]> sigrok.org Git - libsigrokdecode.git/blame - decoders/flexray/pd.py
x2444m: Eliminate duplicate annotation class ID.
[libsigrokdecode.git] / decoders / flexray / pd.py
CommitLineData
20d71243
ST
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2019 Stephan Thiele <stephan.thiele@mailbox.org>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program; if not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21
22# Selection of constants as defined in FlexRay specification 3.0.1 Chapter A.1:
23class Const:
24 cChannelIdleDelimiter = 11
25 cCrcInitA = 0xFEDCBA
26 cCrcInitB = 0xABCDEF
27 cCrcPolynomial = 0x5D6DCB
28 cCrcSize = 24
29 cCycleCountMax = 63
30 cdBSS = 2
31 cdCAS = 30
32 cdFES = 2
33 cdFSS = 1
34 cHCrcInit = 0x01A
35 cHCrcPolynomial = 0x385
36 cHCrcSize = 11
37 cSamplesPerBit = 8
38 cSlotIDMax = 2047
39 cStaticSlotIDMax = 1023
40 cVotingSamples = 5
41
42class SamplerateError(Exception):
43 pass
44
45class Decoder(srd.Decoder):
46 api_version = 3
47 id = 'flexray'
48 name = 'FlexRay'
49 longname = 'FlexRay'
50 desc = 'Automotive network communications protocol.'
51 license = 'gplv2+'
52 inputs = ['logic']
53 outputs = []
54 tags = ['Automotive']
55 channels = (
56 {'id': 'channel', 'name': 'Channel', 'desc': 'FlexRay bus channel'},
57 )
58 options = (
59 {'id': 'channel_type', 'desc': 'Channel type', 'default': 'A',
60 'values': ('A', 'B')},
88b84b3c
UH
61 {'id': 'bitrate', 'desc': 'Bitrate (bit/s)', 'default': 10000000,
62 'values': (10000000, 5000000, 2500000)},
20d71243
ST
63 )
64 annotations = (
65 ('data', 'FlexRay payload data'),
66 ('tss', 'Transmission start sequence'),
67 ('fss', 'Frame start sequence'),
68 ('reserved-bit', 'Reserved bit'),
69 ('ppi', 'Payload preamble indicator'),
70 ('null-frame', 'Nullframe indicator'),
71 ('sync-frame', 'Full identifier'),
72 ('startup-frame', 'Startup frame indicator'),
73 ('id', 'Frame ID'),
74 ('length', 'Data length'),
75 ('header-crc', 'Header CRC'),
76 ('cycle', 'Cycle code'),
77 ('data-byte', 'Data byte'),
78 ('frame-crc', 'Frame CRC'),
79 ('cid-delimiter', 'Channel idle delimiter'),
80 ('bss', 'Byte start sequence'),
81 ('warnings', 'Human-readable warnings'),
82 ('bit', 'Bit'),
83 ('cid', 'Channel idle delimiter'),
84 ('dts', 'Dynamic trailing sequence'),
85 ('cas', 'Collision avoidance symbol'),
86 )
87 annotation_rows = (
88 ('bits', 'Bits', (15, 17)),
89 ('fields', 'Fields', tuple(range(15)) + (18, 19, 20)),
90 ('warnings', 'Warnings', (16,)),
91 )
92
93 def __init__(self):
94 self.reset()
95
96 def reset(self):
97 self.samplerate = None
98 self.reset_variables()
99
100 def start(self):
101 self.out_ann = self.register(srd.OUTPUT_ANN)
102
103 def metadata(self, key, value):
104 if key == srd.SRD_CONF_SAMPLERATE:
88b84b3c 105 bitrate = float(self.options['bitrate'])
20d71243
ST
106 self.samplerate = value
107 self.bit_width = float(self.samplerate) / bitrate
108 self.sample_point = (self.bit_width / 100.0) * self.sample_point_percent
109
110 # Generic helper for FlexRay bit annotations.
111 def putg(self, ss, es, data):
112 left, right = int(self.sample_point), int(self.bit_width - self.sample_point)
113 self.put(ss - left, es + right, self.out_ann, data)
114
115 # Single-FlexRay-bit annotation using the current samplenum.
116 def putx(self, data):
117 self.putg(self.samplenum, self.samplenum, data)
118
119 # Multi-FlexRay-bit annotation from self.ss_block to current samplenum.
