]> sigrok.org Git - libsigrokdecode.git/blame_incremental - decoders/ds1307/pd.py
ds1307: Use SrdIntEnum for annotation classes.
[libsigrokdecode.git] / decoders / ds1307 / pd.py
... / ...
CommitLineData
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2012-2020 Uwe Hermann <uwe@hermann-uwe.de>
5## Copyright (C) 2013 Matt Ranostay <mranostay@gmail.com>
6##
7## This program is free software; you can redistribute it and/or modify
8## it under the terms of the GNU General Public License as published by
9## the Free Software Foundation; either version 2 of the License, or
10## (at your option) any later version.
11##
12## This program is distributed in the hope that it will be useful,
13## but WITHOUT ANY WARRANTY; without even the implied warranty of
14## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15## GNU General Public License for more details.
16##
17## You should have received a copy of the GNU General Public License
18## along with this program; if not, see <http://www.gnu.org/licenses/>.
19##
20
21import re
22import sigrokdecode as srd
23from common.srdhelper import bcd2int, SrdIntEnum
24
25days_of_week = (
26 'Sunday', 'Monday', 'Tuesday', 'Wednesday',
27 'Thursday', 'Friday', 'Saturday',
28)
29
30regs = (
31 'Seconds', 'Minutes', 'Hours', 'Day', 'Date', 'Month', 'Year',
32 'Control', 'RAM',
33)
34
35bits = (
36 'Clock halt', 'Seconds', 'Reserved', 'Minutes', '12/24 hours', 'AM/PM',
37 'Hours', 'Day', 'Date', 'Month', 'Year', 'OUT', 'SQWE', 'RS', 'RAM',
38)
39
40rates = {
41 0b00: '1Hz',
42 0b01: '4096Hz',
43 0b10: '8192Hz',
44 0b11: '32768Hz',
45}
46
47DS1307_I2C_ADDRESS = 0x68
48
49def regs_and_bits():
50 l = [('reg_' + r.lower(), r + ' register') for r in regs]
51 l += [('bit_' + re.sub('\/| ', '_', b).lower(), b + ' bit') for b in bits]
52 return tuple(l)
53
54a = ['REG_' + r.upper() for r in regs] + \
55 ['BIT_' + re.sub('\/| ', '_', b).upper() for b in bits] + \
56 ['READ_DATE_TIME', 'WRITE_DATE_TIME', 'READ_REG', 'WRITE_REG', 'WARNING']
57Ann = SrdIntEnum.from_list('Ann', a)
58
59class Decoder(srd.Decoder):
60 api_version = 3
61 id = 'ds1307'
62 name = 'DS1307'
63 longname = 'Dallas DS1307'
64 desc = 'Dallas DS1307 realtime clock module protocol.'
65 license = 'gplv2+'
66 inputs = ['i2c']
67 outputs = []
68 tags = ['Clock/timing', 'IC']
69 annotations = regs_and_bits() + (
70 ('read_date_time', 'Read date/time'),
71 ('write_date_time', 'Write date/time'),
72 ('read_reg', 'Register read'),
73 ('write_reg', 'Register write'),
74 ('warning', 'Warning'),
75 )
76 annotation_rows = (
77 ('bits', 'Bits', Ann.prefixes('BIT_')),
78 ('regs', 'Registers', Ann.prefixes('REG_')),
79 ('date_time', 'Date/time', Ann.prefixes('READ_ WRITE_')),
80 ('warnings', 'Warnings', (Ann.WARNING,)),
81 )
82
83 def __init__(self):
84 self.reset()
85
86 def reset(self):
87 self.state = 'IDLE'
88 self.hours = -1
89 self.minutes = -1
90 self.seconds = -1
91 self.days = -1
92 self.date = -1
93 self.months = -1
94 self.years = -1
95 self.bits = []
96
97 def start(self):
98 self.out_ann = self.register(srd.OUTPUT_ANN)
99
100 def putx(self, data):
101 self.put(self.ss, self.es, self.out_ann, data)
102
103 def putd(self, bit1, bit2, data):
104 self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
105
106 def putr(self, bit):
107 self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
108 [Ann.BIT_RESERVED, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
109
