]> sigrok.org Git - libsigrokdecode.git/blame - decoders/avr_pdi/pd.py
decoders: Add/update tags for each PD.
[libsigrokdecode.git] / decoders / avr_pdi / pd.py
CommitLineData
f0349f7f
GS
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5## Copyright (C) 2016 Gerhard Sittig <gerhard.sittig@gmx.net>
6##
7## This program is free software; you can redistribute it and/or modify
8## it under the terms of the GNU General Public License as published by
9## the Free Software Foundation; either version 2 of the License, or
10## (at your option) any later version.
11##
12## This program is distributed in the hope that it will be useful,
13## but WITHOUT ANY WARRANTY; without even the implied warranty of
14## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15## GNU General Public License for more details.
16##
17## You should have received a copy of the GNU General Public License
18## along with this program; if not, see <http://www.gnu.org/licenses/>.
19##
20
21# Note the implementation details:
22#
23# Although the Atmel literature suggests (does not explicitly mandate,
24# but shows in diagrams) that two stop bits are used in the protocol,
25# the decoder loses synchronization with ATxmega generated responses
26# when it expects more than one stop bit. Since the chip's hardware is
27# fixed, this is not an implementation error in some programmer software.
28# Since this is a protocol decoder which does not participate in the
29# communication (does not actively send data), we can read the data
30# stream with one stop bit, and transparently keep working when two
31# are used.
32#
33# Annotations in the UART fields level differ from Atmel literature.
34# Wrong parity bits are referred to as "parity error". Low stop bits are
35# referred to as "frame error".
36#
37# The PDI component in the device starts disabled. Enabling PDI
38# communication is done by raising DATA and clocking RESET with a
39# minimum frequency. PDI communication automatically gets disabled when
40# RESET "is inactive" for a certain period of time. The specific timing
41# conditions are rather fuzzy in the literature (phrased weakly), and
42# are device dependent (refer to the minumum RESET pulse width). This
43# protocol decoder implementation internally prepares for but currently
44# does not support these enable and disable phases. On the one hand it
45# avoids excess external dependencies or wrong results for legal input
46# data. On the other hand the decoder works when input streams start in
47# the middle of an established connection.
48#
49# Communication peers detect physical collisions. The decoder can't.
50# Upon collisions, a peer will cease any subsequent transmission, until
51# a BREAK is seen. Synchronization can get enforced by sending two BREAK
52# conditions. The first will cause a collision, the second will re-enable
53# the peer. The decoder has no concept of physical collisions. It stops
54# the interpretation of instructions when BREAK is seen, and assumes
55# that a new instruction will start after BREAK.
56#
57# This protocol decoder only supports PDI communication over UART frames.
58# It lacks support for PDI over JTAG. This would require separation into
59# multiple protocol decoder layers (UART physical, JTAG physical, PDI
60# instructions, optionally device support on top of PDI. There is some
61# more potential for future extensions:
62# - The JTAG physical has dedicated TX and RX directions. This decoder
63# only picks up communicated bytes but does not check which "line"
64# they are communicated on (not applicable to half duplex UART).
65# - PDI over JTAG uses "special frame error" conditions to communicate
66# additional symbols: BREAK (0xBB with parity 1), DELAY (0xDB with
67# parity 1), and EMPTY (0xEB with parity 1).
68# - Another "device support" layer might interpret device specific
69# timings, and might map addresses used in memory access operations
70# to component names, or even register names and bit fields(?). It's
71# quite deep a rabbithole though...
72
73import sigrokdecode as srd
74from collections import namedtuple
75
76class Ann:
77 '''Annotation and binary output classes.'''
78 (
79 BIT, START, DATA, PARITY_OK, PARITY_ERR,
80 STOP_OK, STOP_ERR, BREAK,
81 OPCODE, DATA_PROG, DATA_DEV, PDI_BREAK,
82 ENABLE, DISABLE, COMMAND,
83 ) = range(15)
84 (
85 BIN_BYTES,
86 ) = range(1)
87
88Bit = namedtuple('Bit', 'val ss es')
89
90class PDI:
91 '''PDI protocol instruction opcodes, and operand formats.'''