120 def putb(self, data):
121 self.putg(self.ss_block, self.samplenum, data)
122
123 # Generic CRC algorithm for any bit size and any data length. Used for
124 # 11-bit header and 24-bit trailer. Not very efficient but at least it
125 # works for now.
126 #
127 # TODO:
128 # - use precalculated tables to increase performance.
129 # - Add support for reverse CRC calculations.
130
131 @staticmethod
132 def crc(data, data_len_bits, polynom, crc_len_bits, iv=0, xor=0):
133 reg = iv ^ xor
134
135 for i in range(data_len_bits - 1, -1, -1):
136 bit = ((reg >> (crc_len_bits - 1)) & 0x1) ^ ((data >> i) & 0x1)
137 reg <<= 1
138 if bit:
139 reg ^= polynom
140
141 mask = (1 << crc_len_bits) - 1
142 crc = reg & mask
143
144 return crc ^ xor
145
146 def reset_variables(self):
147 self.sample_point_percent = 50 # TODO: use vote based sampling
148 self.state = 'IDLE'
149 self.tss_start = self.tss_end = self.frame_type = self.dlc = None
150 self.rawbits = [] # All bits, including byte start sequence bits
151 self.bits = [] # Only actual FlexRay frame bits (no byte start sequence bits)
152 self.curbit = 0 # Current bit of FlexRay frame (bit 0 == FSS)
153 self.last_databit = 999 # Positive value that bitnum+x will never match
154 self.last_xmit_bit = 999 # Positive value that bitnum+x will never match
155 self.ss_block = None
156 self.ss_databytebits = []
157 self.end_of_frame = False
158 self.dynamic_frame = False
159 self.ss_bit0 = None
160 self.ss_bit1 = None
161 self.ss_bit2 = None
162
163 # Poor man's clock synchronization. Use signal edges which change to
164 # dominant state in rather simple ways. This naive approach is neither
165 # aware of the SYNC phase's width nor the specific location of the edge,
166 # but improves the decoder's reliability when the input signal's bitrate
167 # does not exactly match the nominal rate.
168 def dom_edge_seen(self, force=False):
169 self.dom_edge_snum = self.samplenum
170 self.dom_edge_bcount = self.curbit
171
172 # Determine the position of the next desired bit's sample point.
173 def get_sample_point(self, bitnum):
174 samplenum = self.dom_edge_snum
175 samplenum += self.bit_width * (bitnum - self.dom_edge_bcount)
176 samplenum += self.sample_point
177 return int(samplenum)
178
179 def is_bss_sequence(self):
180 # FlexRay uses NRZ encoding and adds a binary 10 sequence before each
181 # byte. After each 8 data bits, a BSS sequence is added but not after
182 # frame CRC.
183
184 if self.end_of_frame:
185 return False
186
187 if (len(self.rawbits) - 2) % 10 == 0:
188 return True
189 elif (len(self.rawbits) - 3) % 10 == 0:
190 return True
191
192 return False
193
194 def handle_bit(self, fr_rx):
195 self.rawbits.append(fr_rx)
196 self.bits.append(fr_rx)
197
198 # Get the index of the current FlexRay frame bit.
199 bitnum = len(self.bits) - 1
200
201 # If this is a byte start sequence remove it from self.bits and ignore it.
202 if self.is_bss_sequence():
203 self.bits.pop()
204
205 if bitnum > 1:
206 self.putx([15, [str(fr_rx)]])
207 else:
208 if len(self.rawbits) == 2:
209 self.ss_bit1 = self.samplenum
210 elif len(self.rawbits) == 3:
211 self.ss_bit2 = self.samplenum
212
213 self.curbit += 1 # Increase self.curbit (bitnum is not affected).
