]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/ir_nec/pd.py
ir_nec: add support for extended NEC protocol (16bit address)
[libsigrokdecode.git] / decoders / ir_nec / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20from common.srdhelper import bitpack
21from .lists import *
22import sigrokdecode as srd
23
24class SamplerateError(Exception):
25 pass
26
27class Pin:
28 IR, = range(1)
29
30class Ann:
31 BIT, AGC, LONG_PAUSE, SHORT_PAUSE, STOP_BIT, \
32 LEADER_CODE, ADDR, ADDR_INV, CMD, CMD_INV, REPEAT_CODE, \
33 REMOTE, WARN = range(13)
34
35class Decoder(srd.Decoder):
36 api_version = 3
37 id = 'ir_nec'
38 name = 'IR NEC'
39 longname = 'IR NEC'
40 desc = 'NEC infrared remote control protocol.'
41 license = 'gplv2+'
42 inputs = ['logic']
43 outputs = []
44 tags = ['IR']
45 channels = (
46 {'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
47 )
48 options = (
49 {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
50 'values': ('active-low', 'active-high')},
51 {'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0},
52 {'id': 'extended', 'desc': 'Extended NEC Protocol',
53 'default': 'no', 'values': ('yes', 'no')},
54 )
55 annotations = (
56 ('bit', 'Bit'),
57 ('agc-pulse', 'AGC pulse'),
58 ('longpause', 'Long pause'),
59 ('shortpause', 'Short pause'),
60 ('stop-bit', 'Stop bit'),
61 ('leader-code', 'Leader code'),
62 ('addr', 'Address'),
63 ('addr-inv', 'Address#'),
64 ('cmd', 'Command'),
65 ('cmd-inv', 'Command#'),
66 ('repeat-code', 'Repeat code'),
67 ('remote', 'Remote'),
68 ('warning', 'Warning'),
69 )
70 annotation_rows = (
71 ('bits', 'Bits', (Ann.BIT, Ann.AGC, Ann.LONG_PAUSE, Ann.SHORT_PAUSE, Ann.STOP_BIT)),
72 ('fields', 'Fields', (Ann.LEADER_CODE, Ann.ADDR, Ann.ADDR_INV, Ann.CMD, Ann.CMD_INV, Ann.REPEAT_CODE)),
73 ('remote-vals', 'Remote', (Ann.REMOTE,)),
74 ('warnings', 'Warnings', (Ann.WARN,)),
75 )
76
77 def putx(self, data):
78 self.put(self.ss_start, self.samplenum, self.out_ann, data)
79
80 def putb(self, data):
81 self.put(self.ss_bit, self.samplenum, self.out_ann, data)
82
83 def putd(self, data, bit_count):
84 name = self.state.title()
85 d = {'ADDRESS': Ann.ADDR, 'ADDRESS#': Ann.ADDR_INV,
86 'COMMAND': Ann.CMD, 'COMMAND#': Ann.CMD_INV}
87 s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'],
88 'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']}
89 fmt = '{{}}: 0x{{:0{}X}}'.format(bit_count // 4)
90 self.putx([d[self.state], [
91 fmt.format(name, data),
92 fmt.format(s[self.state][0], data),
93 fmt.format(s[self.state][1], data),
94 s[self.state][1],
95 ]])
96
97 def putstop(self, ss):
98 self.put(ss, ss + self.stop, self.out_ann,
99 [Ann.STOP_BIT, ['Stop bit', 'Stop', 'St', 'S']])
100
101 def putpause(self, p):
102 self.put(self.ss_start, self.ss_other_edge, self.out_ann,
103 [Ann.AGC, ['AGC pulse', 'AGC', 'A']])
104 idx = Ann.LONG_PAUSE if p == 'Long' else Ann.SHORT_PAUSE
105 self.put(self.ss_other_edge, self.samplenum, self.out_ann, [idx, [
106 '{} pause'.format(p),
107 '{}-pause'.format(p[0]),
108 '{}P'.format(p[0]),
109 'P',
110 ]])
111
112 def putremote(self):
113 dev = address.get(self.addr, 'Unknown device')
114 buttons = command.get(self.addr, {})
115 btn = buttons.get(self.cmd, ['Unknown', 'Unk'])
116 self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann, [Ann.REMOTE, [
117 '{}: {}'.format(dev, btn[0]),
118 '{}: {}'.format(dev, btn[1]),
119 '{}'.format(btn[1]),
120 ]])
121
122 def __init__(self):
123 self.reset()
124
125 def reset(self):
126 self.state = 'IDLE'
127 self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0
128 self.data = []
129 self.addr = self.cmd = None
130
131 def start(self):
132 self.out_ann = self.register(srd.OUTPUT_ANN)
133
134 def metadata(self, key, value):
135 if key == srd.SRD_CONF_SAMPLERATE:
136 self.samplerate = value
137
138 def calc_rate(self):
139 self.tolerance = 0.05 # +/-5%
140 self.lc = int(self.samplerate * 0.0135) - 1 # 13.5ms
141 self.rc = int(self.samplerate * 0.01125) - 1 # 11.25ms
142 self.dazero = int(self.samplerate * 0.001125) - 1 # 1.125ms
143 self.daone = int(self.samplerate * 0.00225) - 1 # 2.25ms
144 self.stop = int(self.samplerate * 0.000652) - 1 # 0.652ms
145
146 def compare_with_tolerance(self, measured, base):
147 return (measured >= base * (1 - self.tolerance)
148 and measured <= base * (1 + self.tolerance))
149
150 def handle_bit(self, tick):
151 ret = None
