]> sigrok.org Git - libsigrokdecode.git/blame - decoders/avr_pdi/pd.py
atsha204a: Use the Python 'in' keyword to improve readability.
[libsigrokdecode.git] / decoders / avr_pdi / pd.py
CommitLineData
f0349f7f
GS
1##
2## This file is part of the libsigrokdecode project.
3##
4## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
5## Copyright (C) 2016 Gerhard Sittig <gerhard.sittig@gmx.net>
6##
7## This program is free software; you can redistribute it and/or modify
8## it under the terms of the GNU General Public License as published by
9## the Free Software Foundation; either version 2 of the License, or
10## (at your option) any later version.
11##
12## This program is distributed in the hope that it will be useful,
13## but WITHOUT ANY WARRANTY; without even the implied warranty of
14## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15## GNU General Public License for more details.
16##
17## You should have received a copy of the GNU General Public License
18## along with this program; if not, see <http://www.gnu.org/licenses/>.
19##
20
21# Note the implementation details:
22#
23# Although the Atmel literature suggests (does not explicitly mandate,
24# but shows in diagrams) that two stop bits are used in the protocol,
25# the decoder loses synchronization with ATxmega generated responses
26# when it expects more than one stop bit. Since the chip's hardware is
27# fixed, this is not an implementation error in some programmer software.
28# Since this is a protocol decoder which does not participate in the
29# communication (does not actively send data), we can read the data
30# stream with one stop bit, and transparently keep working when two
31# are used.
32#
33# Annotations in the UART fields level differ from Atmel literature.
34# Wrong parity bits are referred to as "parity error". Low stop bits are
35# referred to as "frame error".
36#
37# The PDI component in the device starts disabled. Enabling PDI
38# communication is done by raising DATA and clocking RESET with a
39# minimum frequency. PDI communication automatically gets disabled when
40# RESET "is inactive" for a certain period of time. The specific timing
41# conditions are rather fuzzy in the literature (phrased weakly), and
42# are device dependent (refer to the minumum RESET pulse width). This
43# protocol decoder implementation internally prepares for but currently
44# does not support these enable and disable phases. On the one hand it
45# avoids excess external dependencies or wrong results for legal input
46# data. On the other hand the decoder works when input streams start in
47# the middle of an established connection.
48#
49# Communication peers detect physical collisions. The decoder can't.
50# Upon collisions, a peer will cease any subsequent transmission, until
51# a BREAK is seen. Synchronization can get enforced by sending two BREAK
52# conditions. The first will cause a collision, the second will re-enable
53# the peer. The decoder has no concept of physical collisions. It stops
54# the interpretation of instructions when BREAK is seen, and assumes
55# that a new instruction will start after BREAK.
56#
57# This protocol decoder only supports PDI communication over UART frames.
58# It lacks support for PDI over JTAG. This would require separation into
59# multiple protocol decoder layers (UART physical, JTAG physical, PDI
60# instructions, optionally device support on top of PDI. There is some
61# more potential for future extensions:
62# - The JTAG physical has dedicated TX and RX directions. This decoder
63# only picks up communicated bytes but does not check which "line"
64# they are communicated on (not applicable to half duplex UART).
65# - PDI over JTAG uses "special frame error" conditions to communicate
66# additional symbols: BREAK (0xBB with parity 1), DELAY (0xDB with
67# parity 1), and EMPTY (0xEB with parity 1).
68# - Another "device support" layer might interpret device specific
69# timings, and might map addresses used in memory access operations
70# to component names, or even register names and bit fields(?). It's
71# quite deep a rabbithole though...
72
73import sigrokdecode as srd
74from collections import namedtuple
75
76class Ann:
77 '''Annotation and binary output classes.'''
78 (
79 BIT, START, DATA, PARITY_OK, PARITY_ERR,
80 STOP_OK, STOP_ERR, BREAK,
81 OPCODE, DATA_PROG, DATA_DEV, PDI_BREAK,
82 ENABLE, DISABLE, COMMAND,
83 ) = range(15)
84 (
85 BIN_BYTES,
86 ) = range(1)
87
88Bit = namedtuple('Bit', 'val ss es')
89
90class PDI:
91 '''PDI protocol instruction opcodes, and operand formats.'''