214 return
215 else:
216 if bitnum > 1:
217 self.putx([17, [str(fr_rx)]])
218
219 # Bit 0: Frame start sequence (FSS) bit
220 if bitnum == 0:
221 self.ss_bit0 = self.samplenum
222
223 # Bit 1: Start of header
224 elif bitnum == 1:
225 if self.rawbits[:3] == [1, 1, 0]:
226 self.put(self.tss_start, self.tss_end, self.out_ann,
227 [1, ['Transmission start sequence', 'TSS']])
228
229 self.putg(self.ss_bit0, self.ss_bit0, [17, [str(self.rawbits[:3][0])]])
230 self.putg(self.ss_bit0, self.ss_bit0, [2, ['FSS', 'Frame start sequence']])
231 self.putg(self.ss_bit1, self.ss_bit1, [15, [str(self.rawbits[:3][1])]])
232 self.putg(self.ss_bit2, self.ss_bit2, [15, [str(self.rawbits[:3][2])]])
233 self.putx([17, [str(fr_rx)]])
234 self.putx([3, ['Reserved bit: %d' % fr_rx, 'RB: %d' % fr_rx, 'RB']])
235 else:
236 self.put(self.tss_start, self.tss_end, self.out_ann,
237 [20, ['Collision avoidance symbol', 'CAS']])
238 self.reset_variables()
239
240 # TODO: warning, if sequence is neither [1, 1, 0] nor [1, 1, 1]
241
242 # Bit 2: Payload preamble indicator. Must be 0 if null frame indicator is 0.
243 elif bitnum == 2:
244 self.putx([4, ['Payload preamble indicator: %d' % fr_rx,
245 'PPI: %d' % fr_rx]])
246
247 # Bit 3: Null frame indicator (inversed)
248 elif bitnum == 3:
249 data_type = 'data frame' if fr_rx else 'null frame'
250 self.putx([5, ['Null frame indicator: %s' % data_type,
251 'NF: %d' % fr_rx, 'NF']])
252
253 # Bit 4: Sync frame indicator
254 # Must be 1 if startup frame indicator is 1.
255 elif bitnum == 4:
256 self.putx([6, ['Sync frame indicator: %d' % fr_rx,
257 'Sync: %d' % fr_rx, 'Sync']])
258
259 # Bit 5: Startup frame indicator
260 elif bitnum == 5:
261 self.putx([7, ['Startup frame indicator: %d' % fr_rx,
262 'Startup: %d' % fr_rx, 'Startup']])
263
264 # Remember start of ID (see below).
265 elif bitnum == 6:
266 self.ss_block = self.samplenum
267
268 # Bits 6-16: Frame identifier (ID[10..0])
269 # ID must NOT be 0.
270 elif bitnum == 16:
271 self.id = int(''.join(str(d) for d in self.bits[6:]), 2)
272 self.putb([8, ['Frame ID: %d' % self.id, 'ID: %d' % self.id,
273 '%d' % self.id]])
274
275 # Remember start of payload length (see below).
276 elif bitnum == 17:
277 self.ss_block = self.samplenum
278
279 # Bits 17-23: Payload length (Length[7..0])
280 # Payload length in header is the half of the real payload size.
281 elif bitnum == 23:
282 self.payload_length = int(''.join(str(d) for d in self.bits[17:]), 2)
283 self.putb([9, ['Payload length: %d' % self.payload_length,
284 'Length: %d' % self.payload_length,
285 '%d' % self.payload_length]])
286
287 # Remember start of header CRC (see below).
288 elif bitnum == 24:
289 self.ss_block = self.samplenum
290
291 # Bits 24-34: Header CRC (11-bit) (HCRC[11..0])
292 # Calculation of header CRC is equal on both channels.
293 elif bitnum == 34:
294 bits = ''.join([str(b) for b in self.bits[4:24]])
295 header_to_check = int(bits, 2)
296 expected_crc = self.crc(header_to_check, len(bits),
297 Const.cHCrcPolynomial, Const.cHCrcSize, Const.cHCrcInit)
298 self.header_crc = int(''.join(str(d) for d in self.bits[24:]), 2)
299
300 crc_ok = self.header_crc == expected_crc
301 crc_ann = "OK" if crc_ok else "bad"
302
303 self.putb([10, ['Header CRC: 0x%X (%s)' % (self.header_crc, crc_ann),
304 '0x%X (%s)' % (self.header_crc, crc_ann),
305 '0x%X' % self.header_crc]])
306
307 # Remember start of cycle code (see below).
308 elif bitnum == 35:
309 self.ss_block = self.samplenum
310
311 # Bits 35-40: Cycle code (Cyc[6..0])
312 # Cycle code. Must be between 0 and 63.
313 elif bitnum == 40:
314 self.cycle = int(''.join(str(d) for d in self.bits[35:]), 2)
315 self.putb([11, ['Cycle: %d' % self.cycle, 'Cyc: %d' % self.cycle,
316 '%d' % self.cycle]])
317 self.last_databit = 41 + 2 * self.payload_length * 8
318
319 # Remember all databyte bits, except the very last one.