92 (
93 OP_LDS, OP_LD, OP_STS, OP_ST,
94 OP_LDCS, OP_REPEAT, OP_STCS, OP_KEY,
95 ) = range(8)
96 pointer_format_nice = [
97 '*(ptr)',
98 '*(ptr++)',
99 'ptr',
100 'ptr++ (rsv)',
101 ]
102 pointer_format_terse = [
103 '*p',
104 '*p++',
105 'p',
106 '(rsv)',
107 ]
108 ctrl_reg_name = {
109 0: 'status',
110 1: 'reset',
111 2: 'ctrl',
112 }
113
114class Decoder(srd.Decoder):
6a239714 115 api_version = 3
f0349f7f
GS
116 id = 'avr_pdi'
117 name = 'AVR PDI'
118 longname = 'Atmel Program and Debug Interface'
119 desc = 'Atmel proprietary interface for the ATxmega MCU.'
120 license = 'gplv2+'
121 inputs = ['logic']
122 outputs = ['pdi']
d6d8a8a4 123 tags = ['Debug/trace']
f0349f7f
GS
124 channels = (
125 {'id': 'reset', 'name': 'RESET', 'desc': 'RESET / PDI_CLK'},
126 {'id': 'data', 'name': 'DATA', 'desc': 'PDI_DATA'},
127 )
128 annotations = (
129 ('uart-bit', 'UART bit'),
130 ('start-bit', 'Start bit'),
131 ('data-bit', 'Data bit'),
132 ('parity-ok', 'Parity OK bit'),
133 ('parity-err', 'Parity error bit'),
134 ('stop-ok', 'Stop OK bit'),
135 ('stop-err', 'Stop error bit'),
136 ('break', 'BREAK condition'),
137 ('opcode', 'Instruction opcode'),
138 ('data-prog', 'Programmer data'),
139 ('data-dev', 'Device data'),
140 ('pdi-break', 'BREAK at PDI level'),
141 ('enable', 'Enable PDI'),
142 ('disable', 'Disable PDI'),
143 ('cmd-data', 'PDI command with data'),
144 )
145 annotation_rows = (
146 ('uart_bits', 'UART bits', (Ann.BIT,)),
147 ('uart_fields', 'UART fields', (Ann.START, Ann.DATA, Ann.PARITY_OK,
148 Ann.PARITY_ERR, Ann.STOP_OK, Ann.STOP_ERR, Ann.BREAK)),
149 ('pdi_fields', 'PDI fields', (Ann.OPCODE, Ann.DATA_PROG, Ann.DATA_DEV,
150 Ann.PDI_BREAK)),
151 ('pdi_cmds', 'PDI Cmds', (Ann.ENABLE, Ann.DISABLE, Ann.COMMAND)),
152 )
153 binary = (
154 ('bytes', 'PDI protocol bytes'),
155 )
156
157 def __init__(self):
10aeb8ea
GS
158 self.reset()
159
160 def reset(self):
f0349f7f 161 self.samplerate = None
f0349f7f
GS
162 self.clear_state()
163
164 def clear_state(self):
165 # Track bit times and bit values.
166 self.ss_last_fall = None
167 self.data_sample = None
168 self.ss_curr_fall = None
169 # Collect UART frame bits into byte values.
170 self.bits = []
171 self.zero_count = 0
172 self.zero_ss = None
173 self.break_ss = None
174 self.break_es = None
175 self.clear_insn()
176
177 def clear_insn(self):
178 # Collect instructions and their arguments,
179 # properties of the current instructions.
180 self.insn_rep_count = 0
181 self.insn_opcode = None
182 self.insn_wr_counts = []
183 self.insn_rd_counts = []
184 # Accumulation of data items as bytes pass by.
185 self.insn_dat_bytes = []
186 self.insn_dat_count = 0
187 self.insn_ss_data = None
188 # Next layer "commands", instructions plus operands.
189 self.cmd_ss = None
190 self.cmd_insn_parts_nice = []
191 self.cmd_insn_parts_terse = []
192
193 def metadata(self, key, value):
194 if key == srd.SRD_CONF_SAMPLERATE:
195 self.samplerate = value
196
197 def start(self):
198 self.out_ann = self.register(srd.OUTPUT_ANN)
199 self.out_binary = self.register(srd.OUTPUT_BINARY)
200
201 def put_ann_bit(self, bit_nr, ann_idx):
202 b = self.bits[bit_nr]
203 self.put(b.ss, b.es, self.out_ann, [ann_idx, [str(b.val)]])
204
205 def put_ann_data(self, bit_nr, ann_data):
206 b = self.bits[bit_nr]
207 self.put(b.ss, b.es, self.out_ann, ann_data)
208
209 def put_ann_row_val(self, ss, es, row, value):
210 self.put(ss, es, self.out_ann, [row, value])
211
212 def put_bin_bytes(self, ss, es, row, value):
213 self.put(ss, es, self.out_binary, [row, value])
214
215 def handle_byte(self, ss, es, byteval):
216 '''Handle a byte at the PDI protocol layer.'''
