]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/ir_nec/pd.py
decoders: Add/update tags for each PD.
[libsigrokdecode.git] / decoders / ir_nec / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21from .lists import *
22
23class SamplerateError(Exception):
24 pass
25
26class Decoder(srd.Decoder):
27 api_version = 3
28 id = 'ir_nec'
29 name = 'IR NEC'
30 longname = 'IR NEC'
31 desc = 'NEC infrared remote control protocol.'
32 license = 'gplv2+'
33 inputs = ['logic']
34 outputs = ['ir_nec']
35 tags = ['IR']
36 channels = (
37 {'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
38 )
39 options = (
40 {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
41 'values': ('active-low', 'active-high')},
42 {'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0},
43 )
44 annotations = (
45 ('bit', 'Bit'),
46 ('agc-pulse', 'AGC pulse'),
47 ('longpause', 'Long pause'),
48 ('shortpause', 'Short pause'),
49 ('stop-bit', 'Stop bit'),
50 ('leader-code', 'Leader code'),
51 ('addr', 'Address'),
52 ('addr-inv', 'Address#'),
53 ('cmd', 'Command'),
54 ('cmd-inv', 'Command#'),
55 ('repeat-code', 'Repeat code'),
56 ('remote', 'Remote'),
57 ('warnings', 'Warnings'),
58 )
59 annotation_rows = (
60 ('bits', 'Bits', (0, 1, 2, 3, 4)),
61 ('fields', 'Fields', (5, 6, 7, 8, 9, 10)),
62 ('remote', 'Remote', (11,)),
63 ('warnings', 'Warnings', (12,)),
64 )
65
66 def putx(self, data):
67 self.put(self.ss_start, self.samplenum, self.out_ann, data)
68
69 def putb(self, data):
70 self.put(self.ss_bit, self.samplenum, self.out_ann, data)
71
72 def putd(self, data):
73 name = self.state.title()
74 d = {'ADDRESS': 6, 'ADDRESS#': 7, 'COMMAND': 8, 'COMMAND#': 9}
75 s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'],
76 'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']}
77 self.putx([d[self.state], ['%s: 0x%02X' % (name, data),
78 '%s: 0x%02X' % (s[self.state][0], data),
79 '%s: 0x%02X' % (s[self.state][1], data), s[self.state][1]]])
80
81 def putstop(self, ss):
82 self.put(ss, ss + self.stop, self.out_ann,
83 [4, ['Stop bit', 'Stop', 'St', 'S']])
84
85 def putpause(self, p):
86 self.put(self.ss_start, self.ss_other_edge, self.out_ann,
87 [1, ['AGC pulse', 'AGC', 'A']])
88 idx = 2 if p == 'Long' else 3
89 self.put(self.ss_other_edge, self.samplenum, self.out_ann,
90 [idx, [p + ' pause', '%s-pause' % p[0], '%sP' % p[0], 'P']])
91
92 def putremote(self):
93 dev = address.get(self.addr, 'Unknown device')
94 buttons = command.get(self.addr, None)
95 if buttons is None:
96 btn = ['Unknown', 'Unk']
97 else:
98 btn = buttons.get(self.cmd, ['Unknown', 'Unk'])
99 self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann,
100 [11, ['%s: %s' % (dev, btn[0]), '%s: %s' % (dev, btn[1]),
101 '%s' % btn[1]]])
102
103 def __init__(self):
104 self.reset()
105
106 def reset(self):
107 self.state = 'IDLE'
108 self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0
109 self.data = self.count = self.active = None
110 self.addr = self.cmd = None
111
112 def start(self):
113 self.out_ann = self.register(srd.OUTPUT_ANN)
114 self.active = 0 if self.options['polarity'] == 'active-low' else 1
115
116 def metadata(self, key, value):
117 if key == srd.SRD_CONF_SAMPLERATE:
118 self.samplerate = value
119 self.tolerance = 0.05 # +/-5%
120 self.lc = int(self.samplerate * 0.0135) - 1 # 13.5ms
121 self.rc = int(self.samplerate * 0.01125) - 1 # 11.25ms
122 self.dazero = int(self.samplerate * 0.001125) - 1 # 1.125ms
123 self.daone = int(self.samplerate * 0.00225) - 1 # 2.25ms
124 self.stop = int(self.samplerate * 0.000652) - 1 # 0.652ms
125
126 def compare_with_tolerance(self, measured, base):
127 return (measured >= base * (1 - self.tolerance)
128 and measured <= base * (1 + self.tolerance))
129
