]> sigrok.org Git - libsigrokdecode.git/blame - decoders/jtag_stm32/pd.py
jtag_stm32: Cleanups, shorter code.
[libsigrokdecode.git] / decoders / jtag_stm32 / pd.py
CommitLineData
66a8517e 1##
50bd5d25 2## This file is part of the libsigrokdecode project.
66a8517e 3##
6cdc1e09 4## Copyright (C) 2012-2015 Uwe Hermann <uwe@hermann-uwe.de>
66a8517e
UH
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
66a8517e
UH
21import sigrokdecode as srd
22
23# JTAG debug port data registers (in IR[3:0]) and their sizes (in bits)
457acc28
UH
24# Note: The ARM DAP-DP is not IEEE 1149.1 (JTAG) compliant (as per ARM docs),
25# as it does not implement the EXTEST, SAMPLE, and PRELOAD instructions.
26# Instead, BYPASS is decoded for any of these instructions.
66a8517e
UH
27ir = {
28 '1111': ['BYPASS', 1], # Bypass register
29 '1110': ['IDCODE', 32], # ID code register
30 '1010': ['DPACC', 35], # Debug port access register
31 '1011': ['APACC', 35], # Access port access register
e9656a0c 32 '1000': ['ABORT', 35], # Abort register # TODO: 32 bits? Datasheet typo?
66a8517e
UH
33}
34
35# ARM Cortex-M3 r1p1-01rel0 ID code
36cm3_idcode = 0x3ba00477
37
38# JTAG ID code in the STM32F10xxx BSC (boundary scan) TAP
39jtag_idcode = {
40 0x06412041: 'Low-density device, rev. A',
41 0x06410041: 'Medium-density device, rev. A',
42 0x16410041: 'Medium-density device, rev. B/Z/Y',
43 0x06414041: 'High-density device, rev. A/Z/Y',
44 0x06430041: 'XL-density device, rev. A',
45 0x06418041: 'Connectivity-line device, rev. A/Z',
46}
47
d274e1bf 48# ACK[2:0] in the DPACC/APACC registers (unlisted values are reserved)
66a8517e 49ack_val = {
66a8517e
UH
50 '001': 'WAIT',
51 '010': 'OK/FAULT',
66a8517e
UH
52}
53
54# 32bit debug port registers (addressed via A[3:2])
d274e1bf 55dp_reg = {
66a8517e
UH
56 '00': 'Reserved', # Must be kept at reset value
57 '01': 'DP CTRL/STAT',
58 '10': 'DP SELECT',
59 '11': 'DP RDBUFF',
60}
61
d274e1bf
UH
62# APB-AP registers (each of them 32 bits wide)
63apb_ap_reg = {
64 0x00: ['CSW', 'Control/status word'],
65 0x04: ['TAR', 'Transfer address'],
66 # 0x08: Reserved SBZ
67 0x0c: ['DRW', 'Data read/write'],
68 0x10: ['BD0', 'Banked data 0'],
69 0x14: ['BD1', 'Banked data 1'],
70 0x18: ['BD2', 'Banked data 2'],
71 0x1c: ['BD3', 'Banked data 3'],
72 # 0x20-0xf4: Reserved SBZ
73 0x800000000: ['ROM', 'Debug ROM address'],
74 0xfc: ['IDR', 'Identification register'],
75}
76
d274e1bf 77# TODO: Split off generic ARM/Cortex-M3 parts into another protocol decoder?