217
218 # Handle BREAK conditions, which will abort any
219 # potentially currently executing instruction.
220 is_break = byteval is None
221 if is_break:
222 self.cmd_insn_parts_nice.append('BREAK')
223 self.cmd_insn_parts_terse.append('BRK')
224 self.insn_rep_count = 0
225 # Will FALLTHROUGH to "end of instruction" below.
226
227 # Decode instruction opcodes and argument sizes
228 # from the first byte of a transaction.
229 if self.insn_opcode is None and not is_break:
230 opcode = (byteval & 0xe0) >> 5
231 arg30 = byteval & 0x0f
232 arg32 = (byteval & 0x0c) >> 2
233 arg10 = byteval & 0x03
234 self.insn_opcode = opcode
235 self.cmd_ss = ss
236 mnemonics = None
237 if opcode == PDI.OP_LDS:
238 # LDS: load data, direct addressing.
239 # Writes an address, reads a data item.
240 width_addr = arg32 + 1
241 width_data = arg10 + 1
242 self.insn_wr_counts = [width_addr]
243 self.insn_rd_counts = [width_data]
244 mnemonics = [
245 'Insn: LDS a{:d}, m{:d}'.format(width_addr, width_data),
246 'LDS a{:d}, m{:d}'.format(width_addr, width_data), 'LDS',
247 ]
248 self.cmd_insn_parts_nice = ['LDS']
249 self.cmd_insn_parts_terse = ['LDS']
250 elif opcode == PDI.OP_LD:
251 # LD: load data, indirect addressing.
252 # Reads a data item, with optional repeat.
253 ptr_txt = PDI.pointer_format_nice[arg32]
254 ptr_txt_terse = PDI.pointer_format_terse[arg32]
255 width_data = arg10 + 1
256 self.insn_wr_counts = []
257 self.insn_rd_counts = [width_data]
258 if self.insn_rep_count:
259 self.insn_rd_counts.extend(self.insn_rep_count * [width_data])
260 self.insn_rep_count = 0
261 mnemonics = [
262 'Insn: LD {:s} m{:d}'.format(ptr_txt, width_data),
263 'LD {:s} m{:d}'.format(ptr_txt, width_data), 'LD',
264 ]
265 self.cmd_insn_parts_nice = ['LD', ptr_txt]
266 self.cmd_insn_parts_terse = ['LD', ptr_txt_terse]
267 elif opcode == PDI.OP_STS:
268 # STS: store data, direct addressing.
269 # Writes an address, writes a data item.
270 width_addr = arg32 + 1
271 width_data = arg10 + 1
272 self.insn_wr_counts = [width_addr, width_data]
273 self.insn_rd_counts = []
274 mnemonics = [
275 'Insn: STS a{:d}, i{:d}'.format(width_addr, width_data),
276 'STS a{:d}, i{:d}'.format(width_addr, width_data), 'STS',
277 ]
278 self.cmd_insn_parts_nice = ['STS']
279 self.cmd_insn_parts_terse = ['STS']
280 elif opcode == PDI.OP_ST:
281 # ST: store data, indirect addressing.
282 # Writes a data item, with optional repeat.
283 ptr_txt = PDI.pointer_format_nice[arg32]
284 ptr_txt_terse = PDI.pointer_format_terse[arg32]
285 width_data = arg10 + 1
286 self.insn_wr_counts = [width_data]
287 self.insn_rd_counts = []
288 if self.insn_rep_count:
289 self.insn_wr_counts.extend(self.insn_rep_count * [width_data])
290 self.insn_rep_count = 0
291 mnemonics = [
292 'Insn: ST {:s} i{:d}'.format(ptr_txt, width_data),
293 'ST {:s} i{:d}'.format(ptr_txt, width_data), 'ST',
294 ]
295 self.cmd_insn_parts_nice = ['ST', ptr_txt]
296 self.cmd_insn_parts_terse = ['ST', ptr_txt_terse]
297 elif opcode == PDI.OP_LDCS:
298 # LDCS: load control/status.
