]> sigrok.org Git - libsigrokdecode.git/blame - decoders/jitter/pd.py
jitter: Factor out handle_clk() and handle_sig().
[libsigrokdecode.git] / decoders / jitter / pd.py
CommitLineData
c2049e2c
SB
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, write to the Free Software
18## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19##
20
21import sigrokdecode as srd
22
23# Helper dictionary for edge detection.
24edge_detector = {
25 'rising': lambda x, y: bool(not x and y),
26 'falling': lambda x, y: bool(x and not y),
27 'both': lambda x, y: bool(x ^ y),
28}
29
30class SamplerateError(Exception):
31 pass
32
33class Decoder(srd.Decoder):
34 api_version = 2
35 id = 'jitter'
36 name = 'Jitter'
37 longname = 'Timing jitter calculation'
38 desc = 'Retrieves the timing jitter between two digital signals.'
39 license = 'gplv2+'
40 inputs = ['logic']
41 outputs = ['jitter']
42 channels = (
43 {'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'},
44 {'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'},
45 )
46 options = (
47 {'id': 'clk_polarity', 'desc': 'Clock edge polarity',
48 'default': 'rising', 'values': ('rising', 'falling', 'both')},
49 {'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity',
50 'default': 'rising', 'values': ('rising', 'falling', 'both')},
51 )
52 annotations = (
53 ('jitter', 'Jitter value'),
54 ('clk_missed', 'Clock missed'),
55 ('sig_missed', 'Signal missed'),
56 )
57 annotation_rows = (
58 ('jitter', 'Jitter values', (0,)),
59 ('clk_missed', 'Clock missed', (1,)),
60 ('sig_missed', 'Signal missed', (2,)),
61 )
62
63 def __init__(self, **kwargs):
64 self.state = 'CLK'
65 self.samplerate = None
66 self.oldpin = None
67 self.oldclk = self.oldsig = None
68 self.clk_start = None
69 self.sig_start = None
70 self.clk_missed = 0
71 self.sig_missed = 0
72
73 def start(self):
74 self.clk_edge = edge_detector[self.options['clk_polarity']]
75 self.sig_edge = edge_detector[self.options['sig_polarity']]
76 self.out_ann = self.register(srd.OUTPUT_ANN)
77 self.out_clk_missed = self.register(srd.OUTPUT_META,
78 meta=(int, 'Clock missed', 'Clock transition missed'))
79 self.out_sig_missed = self.register(srd.OUTPUT_META,
80 meta=(int, 'Signal missed', 'Resulting signal transition missed'))
81
82 def metadata(self, key, value):
83 if key == srd.SRD_CONF_SAMPLERATE:
84 self.samplerate = value
85
86 # Helper function for jitter time annotations.
87 def putx(self, delta):
88 # Adjust granularity.
89 if delta == 0 or delta >= 1:
90 delta_s = u"%us" % (delta)
91 elif delta <= 1e-12:
92 delta_s = u"%.1ffs" % (delta * 1e15)
93 elif delta <= 1e-9:
94 delta_s = u"%.1fps" % (delta * 1e12)
95 elif delta <= 1e-6:
96 delta_s = u"%.1fns" % (delta * 1e9)
97 elif delta <= 1e-3:
98 delta_s = u"%.1fμs" % (delta * 1e6)
99 else:
100 delta_s = u"%.1fms" % (delta * 1e3)
101
102 self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]])
103
104 # Helper function for missed clock and signal annotations.
105 def putm(self, data):
106 self.put(self.samplenum, self.samplenum, self.out_ann, data)
107
34cfd419
UH
108 def handle_clk(self, clk, sig):
109 if self.clk_start == self.samplenum:
110 # Clock transition already treated.
111 # We have done everything we can with this sample.
112 return True
113
114 if self.clk_edge(self.oldclk, clk):
115 # Clock edge found.
116 # We note the sample and move to the next state.
117 self.clk_start = self.samplenum
118 self.state = 'SIG'
119 return False
120 else:
121 if self.sig_start is not None \
122 and self.sig_start != self.samplenum \
123 and self.sig_edge(self.oldsig, sig):
124 # If any transition in the resulting signal
125 # occurs while we are waiting for a clock,
126 # we increase the missed signal counter.
127 self.sig_missed += 1
128 self.put(ss, self.samplenum, self.out_sig_missed, self.sig_missed)
129 self.putm([2, ['Missed signal', 'MS']])
130 # No clock edge found, we have done everything we
131 # can with this sample.
132 return True
133
134 def handle_sig(self, clk, sig):
135 if self.sig_start == self.samplenum:
136 # Signal transition already treated.
137 # We have done everything we can with this sample.
138 return True
139
140 if self.sig_edge(self.oldsig, sig):
141 # Signal edge found.
142 # We note the sample, calculate the jitter
143 # and move to the next state.
144 self.sig_start = self.samplenum
145 self.state = 'CLK'
146 # Calculate and report the timing jitter.
147 self.putx((self.sig_start - self.clk_start) / self.samplerate)
148 return False
149 else:
150 if self.clk_start != self.samplenum \
151 and self.clk_edge(self.oldclk, clk):
152 # If any transition in the clock signal
153 # occurs while we are waiting for a resulting
154 # signal, we increase the missed clock counter.
155 self.clk_missed += 1
156 self.put(ss, self.samplenum, self.out_clk_missed, self.clk_missed)
157 self.putm([1, ['Missed clock', 'MC']])
158 # No resulting signal edge found, we have done
159 # everything we can with this sample.
160 return True
161
c2049e2c
SB
162 def decode(self, ss, es, data):
163 if not self.samplerate:
164 raise SamplerateError('Cannot decode without samplerate.')
165
166 for (self.samplenum, pins) in data:
167 # We are only interested in transitions.
168 if self.oldpin == pins:
169 continue
170
171 self.oldpin, (clk, sig) = pins, pins
172
173 if self.oldclk is None and self.oldsig is None:
174 self.oldclk, self.oldsig = clk, sig
175
176 # State machine:
177 # For each sample we can move 2 steps forward in the state machine.
178 while True:
c2049e2c
SB
179 # Clock state has the lead.
180 if self.state == 'CLK':
34cfd419 181 if self.handle_clk(clk, sig):
c2049e2c 182 break
c2049e2c 183 if self.state == 'SIG':
34cfd419 184 if self.handle_sig(clk, sig):
c2049e2c 185 break
c2049e2c
SB
186
187 # Save current CLK/SIG values for the next round.
188 self.oldclk, self.oldsig = clk, sig