e9656a0c 78
457acc28
UH
79# Bits[31:28]: Version (here: 0x3)
80# JTAG-DP: 0x3, SW-DP: 0x2
81# Bits[27:12]: Part number (here: 0xba00)
82# JTAG-DP: 0xba00, SW-DP: 0xba10
83# Bits[11:1]: JEDEC (JEP-106) manufacturer ID (here: 0x23b)
84# Bits[11:8]: Continuation code ('ARM Limited': 0x04)
85# Bits[7:1]: Identity code ('ARM Limited': 0x3b)
86# Bits[0:0]: Reserved (here: 0x1)
87def decode_device_id_code(bits):
88 id_hex = '0x%x' % int('0b' + bits, 2)
89 ver = '0x%x' % int('0b' + bits[-32:-28], 2)
90 part = '0x%x' % int('0b' + bits[-28:-12], 2)
91 manuf = '0x%x' % int('0b' + bits[-12:-1], 2)
92 res = '0x%x' % int('0b' + bits[-1], 2)
93 return (id_hex, ver, part, manuf, res)
94
d274e1bf
UH
95# DPACC is used to access debug port registers (CTRL/STAT, SELECT, RDBUFF).
96# APACC is used to access all Access Port (AHB-AP) registers.
97
98# APACC/DPACC, when transferring data IN:
99# Bits[34:3] = DATA[31:0]: 32bit data to transfer (write request)
100# Bits[2:1] = A[3:2]: 2-bit address (debug/access port register)
101# Bits[0:0] = RnW: Read request (1) or write request (0)
102def data_in(instruction, bits):
c840e704
UH
103 data, a, rnw = bits[:-3], bits[-3:-1], bits[-1]
104 data_hex = '0x%x' % int('0b' + data, 2)
105 r = 'Read request' if (rnw == '1') else 'Write request'
d274e1bf
UH
106 # reg = dp_reg[a] if (instruction == 'DPACC') else apb_ap_reg[a]
107 reg = dp_reg[a] if (instruction == 'DPACC') else a # TODO
108 return 'New transaction: DATA: %s, A: %s, RnW: %s' % (data_hex, reg, r)
109
110# APACC/DPACC, when transferring data OUT:
111# Bits[34:3] = DATA[31:0]: 32bit data which is read (read request)
112# Bits[2:0] = ACK[2:0]: 3-bit acknowledge
113def data_out(bits):
c840e704
UH
114 data, ack = bits[:-3], bits[-3:]
115 data_hex = '0x%x' % int('0b' + data, 2)
d274e1bf
UH
116 ack_meaning = ack_val.get(ack, 'Reserved')
117 return 'Previous transaction result: DATA: %s, ACK: %s' \
118 % (data_hex, ack_meaning)
c840e704 119
66a8517e 120class Decoder(srd.Decoder):
12851357 121 api_version = 2
66a8517e
UH
122 id = 'jtag_stm32'
123 name = 'JTAG / STM32'
124 longname = 'Joint Test Action Group / ST STM32'
125 desc = 'ST STM32-specific JTAG protocol.'
126 license = 'gplv2+'
127 inputs = ['jtag']
128 outputs = ['jtag_stm32']
da9bcbd9
BV
129 annotations = (
130 ('text', 'Human-readable text'),
131 )
66a8517e
UH
132
133 def __init__(self, **kwargs):
134 self.state = 'IDLE'
a4dd548f 135 self.samplenums = None
66a8517e 136
8915b346 137 def start(self):
be465111 138 self.out_ann = self.register(srd.OUTPUT_ANN)
66a8517e 139
0edb5d58
UH
140 def putx(self, data):
141 self.put(self.ss, self.es, self.out_ann, data)
142
d274e1bf 143 def handle_reg_bypass(self, cmd, bits):
0edb5d58 144 self.putx([0, ['BYPASS: ' + bits]])
66a8517e 145
d274e1bf 146 def handle_reg_idcode(self, cmd, bits):
c840e704
UH
147 # IDCODE is a read-only register which is always accessible.
148 # IR == IDCODE: The device ID code is shifted out via DR next.
