]> sigrok.org Git - libsigrokdecode.git/blame - decoders/mx25lxx05d/mx25lxx05d.py
srd: mx25lxx05d: Further fixes/simplifications.
[libsigrokdecode.git] / decoders / mx25lxx05d / mx25lxx05d.py
CommitLineData
1b1c914f
UH
1##
2## This file is part of the sigrok project.
3##
9b4d8a57 4## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
1b1c914f
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
156509ca 21# Macronix MX25Lxx05D SPI (NOR) flash chip protocol decoder
1b1c914f 22
156509ca 23# Note: Works for MX25L1605D/MX25L3205D/MX25L6405D.
1b1c914f 24
677d597b 25import sigrokdecode as srd
1b1c914f 26
4772a846 27# Dict which maps command IDs to their names and descriptions.
1b1c914f 28cmds = {
4772a846
UH
29 0x06: ('WREN', 'Write enable'),
30 0x04: ('WRDI', 'Write disable'),
31 0x9f: ('RDID', 'Read identification'),
32 0x05: ('RDSR', 'Read status register'),
33 0x01: ('WRSR', 'Write status register'),
34 0x03: ('READ', 'Read data'),
781ef945 35 0x0b: ('FAST/READ', 'Fast read data'),
4772a846
UH
36 0xbb: ('2READ', '2x I/O read'),
37 0x20: ('SE', 'Sector erase'),
38 0xd8: ('BE', 'Block erase'),
39 0x60: ('CE', 'Chip erase'),
40 0xc7: ('CE2', 'Chip erase'), # Alternative command ID
41 0x02: ('PP', 'Page program'),
42 0xad: ('CP', 'Continuously program mode'),
43 0xb9: ('DP', 'Deep power down'),
781ef945 44 0xab: ('RDP/RES', 'Release from deep powerdown / Read electronic ID'),
4772a846
UH
45 0x90: ('REMS', 'Read electronic manufacturer & device ID'),
46 0xef: ('REMS2', 'Read ID for 2x I/O mode'),
47 0xb1: ('ENSO', 'Enter secured OTP'),
48 0xc1: ('EXSO', 'Exit secured OTP'),
49 0x2b: ('RDSCUR', 'Read security register'),
50 0x2f: ('WRSCUR', 'Write security register'),
51 0x70: ('ESRY', 'Enable SO to output RY/BY#'),
52 0x80: ('DSRY', 'Disable SO to output RY/BY#'),
1b1c914f
UH
53}
54
55device_name = {
56 0x14: 'MX25L1605D',
57 0x15: 'MX25L3205D',
58 0x16: 'MX25L6405D',
59}
60
7cfbf663
UH
61def decode_status_reg(data):
62 # TODO: Additional per-bit(s) self.put() calls with correct start/end.
63
64 # Bits[0:0]: WIP (write in progress)
65 s = 'W' if (data & (1 << 0)) else 'No w'
66 ret = '%srite operation in progress.\n' % s
67
68 # Bits[1:1]: WEL (write enable latch)
69 s = '' if (data & (1 << 1)) else 'not '
70 ret += 'Internal write enable latch is %sset.\n' % s
71
72 # Bits[5:2]: Block protect bits
73 # TODO: More detailed decoding (chip-dependent).
74 ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2)
75
76 # Bits[6:6]: Continuously program mode (CP mode)
77 s = '' if (data & (1 << 6)) else 'not '
78 ret += 'Device is %sin continuously program mode (CP mode).\n' % s
79
80 # Bits[7:7]: SRWD (status register write disable)
cd287c56 81 s = 'not ' if (data & (1 << 7)) else ''
7cfbf663
UH
82 ret += 'Status register writes are %sallowed.\n' % s
83
84 return ret
85
677d597b 86class Decoder(srd.Decoder):
a2c2afd9 87 api_version = 1
1b1c914f 88 id = 'mx25lxx05d'
9a12a6e7 89 name = 'MX25Lxx05D'
3d3da57d 90 longname = 'Macronix MX25Lxx05D'
a465436e 91 desc = 'SPI (NOR) flash chip protocol.'