92 (
93 OP_LDS, OP_LD, OP_STS, OP_ST,
94 OP_LDCS, OP_REPEAT, OP_STCS, OP_KEY,
95 ) = range(8)
96 pointer_format_nice = [
97 '*(ptr)',
98 '*(ptr++)',
99 'ptr',
100 'ptr++ (rsv)',
101 ]
102 pointer_format_terse = [
103 '*p',
104 '*p++',
105 'p',
106 '(rsv)',
107 ]
108 ctrl_reg_name = {
109 0: 'status',
110 1: 'reset',
111 2: 'ctrl',
112 }
113
114class Decoder(srd.Decoder):
6a239714 115 api_version = 3
f0349f7f
GS
116 id = 'avr_pdi'
117 name = 'AVR PDI'
118 longname = 'Atmel Program and Debug Interface'
119 desc = 'Atmel proprietary interface for the ATxmega MCU.'
120 license = 'gplv2+'
121 inputs = ['logic']
122 outputs = ['pdi']
123 channels = (
124 {'id': 'reset', 'name': 'RESET', 'desc': 'RESET / PDI_CLK'},
125 {'id': 'data', 'name': 'DATA', 'desc': 'PDI_DATA'},
126 )
127 annotations = (
128 ('uart-bit', 'UART bit'),
129 ('start-bit', 'Start bit'),
130 ('data-bit', 'Data bit'),
131 ('parity-ok', 'Parity OK bit'),
132 ('parity-err', 'Parity error bit'),
133 ('stop-ok', 'Stop OK bit'),
134 ('stop-err', 'Stop error bit'),
135 ('break', 'BREAK condition'),
136 ('opcode', 'Instruction opcode'),
137 ('data-prog', 'Programmer data'),
138 ('data-dev', 'Device data'),
139 ('pdi-break', 'BREAK at PDI level'),
140 ('enable', 'Enable PDI'),
141 ('disable', 'Disable PDI'),
142 ('cmd-data', 'PDI command with data'),
143 )
144 annotation_rows = (
145 ('uart_bits', 'UART bits', (Ann.BIT,)),
146 ('uart_fields', 'UART fields', (Ann.START, Ann.DATA, Ann.PARITY_OK,
147 Ann.PARITY_ERR, Ann.STOP_OK, Ann.STOP_ERR, Ann.BREAK)),
148 ('pdi_fields', 'PDI fields', (Ann.OPCODE, Ann.DATA_PROG, Ann.DATA_DEV,
149 Ann.PDI_BREAK)),
150 ('pdi_cmds', 'PDI Cmds', (Ann.ENABLE, Ann.DISABLE, Ann.COMMAND)),
151 )
152 binary = (
153 ('bytes', 'PDI protocol bytes'),
154 )
155
156 def __init__(self):
10aeb8ea
GS
157 self.reset()
158
159 def reset(self):
f0349f7f 160 self.samplerate = None
f0349f7f
GS
161 self.clear_state()
162
163 def clear_state(self):
164 # Track bit times and bit values.
165 self.ss_last_fall = None
166 self.data_sample = None
167 self.ss_curr_fall = None
168 # Collect UART frame bits into byte values.
169 self.bits = []
170 self.zero_count = 0
171 self.zero_ss = None
172 self.break_ss = None
173 self.break_es = None
174 self.clear_insn()
175
176 def clear_insn(self):
177 # Collect instructions and their arguments,
178 # properties of the current instructions.
179 self.insn_rep_count = 0
180 self.insn_opcode = None
181 self.insn_wr_counts = []
182 self.insn_rd_counts = []
183 # Accumulation of data items as bytes pass by.
184 self.insn_dat_bytes = []
185 self.insn_dat_count = 0
186 self.insn_ss_data = None
187 # Next layer "commands", instructions plus operands.