152 if self.compare_with_tolerance(tick, self.dazero):
153 ret = 0
154 elif self.compare_with_tolerance(tick, self.daone):
155 ret = 1
156 if ret in (0, 1):
157 self.putb([Ann.BIT, ['{:d}'.format(ret)]])
158 self.data.append(ret)
159 self.ss_bit = self.samplenum
160
161 def data_ok(self, check, want_len):
162 name = self.state.title()
163 normal, inverted = bitpack(self.data[:8]), bitpack(self.data[8:])
164 valid = (normal ^ inverted) == 0xff
165 show = inverted if self.state.endswith('#') else normal
166 is_ext_addr = self.is_extended and self.state == 'ADDRESS'
167 if is_ext_addr:
168 normal = bitpack(self.data)
169 show = normal
170 valid = True
171 if len(self.data) == want_len:
172 if self.state == 'ADDRESS':
173 self.addr = normal
174 if self.state == 'COMMAND':
175 self.cmd = normal
176 self.putd(show, want_len)
177 self.ss_start = self.samplenum
178 if is_ext_addr:
179 self.data = []
180 self.ss_bit = self.ss_start = self.samplenum
181 return True
182 if check and not valid:
183 warn_show = bitpack(self.data)
184 self.putx([Ann.WARN, ['{} error: 0x{:04X}'.format(name, warn_show)]])
185 else:
186 self.putd(show, want_len)
187 self.data = []
188 self.ss_bit = self.ss_start = self.samplenum
189 return valid
190
191 def decode(self):
192 if not self.samplerate:
193 raise SamplerateError('Cannot decode without samplerate.')
194 self.calc_rate()
195
196 cd_count = None
197 if self.options['cd_freq']:
198 cd_count = int(self.samplerate / self.options['cd_freq']) + 1
199 prev_ir = None
200
201 active = 0 if self.options['polarity'] == 'active-low' else 1
202 self.is_extended = self.options['extended'] == 'yes'
203 want_addr_len = 16 if self.is_extended else 8
204
205 while True:
206 # Detect changes in the presence of an active input signal.
207 # The decoder can either be fed an already filtered RX signal
208 # or optionally can detect the presence of a carrier. Periods
209 # of inactivity (signal changes slower than the carrier freq,
210 # if specified) pass on the most recently sampled level. This
211 # approach works for filtered and unfiltered input alike, and
212 # only slightly extends the active phase of input signals with
213 # carriers included by one period of the carrier frequency.
214 # IR based communication protocols can cope with this slight
215 # inaccuracy just fine by design. Enabling carrier detection
216 # on already filtered signals will keep the length of their
217 # active period, but will shift their signal changes by one
218 # carrier period before they get passed to decoding logic.
219 if cd_count:
220 (cur_ir,) = self.wait([{Pin.IR: 'e'}, {'skip': cd_count}])
221 if self.matched[0]:
222 cur_ir = active
223 if cur_ir == prev_ir:
224 continue
225 prev_ir = cur_ir
226 self.ir = cur_ir
227 else:
228 (self.ir,) = self.wait({Pin.IR: 'e'})
229
230 if self.ir != active:
231 # Save the non-active edge, then wait for the next edge.
232 self.ss_other_edge = self.samplenum
233 continue
234
235 b = self.samplenum - self.ss_bit
236
237 # State machine.
238 if self.state == 'IDLE':
239 if self.compare_with_tolerance(b, self.lc):
240 self.putpause('Long')
241 self.putx([Ann.LEADER_CODE, ['Leader code', 'Leader', 'LC', 'L']])
242 self.ss_remote = self.ss_start
243 self.data = []
244 self.state = 'ADDRESS'
245 elif self.compare_with_tolerance(b, self.rc):
246 self.putpause('Short')
247 self.putstop(self.samplenum)
248 self.samplenum += self.stop
249 self.putx([Ann.REPEAT_CODE, ['Repeat code', 'Repeat', 'RC', 'R']])
250 self.data = []
251 self.ss_bit = self.ss_start = self.samplenum
252 elif self.state == 'ADDRESS':
253 self.handle_bit(b)
254 if len(self.data) == want_addr_len:
255 self.data_ok(False, want_addr_len)
256 self.state = 'COMMAND' if self.is_extended else 'ADDRESS#'
257 elif self.state == 'ADDRESS#':
258 self.handle_bit(b)
259 if len(self.data) == 16:
260 self.state = 'COMMAND' if self.data_ok(True, 8) else 'IDLE'
261 elif self.state == 'COMMAND':
262 self.handle_bit(b)
263 if len(self.data) == 8:
264 self.data_ok(False, 8)
265 self.state = 'COMMAND#'
266 elif self.state == 'COMMAND#':
267 self.handle_bit(b)
268 if len(self.data) == 16:
269 self.state = 'STOP' if self.data_ok(True, 8) else 'IDLE'
270 elif self.state == 'STOP':
271 self.putstop(self.ss_bit)
272 self.putremote()
273 self.ss_bit = self.ss_start = self.samplenum
274 self.state = 'IDLE'