320 elif bitnum in range(41, self.last_databit):
321 self.ss_databytebits.append(self.samplenum)
322
323 # Bits 41-X: Data field (0-254 bytes, depending on length)
324 # The bits within a data byte are transferred MSB-first.
325 elif bitnum == self.last_databit:
326 self.ss_databytebits.append(self.samplenum) # Last databyte bit.
327 for i in range(2 * self.payload_length):
328 x = 40 + (8 * i) + 1
329 b = int(''.join(str(d) for d in self.bits[x:x + 8]), 2)
330 ss = self.ss_databytebits[i * 8]
331 es = self.ss_databytebits[((i + 1) * 8) - 1]
332 self.putg(ss, es, [12, ['Data byte %d: 0x%02x' % (i, b),
333 'DB%d: 0x%02x' % (i, b), '%02X' % b]])
334 self.ss_databytebits = []
335 self.ss_block = self.samplenum # Remember start of trailer CRC.
336
337 # Trailer CRC (24-bit) (CRC[11..0])
338 # Initialization vector of channel A and B are different, so CRCs are
339 # different for same data.
340 elif bitnum == self.last_databit + 23:
341 bits = ''.join([str(b) for b in self.bits[1:-24]])
342 frame_to_check = int(bits, 2)
343 iv = Const.cCrcInitA if self.options['channel_type'] == 'A' else Const.cCrcInitB
344 expected_crc = self.crc(frame_to_check, len(bits),
345 Const.cCrcPolynomial, Const.cCrcSize, iv=iv)
346 self.frame_crc = int(''.join(str(d) for d in self.bits[self.last_databit:]), 2)
347
348 crc_ok = self.frame_crc == expected_crc
349 crc_ann = "OK" if crc_ok else "bad"
350
351 self.putb([13, ['Frame CRC: 0x%X (%s)' % (self.frame_crc, crc_ann),
352 '0x%X (%s)' % (self.frame_crc, crc_ann),
353 '0x%X' % self.frame_crc]])
354 self.end_of_frame = True
355
356 # Remember start of frame end sequence (see below).
357 elif bitnum == self.last_databit + 24:
358 self.ss_block = self.samplenum
359
360 # Frame end sequence, must be 1 followed by 0.
361 elif bitnum == self.last_databit + 25:
362 self.putb([14, ['Frame end sequence', 'FES']])
363
364 # Check for DTS
365 elif bitnum == self.last_databit + 26:
366 if not fr_rx:
367 self.dynamic_frame = True
368 else:
369 self.last_xmit_bit = bitnum
370 self.ss_block = self.samplenum
371
372 # Remember start of channel idle delimiter (see below).
373 elif bitnum == self.last_xmit_bit:
374 self.ss_block = self.samplenum
375
376 # Channel idle limiter (CID[11..0])
377 elif bitnum == self.last_xmit_bit + Const.cChannelIdleDelimiter - 1:
378 self.putb([18, ['Channel idle delimiter', 'CID']])
379 self.reset_variables()
380
381 # DTS if dynamic frame
382 elif bitnum > self.last_databit + 27:
383 if self.dynamic_frame:
384 if fr_rx:
385 if self.last_xmit_bit == 999:
386 self.putb([19, ['Dynamic trailing sequence', 'DTS']])
387 self.last_xmit_bit = bitnum + 1
388 self.ss_block = self.samplenum
389
390 self.curbit += 1
391
392 def decode(self):
393 if not self.samplerate:
394 raise SamplerateError('Cannot decode without samplerate.')
395
396 while True:
397 # State machine.
398 if self.state == 'IDLE':
399 # Wait for a dominant state (logic 0) on the bus.
400 (fr_rx,) = self.wait({0: 'l'})
401 self.tss_start = self.samplenum
402 (fr_rx,) = self.wait({0: 'h'})
403 self.tss_end = self.samplenum
404 self.dom_edge_seen(force = True)
405 self.state = 'GET BITS'
406 elif self.state == 'GET BITS':
407 # Wait until we're in the correct bit/sampling position.
408 pos = self.get_sample_point(self.curbit)
409 (fr_rx,) = self.wait([{'skip': pos - self.samplenum}, {0: 'f'}])
410 if self.matched[1]:
411 self.dom_edge_seen()
412 if self.matched[0]:
413 self.handle_bit(fr_rx)