188 self.cmd_ss = None
189 self.cmd_insn_parts_nice = []
190 self.cmd_insn_parts_terse = []
191
192 def metadata(self, key, value):
193 if key == srd.SRD_CONF_SAMPLERATE:
194 self.samplerate = value
195
196 def start(self):
197 self.out_ann = self.register(srd.OUTPUT_ANN)
198 self.out_binary = self.register(srd.OUTPUT_BINARY)
199
200 def put_ann_bit(self, bit_nr, ann_idx):
201 b = self.bits[bit_nr]
202 self.put(b.ss, b.es, self.out_ann, [ann_idx, [str(b.val)]])
203
204 def put_ann_data(self, bit_nr, ann_data):
205 b = self.bits[bit_nr]
206 self.put(b.ss, b.es, self.out_ann, ann_data)
207
208 def put_ann_row_val(self, ss, es, row, value):
209 self.put(ss, es, self.out_ann, [row, value])
210
211 def put_bin_bytes(self, ss, es, row, value):
212 self.put(ss, es, self.out_binary, [row, value])
213
214 def handle_byte(self, ss, es, byteval):
215 '''Handle a byte at the PDI protocol layer.'''
216
217 # Handle BREAK conditions, which will abort any
218 # potentially currently executing instruction.
219 is_break = byteval is None
220 if is_break:
221 self.cmd_insn_parts_nice.append('BREAK')
222 self.cmd_insn_parts_terse.append('BRK')
223 self.insn_rep_count = 0
224 # Will FALLTHROUGH to "end of instruction" below.
225
226 # Decode instruction opcodes and argument sizes
227 # from the first byte of a transaction.
228 if self.insn_opcode is None and not is_break:
229 opcode = (byteval & 0xe0) >> 5
230 arg30 = byteval & 0x0f
231 arg32 = (byteval & 0x0c) >> 2
232 arg10 = byteval & 0x03
233 self.insn_opcode = opcode
234 self.cmd_ss = ss
235 mnemonics = None
236 if opcode == PDI.OP_LDS:
237 # LDS: load data, direct addressing.
238 # Writes an address, reads a data item.
239 width_addr = arg32 + 1
240 width_data = arg10 + 1
241 self.insn_wr_counts = [width_addr]
242 self.insn_rd_counts = [width_data]
243 mnemonics = [
244 'Insn: LDS a{:d}, m{:d}'.format(width_addr, width_data),
245 'LDS a{:d}, m{:d}'.format(width_addr, width_data), 'LDS',
246 ]
247 self.cmd_insn_parts_nice = ['LDS']
248 self.cmd_insn_parts_terse = ['LDS']
249 elif opcode == PDI.OP_LD:
250 # LD: load data, indirect addressing.
251 # Reads a data item, with optional repeat.
252 ptr_txt = PDI.pointer_format_nice[arg32]
253 ptr_txt_terse = PDI.pointer_format_terse[arg32]
254 width_data = arg10 + 1
255 self.insn_wr_counts = []
256 self.insn_rd_counts = [width_data]
257 if self.insn_rep_count:
258 self.insn_rd_counts.extend(self.insn_rep_count * [width_data])
259 self.insn_rep_count = 0
260 mnemonics = [
261 'Insn: LD {:s} m{:d}'.format(ptr_txt, width_data),
262 'LD {:s} m{:d}'.format(ptr_txt, width_data), 'LD',
263 ]
264 self.cmd_insn_parts_nice = ['LD', ptr_txt]
265 self.cmd_insn_parts_terse = ['LD', ptr_txt_terse]
266 elif opcode == PDI.OP_STS:
267 # STS: store data, direct addressing.
268 # Writes an address, writes a data item.
269 width_addr = arg32 + 1
270 width_data = arg10 + 1
271 self.insn_wr_counts = [width_addr, width_data]
272 self.insn_rd_counts = []
273 mnemonics = [
274 'Insn: STS a{:d}, i{:d}'.format(width_addr, width_data),
275 'STS a{:d}, i{:d}'.format(width_addr, width_data), 'STS',
276 ]
277 self.cmd_insn_parts_nice = ['STS']
278 self.cmd_insn_parts_terse = ['STS']
279 elif opcode == PDI.OP_ST:
280 # ST: store data, indirect addressing.