299 # Loads exactly one byte.
300 reg_num = arg30
301 reg_txt = PDI.ctrl_reg_name.get(reg_num, 'r{:d}'.format(reg_num))
302 reg_txt_terse = '{:d}'.format(reg_num)
303 self.insn_wr_counts = []
304 self.insn_rd_counts = [1]
305 mnemonics = [
306 'Insn: LDCS {:s}, m1'.format(reg_txt),
307 'LDCS {:s}, m1'.format(reg_txt), 'LDCS',
308 ]
309 self.cmd_insn_parts_nice = ['LDCS', reg_txt]
310 self.cmd_insn_parts_terse = ['LDCS', reg_txt_terse]
311 elif opcode == PDI.OP_STCS:
312 # STCS: store control/status.
313 # Writes exactly one byte.
314 reg_num = arg30
315 reg_txt = PDI.ctrl_reg_name.get(reg_num, 'r{:d}'.format(reg_num))
316 reg_txt_terse = '{:d}'.format(reg_num)
317 self.insn_wr_counts = [1]
318 self.insn_rd_counts = []
319 mnemonics = [
320 'Insn: STCS {:s}, i1'.format(reg_txt),
321 'STCS {:s}, i1'.format(reg_txt), 'STCS',
322 ]
323 self.cmd_insn_parts_nice = ['STCS', reg_txt]
324 self.cmd_insn_parts_terse = ['STCS', reg_txt_terse]
325 elif opcode == PDI.OP_REPEAT:
326 # REPEAT: sets repeat count for the next instruction.
327 # Reads repeat count from following bytes.
328 width_data = arg10 + 1
329 self.insn_wr_counts = [width_data]
330 self.insn_rd_counts = []
331 mnemonics = [
332 'Insn: REPEAT i{:d}'.format(width_data),
333 'REPEAT i{:d}'.format(width_data), 'REP',
334 ]
335 self.cmd_insn_parts_nice = ['REPEAT']
336 self.cmd_insn_parts_terse = ['REP']
337 elif opcode == PDI.OP_KEY:
338 # KEY: set activation key (enables PDIBUS mmap access).
339 # Writes a sequence of 8 bytes, fixed length.
340 width_data = 8
341 self.insn_wr_counts = [width_data]
342 self.insn_rd_counts = []
343 mnemonics = [
344 'Insn: KEY i{:d}'.format(width_data),
345 'KEY i{:d}'.format(width_data), 'KEY',
346 ]
347 self.cmd_insn_parts_nice = ['KEY']
348 self.cmd_insn_parts_terse = ['KEY']
349
350 # Emit an annotation for the instruction opcode.
351 self.put_ann_row_val(ss, es, Ann.OPCODE, mnemonics)
352
353 # Prepare to write/read operands/data bytes.
354 self.insn_dat_bytes = []
355 if self.insn_wr_counts:
356 self.insn_dat_count = self.insn_wr_counts[0]
357 return
358 if self.insn_rd_counts:
359 self.insn_dat_count = self.insn_rd_counts[0]
360 return
361 # FALLTHROUGH.
362 # When there are no operands or data bytes to read,
363 # then fall through to the end of the instruction
364 # handling below (which emits annotations).
365
366 # Read bytes which carry operands (addresses, immediates)
367 # or data values for memory access.
368 if self.insn_dat_count and not is_break:
369
370 # Accumulate received bytes until another multi byte
371 # data item is complete.
372 if not self.insn_dat_bytes:
373 self.insn_ss_data = ss
374 self.insn_dat_bytes.append(byteval)
375 self.insn_dat_count -= 1
376 if self.insn_dat_count:
377 return
378
379 # Determine the data item's duration and direction,
380 # "consume" its length spec (to simplify later steps).
381 data_ss = self.insn_ss_data
382 data_es = es
383 if self.insn_wr_counts:
384 data_ann = Ann.DATA_PROG
385 data_width = self.insn_wr_counts.pop(0)
386 elif self.insn_rd_counts:
387 data_ann = Ann.DATA_DEV
388 data_width = self.insn_rd_counts.pop(0)
389
390 # PDI communicates multi-byte data items in little endian
391 # order. Get a nice textual representation of the number,
392 # wide and narrow for several zoom levels.