1b1c914f 92 license = 'gplv2+'
385508e9 93 inputs = ['spi', 'logic']
1b1c914f 94 outputs = ['mx25lxx05d']
385508e9 95 probes = []
b77614bc 96 optional_probes = [
385508e9
UH
97 {'id': 'hold', 'name': 'HOLD#', 'desc': 'TODO.'},
98 {'id': 'wp_acc', 'name': 'WP#/ACC', 'desc': 'TODO.'},
99 ]
781ef945 100 options = {}
9b4d8a57 101 annotations = [
ee3e279c 102 ['Text', 'Human-readable text'],
9b4d8a57 103 ]
1b1c914f
UH
104
105 def __init__(self, **kwargs):
4772a846 106 self.state = None
781ef945 107 self.cmdstate = 1
e4022299
UH
108 self.addr = 0
109 self.data = []
1b1c914f
UH
110
111 def start(self, metadata):
56202222
UH
112 # self.out_proto = self.add(srd.OUTPUT_PROTO, 'mx25lxx05d')
113 self.out_ann = self.add(srd.OUTPUT_ANN, 'mx25lxx05d')
1b1c914f
UH
114
115 def report(self):
116 pass
117
385508e9 118 def putx(self, data):
ee3e279c 119 # Simplification, most annotations span exactly one SPI byte/packet.
9b4d8a57
UH
120 self.put(self.ss, self.es, self.out_ann, data)
121
122 def handle_wren(self, mosi, miso):
781ef945 123 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
4772a846 124 self.state = None
1b1c914f
UH
125
126 # TODO: Check/display device ID / name
9b4d8a57 127 def handle_rdid(self, mosi, miso):
1b1c914f
UH
128 if self.cmdstate == 1:
129 # Byte 1: Master sends command ID.
9b4d8a57 130 self.start_sample = self.ss
781ef945 131 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
1b1c914f
UH
132 elif self.cmdstate == 2:
133 # Byte 2: Slave sends the JEDEC manufacturer ID.
385508e9 134 self.putx([0, ['Manufacturer ID: 0x%02x' % miso]])
1b1c914f
UH
135 elif self.cmdstate == 3:
136 # Byte 3: Slave sends the memory type (0x20 for this chip).
385508e9 137 self.putx([0, ['Memory type: 0x%02x' % miso]])
1b1c914f
UH
138 elif self.cmdstate == 4:
139 # Byte 4: Slave sends the device ID.
9b4d8a57 140 self.device_id = miso
385508e9 141 self.putx([0, ['Device ID: 0x%02x' % miso]])
1b1c914f
UH
142
143 if self.cmdstate == 4:
144 # TODO: Check self.device_id is valid & exists in device_names.
145 # TODO: Same device ID? Check!
9b4d8a57
UH
146 d = 'Device: Macronix %s' % device_name[self.device_id]
147 self.put(self.start_sample, self.es, self.out_ann, [0, [d]])
4772a846 148 self.state = None
1b1c914f
UH
149 else:
150 self.cmdstate += 1
151
1b1c914f
UH
152 # TODO: Warn/abort if we don't see the necessary amount of bytes.
153 # TODO: Warn if WREN was not seen before.
9b4d8a57 154 def handle_se(self, mosi, miso):
1b1c914f
UH
155 if self.cmdstate == 1:
156 # Byte 1: Master sends command ID.
157 self.addr = 0
9b4d8a57 158 self.start_sample = self.ss
781ef945 159 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
1b1c914f 160 elif self.cmdstate in (2, 3, 4):
87e574b7
UH
161 # Bytes 2/3/4: Master sends sectror address (24bits, MSB-first).
162 self.addr |= (mosi << ((4 - self.cmdstate) * 8))
163 # self.putx([0, ['Sector address, byte %d: 0x%02x' % \
164 # (4 - self.cmdstate, mosi)]])
1b1c914f
UH
165
166 if self.cmdstate == 4:
87e574b7 167 d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr)
9b4d8a57 168 self.put(self.start_sample, self.es, self.out_ann, [0, [d]])
1b1c914f
UH
169 # TODO: Max. size depends on chip, check that too if possible.