281 # Writes a data item, with optional repeat.
282 ptr_txt = PDI.pointer_format_nice[arg32]
283 ptr_txt_terse = PDI.pointer_format_terse[arg32]
284 width_data = arg10 + 1
285 self.insn_wr_counts = [width_data]
286 self.insn_rd_counts = []
287 if self.insn_rep_count:
288 self.insn_wr_counts.extend(self.insn_rep_count * [width_data])
289 self.insn_rep_count = 0
290 mnemonics = [
291 'Insn: ST {:s} i{:d}'.format(ptr_txt, width_data),
292 'ST {:s} i{:d}'.format(ptr_txt, width_data), 'ST',
293 ]
294 self.cmd_insn_parts_nice = ['ST', ptr_txt]
295 self.cmd_insn_parts_terse = ['ST', ptr_txt_terse]
296 elif opcode == PDI.OP_LDCS:
297 # LDCS: load control/status.
298 # Loads exactly one byte.
299 reg_num = arg30
300 reg_txt = PDI.ctrl_reg_name.get(reg_num, 'r{:d}'.format(reg_num))
301 reg_txt_terse = '{:d}'.format(reg_num)
302 self.insn_wr_counts = []
303 self.insn_rd_counts = [1]
304 mnemonics = [
305 'Insn: LDCS {:s}, m1'.format(reg_txt),
306 'LDCS {:s}, m1'.format(reg_txt), 'LDCS',
307 ]
308 self.cmd_insn_parts_nice = ['LDCS', reg_txt]
309 self.cmd_insn_parts_terse = ['LDCS', reg_txt_terse]
310 elif opcode == PDI.OP_STCS:
311 # STCS: store control/status.
312 # Writes exactly one byte.
313 reg_num = arg30
314 reg_txt = PDI.ctrl_reg_name.get(reg_num, 'r{:d}'.format(reg_num))
315 reg_txt_terse = '{:d}'.format(reg_num)
316 self.insn_wr_counts = [1]
317 self.insn_rd_counts = []
318 mnemonics = [
319 'Insn: STCS {:s}, i1'.format(reg_txt),
320 'STCS {:s}, i1'.format(reg_txt), 'STCS',
321 ]
322 self.cmd_insn_parts_nice = ['STCS', reg_txt]
323 self.cmd_insn_parts_terse = ['STCS', reg_txt_terse]
324 elif opcode == PDI.OP_REPEAT:
325 # REPEAT: sets repeat count for the next instruction.
326 # Reads repeat count from following bytes.
327 width_data = arg10 + 1
328 self.insn_wr_counts = [width_data]
329 self.insn_rd_counts = []
330 mnemonics = [
331 'Insn: REPEAT i{:d}'.format(width_data),
332 'REPEAT i{:d}'.format(width_data), 'REP',
333 ]
334 self.cmd_insn_parts_nice = ['REPEAT']
335 self.cmd_insn_parts_terse = ['REP']
336 elif opcode == PDI.OP_KEY:
337 # KEY: set activation key (enables PDIBUS mmap access).
338 # Writes a sequence of 8 bytes, fixed length.
339 width_data = 8
340 self.insn_wr_counts = [width_data]
341 self.insn_rd_counts = []
342 mnemonics = [
343 'Insn: KEY i{:d}'.format(width_data),
344 'KEY i{:d}'.format(width_data), 'KEY',
345 ]
346 self.cmd_insn_parts_nice = ['KEY']
347 self.cmd_insn_parts_terse = ['KEY']
348
349 # Emit an annotation for the instruction opcode.
350 self.put_ann_row_val(ss, es, Ann.OPCODE, mnemonics)
351
352 # Prepare to write/read operands/data bytes.