393 self.insn_dat_bytes.reverse()
394 data_txt_digits = ''.join(['{:02x}'.format(b) for b in self.insn_dat_bytes])
395 data_txt_hex = '0x' + data_txt_digits
396 data_txt_prefix = 'Data: ' + data_txt_hex
397 data_txts = [data_txt_prefix, data_txt_hex, data_txt_digits]
398 self.insn_dat_bytes = []
399
400 # Emit an annotation for the data value.
401 self.put_ann_row_val(data_ss, data_es, data_ann, data_txts)
402
403 # Collect detailled information which describes the whole
404 # command when combined (for a next layer annotation,
405 # spanning the complete command).
406 self.cmd_insn_parts_nice.append(data_txt_hex)
407 self.cmd_insn_parts_terse.append(data_txt_digits)
408
409 # Send out write data first until exhausted,
410 # then drain expected read data.
411 if self.insn_wr_counts:
412 self.insn_dat_count = self.insn_wr_counts[0]
413 return
414 if self.insn_rd_counts:
415 self.insn_dat_count = self.insn_rd_counts[0]
416 return
417
418 # FALLTHROUGH.
419 # When all operands and data bytes were seen,
420 # terminate the inspection of the instruction.
421
422 # Postprocess the instruction after its operands were seen.
423 cmd_es = es
424 cmd_txt_nice = ' '.join(self.cmd_insn_parts_nice)
425 cmd_txt_terse = ' '.join(self.cmd_insn_parts_terse)
426 cmd_txts = [cmd_txt_nice, cmd_txt_terse]
427 self.put_ann_row_val(self.cmd_ss, cmd_es, Ann.COMMAND, cmd_txts)
428 if self.insn_opcode == PDI.OP_REPEAT and not is_break:
429 # The last communicated data item is the repeat
430 # count for the next instruction (i.e. it will
431 # execute N+1 times when "REPEAT N" is specified).
432 count = int(self.cmd_insn_parts_nice[-1], 0)
433 self.insn_rep_count = count
434
435 # Have the state for instruction decoding cleared, but make sure
436 # to carry over REPEAT count specs between instructions. They
437 # start out as zero, will be setup by REPEAT instructions, need
438 # to get passed to the instruction which follows REPEAT. The
439 # instruction which sees a non-zero repeat count which will
440 # consume the counter and drop it to zero, then the counter
441 # remains at zero until the next REPEAT instruction.
442 save_rep_count = self.insn_rep_count
443 self.clear_insn()
444 self.insn_rep_count = save_rep_count
445
446 def handle_bits(self, ss, es, bitval):
447 '''Handle a bit at the UART layer.'''
448
449 # Concentrate annotation literals here for easier maintenance.
450 ann_class_text = {
451 Ann.START: ['Start bit', 'Start', 'S'],
452 Ann.PARITY_OK: ['Parity OK', 'Par OK', 'P'],
453 Ann.PARITY_ERR: ['Parity error', 'Par ERR', 'PE'],
454 Ann.STOP_OK: ['Stop bit', 'Stop', 'T'],
455 Ann.STOP_ERR: ['Stop bit error', 'Stop ERR', 'TE'],
456 Ann.BREAK: ['Break condition', 'BREAK', 'BRK'],
457 }
458 def put_uart_field(bitpos, annclass):
459 self.put_ann_data(bitpos, [annclass, ann_class_text[annclass]])
460
461 # The number of bits which form one UART frame. Note that
462 # the decoder operates with only one stop bit.
463 frame_bitcount = 1 + 8 + 1 + 1
464
465 # Detect adjacent runs of all-zero bits. This is meant
466 # to cope when BREAK conditions appear at any arbitrary
467 # position, it need not be "aligned" to an UART frame.
468 if bitval == 1:
469 self.zero_count = 0
470 elif bitval == 0:
471 if not self.zero_count:
472 self.zero_ss = ss
473 self.zero_count += 1
474 if self.zero_count == frame_bitcount:
475 self.break_ss = self.zero_ss
476
477 # BREAK conditions are _at_minimum_ the length of a UART frame, but
478 # can span an arbitrary number of bit times. Track the "end sample"
479 # value of the last low bit we have seen, and emit the annotation only
480 # after the line went idle (high) again. Pass BREAK to the upper layer
481 # as well. When the line is low, BREAK still is pending. When the line
482 # is high, the current bit cannot be START, thus return from here.