110 def handle_reg_0x00(self, b): # Seconds (0-59) / Clock halt bit
111 self.putd(7, 0, [Ann.REG_SECONDS, ['Seconds', 'Sec', 'S']])
112 ch = 1 if (b & (1 << 7)) else 0
113 self.putd(7, 7, [Ann.BIT_CLOCK_HALT, ['Clock halt: %d' % ch,
114 'Clk hlt: %d' % ch, 'CH: %d' % ch, 'CH']])
115 s = self.seconds = bcd2int(b & 0x7f)
116 self.putd(6, 0, [Ann.BIT_SECONDS, ['Second: %d' % s, 'Sec: %d' % s,
117 'S: %d' % s, 'S']])
118
119 def handle_reg_0x01(self, b): # Minutes (0-59)
120 self.putd(7, 0, [Ann.REG_MINUTES, ['Minutes', 'Min', 'M']])
121 self.putr(7)
122 m = self.minutes = bcd2int(b & 0x7f)
123 self.putd(6, 0, [Ann.BIT_MINUTES, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
124
125 def handle_reg_0x02(self, b): # Hours (1-12+AM/PM or 0-23)
126 self.putd(7, 0, [Ann.REG_HOURS, ['Hours', 'H']])
127 self.putr(7)
128 ampm_mode = True if (b & (1 << 6)) else False
129 if ampm_mode:
130 self.putd(6, 6, [Ann.BIT_12_24_HOURS, ['12-hour mode', '12h mode', '12h']])
131 a = 'PM' if (b & (1 << 5)) else 'AM'
132 self.putd(5, 5, [Ann.BIT_AM_PM, [a, a[0]]])
133 h = self.hours = bcd2int(b & 0x1f)
134 self.putd(4, 0, [Ann.BIT_HOURS, ['Hour: %d' % h, 'H: %d' % h, 'H']])
135 else:
136 self.putd(6, 6, [Ann.BIT_12_24_HOURS, ['24-hour mode', '24h mode', '24h']])
137 h = self.hours = bcd2int(b & 0x3f)
138 self.putd(5, 0, [Ann.BIT_HOURS, ['Hour: %d' % h, 'H: %d' % h, 'H']])
139
140 def handle_reg_0x03(self, b): # Day / day of week (1-7)
141 self.putd(7, 0, [Ann.REG_DAY, ['Day of week', 'Day', 'D']])
142 for i in (7, 6, 5, 4, 3):
143 self.putr(i)
144 w = self.days = bcd2int(b & 0x07)
145 ws = days_of_week[self.days - 1]
146 self.putd(2, 0, [Ann.BIT_DAY, ['Weekday: %s' % ws, 'WD: %s' % ws, 'WD', 'W']])
147
148 def handle_reg_0x04(self, b): # Date (1-31)
149 self.putd(7, 0, [Ann.REG_DATE, ['Date', 'D']])
150 for i in (7, 6):
151 self.putr(i)
152 d = self.date = bcd2int(b & 0x3f)
153 self.putd(5, 0, [Ann.BIT_DATE, ['Date: %d' % d, 'D: %d' % d, 'D']])
154
155 def handle_reg_0x05(self, b): # Month (1-12)
156 self.putd(7, 0, [Ann.REG_MONTH, ['Month', 'Mon', 'M']])
157 for i in (7, 6, 5):
158 self.putr(i)
159 m = self.months = bcd2int(b & 0x1f)
160 self.putd(4, 0, [Ann.BIT_MONTH, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
161
162 def handle_reg_0x06(self, b): # Year (0-99)
163 self.putd(7, 0, [Ann.REG_YEAR, ['Year', 'Y']])
164 y = self.years = bcd2int(b & 0xff)
165 self.years += 2000
166 self.putd(7, 0, [Ann.BIT_YEAR, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
167
168 def handle_reg_0x07(self, b): # Control Register
169 self.putd(7, 0, [Ann.REG_CONTROL, ['Control', 'Ctrl', 'C']])
170 for i in (6, 5, 3, 2):
171 self.putr(i)
172 o = 1 if (b & (1 << 7)) else 0
173 s = 1 if (b & (1 << 4)) else 0
174 s2 = 'en' if (b & (1 << 4)) else 'dis'
175 r = rates[b & 0x03]
176 self.putd(7, 7, [Ann.BIT_OUT, ['Output control: %d' % o,
177 'OUT: %d' % o, 'O: %d' % o, 'O']])
178 self.putd(4, 4, [Ann.BIT_SQWE, ['Square wave output: %sabled' % s2,
179 'SQWE: %sabled' % s2, 'SQWE: %d' % s, 'S: %d' % s, 'S']])
180 self.putd(1, 0, [Ann.BIT_RS, ['Square wave output rate: %s' % r,
181 'Square wave rate: %s' % r, 'SQW rate: %s' % r, 'Rate: %s' % r,
182 'RS: %s' % s, 'RS', 'R']])
183
184 def handle_reg_0x3f(self, b): # RAM (bytes 0x08-0x3f)
185 self.putd(7, 0, [Ann.REG_RAM, ['RAM', 'R']])
186 self.putd(7, 0, [Ann.BIT_RAM, ['SRAM: 0x%02X' % b, '0x%02X' % b]])
187
188 def output_datetime(self, cls, rw):
189 # TODO: Handle read/write of only parts of these items.