353 self.insn_dat_bytes = []
354 if self.insn_wr_counts:
355 self.insn_dat_count = self.insn_wr_counts[0]
356 return
357 if self.insn_rd_counts:
358 self.insn_dat_count = self.insn_rd_counts[0]
359 return
360 # FALLTHROUGH.
361 # When there are no operands or data bytes to read,
362 # then fall through to the end of the instruction
363 # handling below (which emits annotations).
364
365 # Read bytes which carry operands (addresses, immediates)
366 # or data values for memory access.
367 if self.insn_dat_count and not is_break:
368
369 # Accumulate received bytes until another multi byte
370 # data item is complete.
371 if not self.insn_dat_bytes:
372 self.insn_ss_data = ss
373 self.insn_dat_bytes.append(byteval)
374 self.insn_dat_count -= 1
375 if self.insn_dat_count:
376 return
377
378 # Determine the data item's duration and direction,
379 # "consume" its length spec (to simplify later steps).
380 data_ss = self.insn_ss_data
381 data_es = es
382 if self.insn_wr_counts:
383 data_ann = Ann.DATA_PROG
384 data_width = self.insn_wr_counts.pop(0)
385 elif self.insn_rd_counts:
386 data_ann = Ann.DATA_DEV
387 data_width = self.insn_rd_counts.pop(0)
388
389 # PDI communicates multi-byte data items in little endian
390 # order. Get a nice textual representation of the number,
391 # wide and narrow for several zoom levels.
392 self.insn_dat_bytes.reverse()
393 data_txt_digits = ''.join(['{:02x}'.format(b) for b in self.insn_dat_bytes])
394 data_txt_hex = '0x' + data_txt_digits
395 data_txt_prefix = 'Data: ' + data_txt_hex
396 data_txts = [data_txt_prefix, data_txt_hex, data_txt_digits]
397 self.insn_dat_bytes = []
398
399 # Emit an annotation for the data value.
400 self.put_ann_row_val(data_ss, data_es, data_ann, data_txts)
401
402 # Collect detailled information which describes the whole
403 # command when combined (for a next layer annotation,
404 # spanning the complete command).
405 self.cmd_insn_parts_nice.append(data_txt_hex)
406 self.cmd_insn_parts_terse.append(data_txt_digits)
407
408 # Send out write data first until exhausted,
409 # then drain expected read data.
410 if self.insn_wr_counts:
411 self.insn_dat_count = self.insn_wr_counts[0]
412 return
413 if self.insn_rd_counts:
414 self.insn_dat_count = self.insn_rd_counts[0]
415 return
416
417 # FALLTHROUGH.
418 # When all operands and data bytes were seen,
419 # terminate the inspection of the instruction.
420
421 # Postprocess the instruction after its operands were seen.
422 cmd_es = es
423 cmd_txt_nice = ' '.join(self.cmd_insn_parts_nice)
424 cmd_txt_terse = ' '.join(self.cmd_insn_parts_terse)
425 cmd_txts = [cmd_txt_nice, cmd_txt_terse]
426 self.put_ann_row_val(self.cmd_ss, cmd_es, Ann.COMMAND, cmd_txts)
427 if self.insn_opcode == PDI.OP_REPEAT and not is_break:
428 # The last communicated data item is the repeat
429 # count for the next instruction (i.e. it will
430 # execute N+1 times when "REPEAT N" is specified).
431 count = int(self.cmd_insn_parts_nice[-1], 0)
432 self.insn_rep_count = count
433
434 # Have the state for instruction decoding cleared, but make sure
435 # to carry over REPEAT count specs between instructions. They
436 # start out as zero, will be setup by REPEAT instructions, need
437 # to get passed to the instruction which follows REPEAT. The
438 # instruction which sees a non-zero repeat count which will
439 # consume the counter and drop it to zero, then the counter
440 # remains at zero until the next REPEAT instruction.
441 save_rep_count = self.insn_rep_count
442 self.clear_insn()
443 self.insn_rep_count = save_rep_count
444
445 def handle_bits(self, ss, es, bitval):
446 '''Handle a bit at the UART layer.'''
447
448 # Concentrate annotation literals here for easier maintenance.
