]> sigrok.org Git - libsigrokdecode.git/blame - decoders/dsi/pd.py
dsi: Small fix for the longname.
[libsigrokdecode.git] / decoders / dsi / pd.py
CommitLineData
23a8a383
JS
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2015 Jeremy Swanson <jeremy@rakocontrols.com>
5##
6## This program is free software; you can redistribute it and/or modify
7## it under the terms of the GNU General Public License as published by
8## the Free Software Foundation; either version 2 of the License, or
9## (at your option) any later version.
10##
11## This program is distributed in the hope that it will be useful,
12## but WITHOUT ANY WARRANTY; without even the implied warranty of
13## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14## GNU General Public License for more details.
15##
16## You should have received a copy of the GNU General Public License
17## along with this program. If not, see <http://www.gnu.org/licenses/>.
18##
19
20import sigrokdecode as srd
21
22class SamplerateError(Exception):
23 pass
24
25class Decoder(srd.Decoder):
26 api_version = 2
27 id = 'dsi'
28 name = 'DSI'
92c117d6 29 longname = 'Digital Serial Interface'
23a8a383
JS
30 desc = 'DSI lighting control protocol.'
31 license = 'gplv2+'
32 inputs = ['logic']
33 outputs = ['dsi']
34 channels = (
35 {'id': 'dsi', 'name': 'DSI', 'desc': 'DSI data line'},
36 )
37 options = (
38 {'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
39 'values': ('active-low', 'active-high')},
40 )
41 annotations = (
42 ('bit', 'Bit'),
43 ('startbit', 'Startbit'),
44 ('Level', 'Dimmer level'),
45 ('raw', 'Raw data'),
46 )
47 annotation_rows = (
48 ('bits', 'Bits', (0,)),
49 ('raw', 'Raw Data',(3,)),
50 ('fields', 'Fields', (1, 2,)),
51 )
52
53 def __init__(self):
54 self.samplerate = None
55 self.samplenum = None
56 self.edges, self.bits, self.ss_es_bits = [], [], []
57 self.state = 'IDLE'
58 self.nextSamplePoint = None
59 self.nextSample = None
60
61 def start(self):
62 self.out_ann = self.register(srd.OUTPUT_ANN)
63 self.old_ir = 1 if self.options['polarity'] == 'active-low' else 0
64
65 def metadata(self, key, value):
66 if key == srd.SRD_CONF_SAMPLERATE:
67 self.samplerate = value
68 # One bit: 1666.7us (one half low, one half high).
69 # This is how many samples are in 1TE.
70 self.halfbit = int((self.samplerate * 0.0016667) / 2.0)
71
72 def putb(self, bit1, bit2, data):
73 ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1]
74 self.put(ss, es, self.out_ann, data)
75
76 def handle_bits(self, length):
77 a, c, f, g, b = 0, 0, 0, 0, self.bits
78 # Individual raw bits.
79 for i in range(length):
80 if i == 0:
81 ss = max(0, self.bits[0][0])
82 else:
83 ss = self.ss_es_bits[i - 1][1]
84 es = self.bits[i][0] + (self.halfbit * 2)
85 self.ss_es_bits.append([ss, es])
86 self.putb(i, i, [0, ['%d' % self.bits[i][1]]])
87 # Bits[0:0]: Startbit
88 s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S']
89 self.putb(0, 0, [1, s])
90 self.putb(0, 0, [3, s])
91 # Bits[1:8]
92 for i in range(8):
93 f |= (b[1 + i][1] << (7 - i))
94 g = f / 2.55
95 if length == 9: # BACKWARD Frame
96 s = ['Data: %02X' % f, 'Dat: %02X' % f,
97 'Dat: %02X' % f, 'D: %02X' % f, 'D']
98 self.putb(1, 8, [3, s])
99 s = ['Level: %d%%' % g, 'Lev: %d%%' % g,
100 'Lev: %d%%' % g, 'L: %d' % g, 'D']
101 self.putb(1, 8, [2, s])
102 return
103
104 def reset_decoder_state(self):
105 self.edges, self.bits, self.ss_es_bits = [], [], []
106 self.state = 'IDLE'
107
108 def decode(self, ss, es, data):
109 if not self.samplerate:
110 raise SamplerateError('Cannot decode without samplerate.')
111 bit = 0;
112 for (self.samplenum, pins) in data:
113 self.ir = pins[0]
114 # data.itercnt += 1
115 if self.options['polarity'] == 'active-high':
116 self.ir ^= 1 # Invert.
117
118 # State machine.
119 if self.state == 'IDLE':
120 # Wait for any edge (rising or falling).
121 if self.old_ir == self.ir:
122 continue
123 # Add in the first half of the start bit.
124 self.edges.append(self.samplenum - int(self.halfbit))
125 self.edges.append(self.samplenum)
126 # Start bit is 0->1.
127 self.phase0 = self.ir ^ 1
128 self.state = 'PHASE1'
129 self.old_ir = self.ir
130 # Get the next sample point.
131 # self.nextSamplePoint = self.samplenum + int(self.halfbit / 2)
132 self.old_ir = self.ir
133 # bit = self.ir
134 continue
135
136 # if(self.samplenum == self.nextSamplePoint):
137 # bit = self.ir
138 # continue
139
140 if self.old_ir != self.ir:
141 self.edges.append(self.samplenum)
142 elif self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5)):
143 self.edges.append(self.samplenum - int(self.halfbit * 0.5))
144 else:
145 continue
146
147 bit = self.old_ir
148 if self.state == 'PHASE0':
149 self.phase0 = bit
150 self.state = 'PHASE1'
151 elif self.state == 'PHASE1':
152 if (bit == 1) and (self.phase0 == 1): # Stop bit
153 if len(self.bits) == 17 or len(self.bits) == 9:
154 # Forward or Backward
155 self.handle_bits(len(self.bits))
156 self.reset_decoder_state() # Reset upon errors.
157 continue
158 else:
159 self.bits.append([self.edges[-3], bit])
160 self.state = 'PHASE0'
161
162 # self.nextSamplePoint = self.edges[-1] + int(self.halfbit / 2)
163
164 self.old_ir = self.ir