0edb5d58
UH
149 self.putx([0, ['IDCODE: %s (ver=%s, part=%s, manuf=%s, res=%s)' % \
150 decode_device_id_code(bits)]])
66a8517e 151
d274e1bf 152 def handle_reg_dpacc(self, cmd, bits):
d274e1bf 153 s = data_in('DPACC', bits) if (cmd == 'DR TDI') else data_out(bits)
0edb5d58 154 self.putx([0, [s]])
d274e1bf
UH
155
156 def handle_reg_apacc(self, cmd, bits):
d274e1bf 157 s = data_in('APACC', bits) if (cmd == 'DR TDI') else data_out(bits)
0edb5d58 158 self.putx([0, [s]])
d274e1bf
UH
159
160 def handle_reg_abort(self, cmd, bits):
66a8517e
UH
161 # Bits[31:1]: reserved. Bit[0]: DAPABORT.
162 a = '' if (bits[0] == '1') else 'No '
163 s = 'DAPABORT = %s: %sDAP abort generated' % (bits[0], a)
0edb5d58 164 self.putx([0, [s]])
66a8517e 165
e9656a0c 166 # Warn if DAPABORT[31:1] contains non-zero bits.
66a8517e 167 if (bits[:-1] != ('0' * 31)):
0edb5d58 168 self.putx([0, ['WARNING: DAPABORT[31:1] reserved!']])
e9656a0c 169
d274e1bf 170 def handle_reg_unknown(self, cmd, bits):
0edb5d58 171 self.putx([0, ['Unknown instruction: %s' % bits]])
66a8517e
UH
172
173 def decode(self, ss, es, data):
66a8517e
UH
174 cmd, val = data
175
176 self.ss, self.es = ss, es
177
a4dd548f
UH
178 if cmd != 'NEW STATE':
179 val, self.samplenums = val
180
181 # The right-most char in the 'val' bitstring is the LSB.
182
183 # The STM32F10xxx has two serially connected JTAG TAPs, the
184 # boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits).
185 # See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
186 # Due to this, we need to ignore the last bit of each data shift.
187 val = val[:-1]
66a8517e
UH
188
189 # State machine
e9656a0c
UH
190 if self.state == 'IDLE':
191 # Wait until a new instruction is shifted into the IR register.
192 if cmd != 'IR TDI':
193 return
194 # Switch to the state named after the instruction, or 'UNKNOWN'.
6cdc1e09
UH
195 # The STM32F10xxx has two serially connected JTAG TAPs, the
196 # boundary scan tap (5 bits) and the Cortex-M3 TAP (4 bits).
197 # See UM 31.5 "STM32F10xxx JTAG TAP connection" for details.
198 # Currently we only care about the latter and use IR[3:0].
e9656a0c 199 self.state = ir.get(val[-4:], ['UNKNOWN', 0])[0]
0edb5d58 200 self.putx([0, ['IR: ' + self.state]])
d274e1bf
UH
201 elif self.state == 'BYPASS':
202 # Here we're interested in incoming bits (TDI).
e9656a0c
UH
203 if cmd != 'DR TDI':
204 return
205 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
d274e1bf 206 handle_reg(cmd, val)
e9656a0c 207 self.state = 'IDLE'
d274e1bf
UH
208 elif self.state in ('IDCODE', 'ABORT', 'UNKNOWN'):
209 # Here we're interested in outgoing bits (TDO).
457acc28 210 if cmd != 'DR TDO':
e9656a0c
UH
211 return
212 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
d274e1bf 213 handle_reg(cmd, val)
e9656a0c 214 self.state = 'IDLE'
d274e1bf
UH
215 elif self.state in ('DPACC', 'APACC'):
216 # Here we're interested in incoming and outgoing bits (TDI/TDO).
217 if cmd not in ('DR TDI', 'DR TDO'):
218 return
219 handle_reg = getattr(self, 'handle_reg_%s' % self.state.lower())
220 handle_reg(cmd, val)
0edb5d58 221 if cmd == 'DR TDO': # Assumes 'DR TDI' comes before 'DR TDO'.
d274e1bf 222 self.state = 'IDLE'