170 if self.addr % 4096 != 0:
171 # Sector addresses must be 4K-aligned (same for all 3 chips).
9b4d8a57
UH
172 d = 'Warning: Invalid sector address!' # TODO: type == WARN?
173 self.put(self.start_sample, self.es, self.out_ann, [0, [d]])
4772a846 174 self.state = None
1b1c914f
UH
175 else:
176 self.cmdstate += 1
177
9b4d8a57 178 def handle_rems(self, mosi, miso):
1b1c914f
UH
179 if self.cmdstate == 1:
180 # Byte 1: Master sends command ID.
9b4d8a57 181 self.start_sample = self.ss
781ef945 182 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
1b1c914f
UH
183 elif self.cmdstate in (2, 3):
184 # Bytes 2/3: Master sends two dummy bytes.
185 # TODO: Check dummy bytes? Check reply from device?
385508e9 186 self.putx([0, ['Dummy byte: %s' % mosi]])
1b1c914f
UH
187 elif self.cmdstate == 4:
188 # Byte 4: Master sends 0x00 or 0x01.
189 # 0x00: Master wants manufacturer ID as first reply byte.
190 # 0x01: Master wants device ID as first reply byte.
9b4d8a57
UH
191 self.manufacturer_id_first = True if (mosi == 0x00) else False
192 d = 'manufacturer' if (mosi == 0x00) else 'device'
385508e9 193 self.putx([0, ['Master wants %s ID first' % d]])
1b1c914f
UH
194 elif self.cmdstate == 5:
195 # Byte 5: Slave sends manufacturer ID (or device ID).
9b4d8a57
UH
196 self.ids = [miso]
197 d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
385508e9 198 self.putx([0, ['%s ID' % d]])
9b4d8a57 199 elif self.cmdstate == 6:
1b1c914f 200 # Byte 6: Slave sends device ID (or manufacturer ID).
7f7ea759 201 self.ids.append(miso)
9b4d8a57 202 d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
385508e9 203 self.putx([0, ['%s ID' % d]])
1b1c914f
UH
204
205 if self.cmdstate == 6:
9b4d8a57 206 self.end_sample = self.es
1b1c914f 207 id = self.ids[1] if self.manufacturer_id_first else self.ids[0]
385508e9 208 self.putx([0, ['Device: Macronix %s' % device_name[id]]])
4772a846 209 self.state = None
1b1c914f
UH
210 else:
211 self.cmdstate += 1
212
9b4d8a57 213 def handle_rdsr(self, mosi, miso):
e4022299
UH
214 # Read status register: Master asserts CS#, sends RDSR command,
215 # reads status register byte. If CS# is kept asserted, the status
216 # register can be read continuously / multiple times in a row.
217 # When done, the master de-asserts CS# again.
218 if self.cmdstate == 1:
219 # Byte 1: Master sends command ID.
781ef945 220 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
e4022299
UH
221 elif self.cmdstate >= 2:
222 # Bytes 2-x: Slave sends status register as long as master clocks.
223 if self.cmdstate <= 3: # TODO: While CS# asserted.
224 self.putx([0, ['Status register: 0x%02x' % miso]])
7cfbf663 225 self.putx([0, [decode_status_reg(miso)]])
e4022299
UH
226
227 if self.cmdstate == 3: # TODO: If CS# got de-asserted.
4772a846 228 self.state = None
e4022299
UH
229 return
230
231 self.cmdstate += 1
232
233 def handle_pp(self, mosi, miso):
234 # Page program: Master asserts CS#, sends PP command, sends 3-byte
235 # page address, sends >= 1 data bytes, de-asserts CS#.
236 if self.cmdstate == 1:
237 # Byte 1: Master sends command ID.