190 d = '%s, %02d.%02d.%4d %02d:%02d:%02d' % (
191 days_of_week[self.days - 1], self.date, self.months,
192 self.years, self.hours, self.minutes, self.seconds)
193 self.put(self.ss_block, self.es, self.out_ann,
194 [cls, ['%s date/time: %s' % (rw, d)]])
195
196 def handle_reg(self, b):
197 r = self.reg if self.reg < 8 else 0x3f
198 fn = getattr(self, 'handle_reg_0x%02x' % r)
199 fn(b)
200 # Honor address auto-increment feature of the DS1307. When the
201 # address reaches 0x3f, it will wrap around to address 0.
202 self.reg += 1
203 if self.reg > 0x3f:
204 self.reg = 0
205
206 def is_correct_chip(self, addr):
207 if addr == DS1307_I2C_ADDRESS:
208 return True
209 self.put(self.ss_block, self.es, self.out_ann,
210 [Ann.WARNING, ['Ignoring non-DS1307 data (slave 0x%02X)' % addr]])
211 return False
212
213 def decode(self, ss, es, data):
214 cmd, databyte = data
215
216 # Collect the 'BITS' packet, then return. The next packet is
217 # guaranteed to belong to these bits we just stored.
218 if cmd == 'BITS':
219 self.bits = databyte
220 return
221
222 # Store the start/end samples of this I²C packet.
223 self.ss, self.es = ss, es
224
225 # State machine.
226 if self.state == 'IDLE':
227 # Wait for an I²C START condition.
228 if cmd != 'START':
229 return
230 self.state = 'GET SLAVE ADDR'
231 self.ss_block = ss
232 elif self.state == 'GET SLAVE ADDR':
233 # Wait for an address write operation.
234 if cmd != 'ADDRESS WRITE':
235 return
236 if not self.is_correct_chip(databyte):
237 self.state = 'IDLE'
238 return
239 self.state = 'GET REG ADDR'
240 elif self.state == 'GET REG ADDR':
241 # Wait for a data write (master selects the slave register).
242 if cmd != 'DATA WRITE':
243 return
244 self.reg = databyte
245 self.state = 'WRITE RTC REGS'
246 elif self.state == 'WRITE RTC REGS':
247 # If we see a Repeated Start here, it's an RTC read.
248 if cmd == 'START REPEAT':
249 self.state = 'READ RTC REGS'
250 return
251 # Otherwise: Get data bytes until a STOP condition occurs.
252 if cmd == 'DATA WRITE':
253 self.handle_reg(databyte)
254 elif cmd == 'STOP':
255 self.output_datetime(Ann.WRITE_DATE_TIME, 'Written')
256 self.state = 'IDLE'
257 elif self.state == 'READ RTC REGS':
258 # Wait for an address read operation.
259 if cmd != 'ADDRESS READ':
260 return
261 if not self.is_correct_chip(databyte):
262 self.state = 'IDLE'
263 return
264 self.state = 'READ RTC REGS2'
265 elif self.state == 'READ RTC REGS2':
266 if cmd == 'DATA READ':
267 self.handle_reg(databyte)
268 elif cmd == 'STOP':
269 self.output_datetime(Ann.READ_DATE_TIME, 'Read')
270 self.state = 'IDLE'