]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/i2c.py
srd: Consistent PD option defaults handling.
[libsigrokdecode.git] / decoders / i2c.py
... / ...
CommitLineData
1##
2## This file is part of the sigrok project.
3##
4## Copyright (C) 2010-2011 Uwe Hermann <uwe@hermann-uwe.de>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21#
22# I2C protocol decoder
23#
24
25#
26# The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master
27# bus using two signals (SCL = serial clock line, SDA = serial data line).
28#
29# There can be many devices on the same bus. Each device can potentially be
30# master or slave (and that can change during runtime). Both slave and master
31# can potentially play the transmitter or receiver role (this can also
32# change at runtime).
33#
34# Possible maximum data rates:
35# - Standard mode: 100 kbit/s
36# - Fast mode: 400 kbit/s
37# - Fast-mode Plus: 1 Mbit/s
38# - High-speed mode: 3.4 Mbit/s
39#
40# START condition (S): SDA = falling, SCL = high
41# Repeated START condition (Sr): same as S
42# Data bit sampling: SCL = rising
43# STOP condition (P): SDA = rising, SCL = high
44#
45# All data bytes on SDA are exactly 8 bits long (transmitted MSB-first).
46# Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low,
47# that indicates an ACK, if it's high that indicates a NACK.
48#
49# After the first START condition, a master sends the device address of the
50# slave it wants to talk to. Slave addresses are 7 bits long (MSB-first).
51# After those 7 bits, a data direction bit is sent. If the bit is low that
52# indicates a WRITE operation, if it's high that indicates a READ operation.
53#
54# Later an optional 10bit slave addressing scheme was added.
55#
56# Documentation:
57# http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec)
58# http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec)
59# http://en.wikipedia.org/wiki/I2C
60#
61
62# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
63# TODO: Handle clock stretching.
64# TODO: Handle combined messages / repeated START.
65# TODO: Implement support for 7bit and 10bit slave addresses.
66# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
67# TODO: Implement support for detecting various bus errors.
68# TODO: I2C address of slaves.
69# TODO: Handle multiple different I2C devices on same bus
70# -> we need to decode multiple protocols at the same time.
71
72#
73# I2C protocol output format:
74#
75# The protocol output consists of a (Python) list of I2C "packets", each of
76# which is of the form
77#
78# [<i2c_command>, <data>, <ack_bit>]
79#
80# <i2c_command> is one of:
81# - 'START' (START condition)
82# - 'START_REPEAT' (Repeated START)
83# - 'ADDRESS_READ' (Slave address, read)
84# - 'ADDRESS_WRITE' (Slave address, write)
85# - 'DATA_READ' (Data, read)
86# - 'DATA_WRITE' (Data, write)
87# - 'STOP' (STOP condition)
88#
89# <data> is the data or address byte associated with the ADDRESS_* and DATA_*
90# command. For START, START_REPEAT and STOP, this is None.
91#
92# <ack_bit> is either 'ACK' or 'NACK', but may also be None.
93#
94
95import sigrokdecode as srd
96
97# Annotation feed formats
98ANN_SHIFTED = 0
99ANN_SHIFTED_SHORT = 1
100ANN_RAW = 2
101
102# Values are verbose and short annotation, respectively.
103protocol = {
104 'START': ['START', 'S'],
105 'START_REPEAT': ['START REPEAT', 'Sr'],
106 'STOP': ['STOP', 'P'],
107 'ACK': ['ACK', 'A'],
108 'NACK': ['NACK', 'N'],
109 'ADDRESS_READ': ['ADDRESS READ', 'AR'],
110 'ADDRESS_WRITE': ['ADDRESS WRITE', 'AW'],
111 'DATA_READ': ['DATA READ', 'DR'],
112 'DATA_WRITE': ['DATA WRITE', 'DW'],
113}
114
115# States
116FIND_START = 0
117FIND_ADDRESS = 1
118FIND_DATA = 2
119
120class Decoder(srd.Decoder):
121 id = 'i2c'
122 name = 'I2C'
123 longname = 'Inter-Integrated Circuit'
124 desc = 'I2C is a two-wire, multi-master, serial bus.'
125 longdesc = '...'
126 author = 'Uwe Hermann'
127 email = 'uwe@hermann-uwe.de'
128 license = 'gplv2+'
129 inputs = ['logic']
130 outputs = ['i2c']
131 probes = [
132 {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
133 {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
134 ]
135 options = {
136 'addressing': ['Slave addressing (in bits)', 7], # 7 or 10
137 }
138 annotations = [
139 # ANN_SHIFTED
140 ['7-bit shifted hex',
141 'Read/write bit shifted out from the 8-bit I2C slave address'],
142 # ANN_SHIFTED_SHORT
143 ['7-bit shifted hex (short)',
144 'Read/write bit shifted out from the 8-bit I2C slave address'],
145 # ANN_RAW
146 ['Raw hex', 'Unaltered raw data'],
147 ]
148
149 def __init__(self, **kwargs):
150 self.samplecnt = 0
151 self.bitcount = 0
152 self.databyte = 0
153 self.wr = -1
154 self.startsample = -1
155 self.is_repeat_start = 0
156 self.state = FIND_START
157 self.oldscl = None
158 self.oldsda = None
159
160 # Set protocol decoder option defaults.