130 def handle_bit(self, tick):
131 ret = None
132 if self.compare_with_tolerance(tick, self.dazero):
133 ret = 0
134 elif self.compare_with_tolerance(tick, self.daone):
135 ret = 1
136 if ret in (0, 1):
137 self.putb([0, ['%d' % ret]])
138 self.data |= (ret << self.count) # LSB-first
139 self.count = self.count + 1
140 self.ss_bit = self.samplenum
141
142 def data_ok(self):
143 ret, name = (self.data >> 8) & (self.data & 0xff), self.state.title()
144 if self.count == 8:
145 if self.state == 'ADDRESS':
146 self.addr = self.data
147 if self.state == 'COMMAND':
148 self.cmd = self.data
149 self.putd(self.data)
150 self.ss_start = self.samplenum
151 return True
152 if ret == 0:
153 self.putd(self.data >> 8)
154 else:
155 self.putx([12, ['%s error: 0x%04X' % (name, self.data)]])
156 self.data = self.count = 0
157 self.ss_bit = self.ss_start = self.samplenum
158 return ret == 0
159
160 def decode(self):
161 if not self.samplerate:
162 raise SamplerateError('Cannot decode without samplerate.')
163
164 cd_count = None
165 if self.options['cd_freq']:
166 cd_count = int(self.samplerate / self.options['cd_freq']) + 1
167 prev_ir = None
168
169 while True:
170 # Detect changes in the presence of an active input signal.
171 # The decoder can either be fed an already filtered RX signal
172 # or optionally can detect the presence of a carrier. Periods
173 # of inactivity (signal changes slower than the carrier freq,
174 # if specified) pass on the most recently sampled level. This
175 # approach works for filtered and unfiltered input alike, and
176 # only slightly extends the active phase of input signals with
177 # carriers included by one period of the carrier frequency.
178 # IR based communication protocols can cope with this slight
179 # inaccuracy just fine by design. Enabling carrier detection
180 # on already filtered signals will keep the length of their
181 # active period, but will shift their signal changes by one
182 # carrier period before they get passed to decoding logic.
183 if cd_count:
184 (cur_ir,) = self.wait([{0: 'e'}, {'skip': cd_count}])
185 if self.matched[0]:
186 cur_ir = self.active
187 if cur_ir == prev_ir:
188 continue
189 prev_ir = cur_ir
190 self.ir = cur_ir
191 else:
192 (self.ir,) = self.wait({0: 'e'})
193
194 if self.ir != self.active:
195 # Save the non-active edge, then wait for the next edge.
196 self.ss_other_edge = self.samplenum
197 continue
198
199 b = self.samplenum - self.ss_bit
200
201 # State machine.
202 if self.state == 'IDLE':
203 if self.compare_with_tolerance(b, self.lc):
204 self.putpause('Long')
205 self.putx([5, ['Leader code', 'Leader', 'LC', 'L']])
206 self.ss_remote = self.ss_start
207 self.data = self.count = 0
208 self.state = 'ADDRESS'
209 elif self.compare_with_tolerance(b, self.rc):
210 self.putpause('Short')
211 self.putstop(self.samplenum)
212 self.samplenum += self.stop
213 self.putx([10, ['Repeat code', 'Repeat', 'RC', 'R']])
214 self.data = self.count = 0
215 self.ss_bit = self.ss_start = self.samplenum
216 elif self.state == 'ADDRESS':
217 self.handle_bit(b)
218 if self.count == 8:
219 self.state = 'ADDRESS#' if self.data_ok() else 'IDLE'
220 elif self.state == 'ADDRESS#':
221 self.handle_bit(b)
222 if self.count == 16:
223 self.state = 'COMMAND' if self.data_ok() else 'IDLE'
224 elif self.state == 'COMMAND':
225 self.handle_bit(b)
226 if self.count == 8:
227 self.state = 'COMMAND#' if self.data_ok() else 'IDLE'
228 elif self.state == 'COMMAND#':
229 self.handle_bit(b)
230 if self.count == 16:
231 self.state = 'STOP' if self.data_ok() else 'IDLE'
232 elif self.state == 'STOP':
233 self.putstop(self.ss_bit)
234 self.putremote()
235 self.ss_bit = self.ss_start = self.samplenum
236 self.state = 'IDLE'