
122 self.putr(7)
123 self.putr(6)
124 h = self.hours = bcd2int(b & 0x3f)
125 self.putd(5, 0, [4, ['Hour: %d' % h, 'H: %d' % h, 'H']])
126
127 def handle_reg_0x05(self, b): # Days
128 self.putr(7)
129 self.putr(6)
130 d = self.days = bcd2int(b & 0x3f)
131 self.putd(5, 0, [5, ['Day: %d' % d, 'D: %d' % d, 'D']])
132
133 def handle_reg_0x06(self, b): # Weekdays
134 for i in (7, 6, 5, 4, 3):
135 self.putr(i)
136 w = self.weekdays = bcd2int(b & 0x07)
137 self.putd(2, 0, [6, ['Weekday: %d' % w, 'WD: %d' % w, 'WD', 'W']])
138
139 def handle_reg_0x07(self, b): # Months / century bit
140 c = 1 if (b & (1 << 7)) else 0
141 self.putd(7, 7, [13, ['Century bit: %d' % c, 'Century: %d' % c,
142 'Cent: %d' % c, 'C: %d' % c, 'C']])
143 self.putr(6)
144 self.putr(5)
145 m = self.months = bcd2int(b & 0x1f)
146 self.putd(4, 0, [7, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
147
148 def handle_reg_0x08(self, b): # Years
149 y = self.years = bcd2int(b & 0xff)
150 self.putx([8, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
151
152 def handle_reg_0x09(self, b): # Alarm, minute
153 pass
154
155 def handle_reg_0x0a(self, b): # Alarm, hour
156 pass
157
158 def handle_reg_0x0b(self, b): # Alarm, day
159 pass
160
161 def handle_reg_0x0c(self, b): # Alarm, weekday
162 pass
163
164 def handle_reg_0x0d(self, b): # CLKOUT output
165 pass
166
167 def handle_reg_0x0e(self, b): # Timer setting
168 pass
169
170 def handle_reg_0x0f(self, b): # Down counter for fixed-cycle timer
171 pass
172
173 def decode(self, ss, es, data):
174 cmd, databyte = data
175
176 # Collect the 'BITS' packet, then return. The next packet is
177 # guaranteed to belong to these bits we just stored.
178 if cmd == 'BITS':
179 self.bits = databyte
180 return
181
182 # Store the start/end samples of this I²C packet.
183 self.ss, self.es = ss, es
184
185 # State machine.
186 if self.state == 'IDLE':
187 # Wait for an I²C START condition.
188 if cmd != 'START':
189 return
190 self.state = 'GET SLAVE ADDR'
191 self.ss_block = ss
192 elif self.state == 'GET SLAVE ADDR':
193 # Wait for an address write operation.
194 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
195 if cmd != 'ADDRESS WRITE':
196 return
197 self.state = 'GET REG ADDR'
198 elif self.state == 'GET REG ADDR':
199 # Wait for a data write (master selects the slave register).
200 if cmd != 'DATA WRITE':
201 return
202 self.reg = databyte
203 self.state = 'WRITE RTC REGS'
204 elif self.state == 'WRITE RTC REGS':
205 # If we see a Repeated Start here, it's probably an RTC read.
206 if cmd == 'START REPEAT':
207 self.state = 'READ RTC REGS'
208 return
209 # Otherwise: Get data bytes until a STOP condition occurs.
210 if cmd == 'DATA WRITE':
211 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
212 self.putx([15, ['Write register %s' % s, 'Write reg %s' % s,
213 'WR %s' % s, 'WR', 'W']])
214 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
215 handle_reg(databyte)
216 self.reg += 1
217 # TODO: Check for NACK!
218 elif cmd == 'STOP':
219 # TODO: Handle read/write of only parts of these items.
220 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
221 self.years, self.hours, self.minutes, self.seconds)
222 self.put(self.ss_block, es, self.out_ann,
223 [9, ['Write date/time: %s' % d, 'Write: %s' % d,
224 'W: %s' % d]])
225 self.state = 'IDLE'
226 else:
227 pass # TODO
228 elif self.state == 'READ RTC REGS':
229 # Wait for an address read operation.
230 # TODO: We should only handle packets to the RTC slave (0xa2/0xa3).
231 if cmd == 'ADDRESS READ':
232 self.state = 'READ RTC REGS2'
233 return
234 else:
235 pass # TODO
236 elif self.state == 'READ RTC REGS2':
237 if cmd == 'DATA READ':
238 r, s = self.reg, '%02X: %02X' % (self.reg, databyte)
239 self.putx([15, ['Read register %s' % s, 'Read reg %s' % s,
240 'RR %s' % s, 'RR', 'R']])
241 handle_reg = getattr(self, 'handle_reg_0x%02x' % self.reg)
242 handle_reg(databyte)
243 self.reg += 1
244 # TODO: Check for NACK!
245 elif cmd == 'STOP':
246 d = '%02d.%02d.%02d %02d:%02d:%02d' % (self.days, self.months,
247 self.years, self.hours, self.minutes, self.seconds)
248 self.put(self.ss_block, es, self.out_ann,
249 [10, ['Read date/time: %s' % d, 'Read: %s' % d,
250 'R: %s' % d]])
251 self.state = 'IDLE'
252 else:
253 pass # TODO?