483 if self.break_ss is not None:
484 if bitval == '0':
485 self.break_es = es
486 return
487 self.put(self.break_ss, self.break_es, self.out_ann,
488 [Ann.BREAK, ann_class_text[Ann.BREAK]])
489 self.handle_byte(self.break_ss, self.break_es, None)
490 self.break_ss = None
491 self.break_es = None
492 self.bits = []
493 return
494
495 # Ignore high bits when waiting for START.
496 if not self.bits and bitval == 1:
497 return
498
499 # Store individual bits and their start/end sample numbers,
500 # until a complete frame was received.
501 self.bits.append(Bit(bitval, ss, es))
502 if len(self.bits) < frame_bitcount:
503 return
504
505 # Get individual fields of the UART frame.
506 bits_num = sum([b.val << pos for pos, b in enumerate(self.bits)])
507 if False:
508 # This logic could detect BREAK conditions which are aligned to
509 # UART frames. Which was obsoleted by the above detection at
510 # arbitrary positions. The code still can be useful to detect
511 # "other kinds of frame errors" which carry valid symbols for
512 # upper layers (the Atmel literature suggests "break", "delay",
513 # and "empty" symbols when PDI is communicated over different
514 # physical layers).
515 if bits_num == 0: # BREAK
516 self.break_ss = self.bits[0].ss
517 self.break_es = es
518 self.bits = []
519 return
520 start_bit = bits_num & 0x01; bits_num >>= 1
521 data_val = bits_num & 0xff; bits_num >>= 8
522 data_text = '{:02x}'.format(data_val)
523 parity_bit = bits_num & 0x01; bits_num >>= 1
524 stop_bit = bits_num & 0x01; bits_num >>= 1
525
526 # Check for frame errors. START _must_ have been low
527 # according to the above accumulation logic.
528 parity_ok = (bin(data_val).count('1') + parity_bit) % 2 == 0
529 stop_ok = stop_bit == 1
530 valid_frame = parity_ok and stop_ok
531
532 # Emit annotations.
533 for idx in range(frame_bitcount):
534 self.put_ann_bit(idx, Ann.BIT)
535 put_uart_field(0, Ann.START)
536 self.put(self.bits[1].ss, self.bits[8].es, self.out_ann,
537 [Ann.DATA, ['Data: ' + data_text, 'D: ' + data_text, data_text]])
538 put_uart_field(9, Ann.PARITY_OK if parity_ok else Ann.PARITY_ERR)
539 put_uart_field(10, Ann.STOP_OK if stop_ok else Ann.STOP_ERR)
540
541 # Emit binary data stream. Have bytes interpreted at higher layers.
542 if valid_frame:
543 byte_ss, byte_es = self.bits[0].ss, self.bits[-1].es
544 self.put_bin_bytes(byte_ss, byte_es, Ann.BIN_BYTES, bytes([data_val]))
545 self.handle_byte(byte_ss, byte_es, data_val)
546
547 # Reset internal state for the next frame.
548 self.bits = []
549
c9947048 550 def handle_clk_edge(self, clock_pin, data_pin):
f0349f7f
GS
551 # Sample the data line on rising clock edges. Always, for TX and for
552 # RX bytes alike.
553 if clock_pin == 1:
554 self.data_sample = data_pin
555 return
556
557 # Falling clock edges are boundaries for bit slots. Inspect previously
558 # sampled bits on falling clock edges, when the start and end sample
559 # numbers were determined. Only inspect bit slots of known clock
560 # periods (avoid interpreting the DATA line when the "enabled" state
561 # has not yet been determined).
562 self.ss_last_fall = self.ss_curr_fall
c9947048 563 self.ss_curr_fall = self.samplenum
f0349f7f
GS
564 if self.ss_last_fall is None:
565 return
566
567 # Have the past bit slot processed.
568 bit_ss, bit_es = self.ss_last_fall, self.ss_curr_fall
569 bit_val = self.data_sample
570 self.handle_bits(bit_ss, bit_es, bit_val)
571
6a239714
GS
572 def decode(self):
573 while True:
c9947048 574 self.handle_clk_edge(*self.wait({0: 'e'}))