161 self.addressing = Decoder.options['addressing'][1]
162
163 def start(self, metadata):
164 self.out_proto = self.add(srd.OUTPUT_PROTO, 'i2c')
165 self.out_ann = self.add(srd.OUTPUT_ANN, 'i2c')
166
167 def report(self):
168 pass
169
170 def is_start_condition(self, scl, sda):
171 # START condition (S): SDA = falling, SCL = high
172 if (self.oldsda == 1 and sda == 0) and scl == 1:
173 return True
174 return False
175
176 def is_data_bit(self, scl, sda):
177 # Data sampling of receiver: SCL = rising
178 if self.oldscl == 0 and scl == 1:
179 return True
180 return False
181
182 def is_stop_condition(self, scl, sda):
183 # STOP condition (P): SDA = rising, SCL = high
184 if (self.oldsda == 0 and sda == 1) and scl == 1:
185 return True
186 return False
187
188 def found_start(self, scl, sda):
189 cmd = 'START_REPEAT' if (self.is_repeat_start == 1) else 'START'
190
191 self.put(self.out_proto, [cmd, None, None])
192 self.put(self.out_ann, [ANN_SHIFTED, [protocol[cmd][0]]])
193 self.put(self.out_ann, [ANN_SHIFTED_SHORT, [protocol[cmd][1]]])
194
195 self.state = FIND_ADDRESS
196 self.bitcount = self.databyte = 0
197 self.is_repeat_start = 1
198 self.wr = -1
199
200 def found_address_or_data(self, scl, sda):
201 # Gather 8 bits of data plus the ACK/NACK bit.
202
203 if self.startsample == -1:
204 # TODO: Should be samplenum, as received from the feed.
205 self.startsample = self.samplecnt
206 self.bitcount += 1
207
208 # Address and data are transmitted MSB-first.
209 self.databyte <<= 1
210 self.databyte |= sda
211
212 # Return if we haven't collected all 8 + 1 bits, yet.
213 if self.bitcount != 9:
214 return
215
216 # Send raw output annotation before we start shifting out
217 # read/write and ack/nack bits.
218 self.put(self.out_ann, [ANN_RAW, ['0x%.2x' % self.databyte]])
219
220 # We received 8 address/data bits and the ACK/NACK bit.
221 self.databyte >>= 1 # Shift out unwanted ACK/NACK bit here.
222
223 if self.state == FIND_ADDRESS:
224 # The READ/WRITE bit is only in address bytes, not data bytes.
225 self.wr = 0 if (self.databyte & 1) else 1
226 d = self.databyte >> 1
227 elif self.state == FIND_DATA:
228 d = self.databyte
229 else:
230 # TODO: Error?
231 pass
232
233 # Last bit that came in was the ACK/NACK bit (1 = NACK).
234 ack_bit = 'NACK' if (sda == 1) else 'ACK'
235
236 if self.state == FIND_ADDRESS and self.wr == 1:
237 cmd = 'ADDRESS_WRITE'
238 elif self.state == FIND_ADDRESS and self.wr == 0:
239 cmd = 'ADDRESS_READ'
240 elif self.state == FIND_DATA and self.wr == 1:
241 cmd = 'DATA_WRITE'
242 elif self.state == FIND_DATA and self.wr == 0:
243 cmd = 'DATA_READ'
244
245 self.put(self.out_proto, [cmd, d, ack_bit])
246 self.put(self.out_ann, [ANN_SHIFTED,
247 [protocol[cmd][0], '0x%02x' % d, protocol[ack_bit][0]]])
248 self.put(self.out_ann, [ANN_SHIFTED_SHORT,
249 [protocol[cmd][1], '0x%02x' % d, protocol[ack_bit][1]]])
250
251 self.bitcount = self.databyte = 0
252 self.startsample = -1
253
254 if self.state == FIND_ADDRESS:
255 self.state = FIND_DATA
256 elif self.state == FIND_DATA:
257 # There could be multiple data bytes in a row.
258 # So, either find a STOP condition or another data byte next.
259 pass
260
261 def found_stop(self, scl, sda):
262 self.put(self.out_proto, ['STOP', None, None])
263 self.put(self.out_ann, [ANN_SHIFTED, [protocol['STOP'][0]]])
264 self.put(self.out_ann, [ANN_SHIFTED_SHORT, [protocol['STOP'][1]]])
265
266 self.state = FIND_START
267 self.is_repeat_start = 0
268 self.wr = -1
269
270 def put(self, output_id, data):
271 # Inject sample range into the call up to sigrok.
272 # TODO: 0-0 sample range for now.
273 super(Decoder, self).put(0, 0, output_id, data)
274
275 def decode(self, ss, es, data):
276 for samplenum, (scl, sda) in data:
277 self.samplecnt += 1
278
279 # First sample: Save SCL/SDA value.
280 if self.oldscl == None:
281 self.oldscl = scl
282 self.oldsda = sda
283 continue
284
285 # TODO: Wait until the bus is idle (SDA = SCL = 1) first?
286
287 # State machine.
288 if self.state == FIND_START:
289 if self.is_start_condition(scl, sda):
290 self.found_start(scl, sda)
291 elif self.state == FIND_ADDRESS:
292 if self.is_data_bit(scl, sda):
293 self.found_address_or_data(scl, sda)
294 elif self.state == FIND_DATA:
295 if self.is_data_bit(scl, sda):
296 self.found_address_or_data(scl, sda)
297 elif self.is_start_condition(scl, sda):
298 self.found_start(scl, sda)
299 elif self.is_stop_condition(scl, sda):
300 self.found_stop(scl, sda)
301 else:
302 # TODO: Error?
303 pass
304
305 # Save current SDA/SCL values for the next round.
306 self.oldscl = scl
307 self.oldsda = sda
308