781ef945 238 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
e4022299
UH
239 elif self.cmdstate in (2, 3, 4):
240 # Bytes 2/3/4: Master sends page address (24bits, MSB-first).
241 self.addr |= (mosi << ((4 - self.cmdstate) * 8))
242 # self.putx([0, ['Page address, byte %d: 0x%02x' % \
243 # (4 - self.cmdstate, mosi)]])
244 if self.cmdstate == 4:
245 self.putx([0, ['Page address: 0x%06x' % self.addr]])
246 self.addr = 0
247 elif self.cmdstate >= 5:
248 # Bytes 5-x: Master sends data bytes (until CS# de-asserted).
249 # TODO: For now we hardcode 256 bytes per page / PP command.
250 if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
251 self.data.append(mosi)
252 # self.putx([0, ['New data byte: 0x%02x' % mosi]])
253
254 if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
255 # s = ', '.join(map(hex, self.data))
256 s = ''.join(map(chr, self.data))
257 self.putx([0, ['Page data: %s' % s]])
258 self.data = []
4772a846 259 self.state = None
e4022299
UH
260 return
261
262 self.cmdstate += 1
1b1c914f 263
5ebb76fe
UH
264 def handle_read(self, mosi, miso):
265 # Read data bytes: Master asserts CS#, sends READ command, sends
266 # 3-byte address, reads >= 1 data bytes, de-asserts CS#.
267 if self.cmdstate == 1:
268 # Byte 1: Master sends command ID.
781ef945 269 self.putx([0, ['Command: %s' % cmds[self.state][1]]])
5ebb76fe
UH
270 elif self.cmdstate in (2, 3, 4):
271 # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
272 self.addr |= (mosi << ((4 - self.cmdstate) * 8))
273 # self.putx([0, ['Read address, byte %d: 0x%02x' % \
274 # (4 - self.cmdstate, mosi)]])
275 if self.cmdstate == 4:
276 self.putx([0, ['Read address: 0x%06x' % self.addr]])
277 self.addr = 0
278 elif self.cmdstate >= 5:
279 # Bytes 5-x: Master reads data bytes (until CS# de-asserted).
280 # TODO: For now we hardcode 256 bytes per READ command.
281 if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
282 self.data.append(miso)
283 # self.putx([0, ['New read byte: 0x%02x' % miso]])
284
285 if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
286 # s = ', '.join(map(hex, self.data))
287 s = ''.join(map(chr, self.data))
288 self.putx([0, ['Read data: %s' % s]])
289 self.data = []
4772a846 290 self.state = None
5ebb76fe
UH
291 return
292
293 self.cmdstate += 1
294
2b9837d9 295 def decode(self, ss, es, data):
1b1c914f 296
9b4d8a57 297 ptype, mosi, miso = data
1b1c914f 298
e4022299 299 # if ptype == 'DATA':
781ef945 300 # self.putx([0, ['MOSI: 0x%02x, MISO: 0x%02x' % (mosi, miso)]])
e4022299
UH
301
302 # if ptype == 'CS-CHANGE':
303 # if mosi == 1 and miso == 0:
781ef945 304 # self.putx([0, ['Asserting CS#']])
e4022299 305 # elif mosi == 0 and miso == 1:
781ef945 306 # self.putx([0, ['De-asserting CS#']])
e4022299 307
3e3c0330 308 if ptype != 'DATA':
9b4d8a57 309 return
1b1c914f 310
e4022299 311 self.ss, self.es = ss, es
1b1c914f 312
9b4d8a57 313 # If we encountered a known chip command, enter the resp. state.
4772a846 314 if self.state == None:
781ef945
UH
315 self.state = mosi
316 self.cmdstate = 1
1b1c914f 317
9b4d8a57 318 # Handle commands.
781ef945
UH
319 if self.state in cmds:
320 s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_')
321 handle_reg = getattr(self, s)
4772a846 322 handle_reg(mosi, miso)
9b4d8a57 323 else:
781ef945 324 self.putx([0, ['Unknown command: 0x%02x' % mosi]])
4772a846 325 self.state = None
1b1c914f 326