449 ann_class_text = {
450 Ann.START: ['Start bit', 'Start', 'S'],
451 Ann.PARITY_OK: ['Parity OK', 'Par OK', 'P'],
452 Ann.PARITY_ERR: ['Parity error', 'Par ERR', 'PE'],
453 Ann.STOP_OK: ['Stop bit', 'Stop', 'T'],
454 Ann.STOP_ERR: ['Stop bit error', 'Stop ERR', 'TE'],
455 Ann.BREAK: ['Break condition', 'BREAK', 'BRK'],
456 }
457 def put_uart_field(bitpos, annclass):
458 self.put_ann_data(bitpos, [annclass, ann_class_text[annclass]])
459
460 # The number of bits which form one UART frame. Note that
461 # the decoder operates with only one stop bit.
462 frame_bitcount = 1 + 8 + 1 + 1
463
464 # Detect adjacent runs of all-zero bits. This is meant
465 # to cope when BREAK conditions appear at any arbitrary
466 # position, it need not be "aligned" to an UART frame.
467 if bitval == 1:
468 self.zero_count = 0
469 elif bitval == 0:
470 if not self.zero_count:
471 self.zero_ss = ss
472 self.zero_count += 1
473 if self.zero_count == frame_bitcount:
474 self.break_ss = self.zero_ss
475
476 # BREAK conditions are _at_minimum_ the length of a UART frame, but
477 # can span an arbitrary number of bit times. Track the "end sample"
478 # value of the last low bit we have seen, and emit the annotation only
479 # after the line went idle (high) again. Pass BREAK to the upper layer
480 # as well. When the line is low, BREAK still is pending. When the line
481 # is high, the current bit cannot be START, thus return from here.
482 if self.break_ss is not None:
483 if bitval == '0':
484 self.break_es = es
485 return
486 self.put(self.break_ss, self.break_es, self.out_ann,
487 [Ann.BREAK, ann_class_text[Ann.BREAK]])
488 self.handle_byte(self.break_ss, self.break_es, None)
489 self.break_ss = None
490 self.break_es = None
491 self.bits = []
492 return
493
494 # Ignore high bits when waiting for START.
495 if not self.bits and bitval == 1:
496 return
497
498 # Store individual bits and their start/end sample numbers,
499 # until a complete frame was received.
500 self.bits.append(Bit(bitval, ss, es))
501 if len(self.bits) < frame_bitcount:
502 return
503
504 # Get individual fields of the UART frame.
505 bits_num = sum([b.val << pos for pos, b in enumerate(self.bits)])
506 if False:
507 # This logic could detect BREAK conditions which are aligned to
508 # UART frames. Which was obsoleted by the above detection at
509 # arbitrary positions. The code still can be useful to detect
510 # "other kinds of frame errors" which carry valid symbols for
511 # upper layers (the Atmel literature suggests "break", "delay",
512 # and "empty" symbols when PDI is communicated over different
513 # physical layers).
514 if bits_num == 0: # BREAK
515 self.break_ss = self.bits[0].ss
516 self.break_es = es
517 self.bits = []
518 return
519 start_bit = bits_num & 0x01; bits_num >>= 1
520 data_val = bits_num & 0xff; bits_num >>= 8
521 data_text = '{:02x}'.format(data_val)
522 parity_bit = bits_num & 0x01; bits_num >>= 1
523 stop_bit = bits_num & 0x01; bits_num >>= 1
524
525 # Check for frame errors. START _must_ have been low
526 # according to the above accumulation logic.
527 parity_ok = (bin(data_val).count('1') + parity_bit) % 2 == 0
528 stop_ok = stop_bit == 1
529 valid_frame = parity_ok and stop_ok
530
531 # Emit annotations.
532 for idx in range(frame_bitcount):
533 self.put_ann_bit(idx, Ann.BIT)
534 put_uart_field(0, Ann.START)
535 self.put(self.bits[1].ss, self.bits[8].es, self.out_ann,
536 [Ann.DATA, ['Data: ' + data_text, 'D: ' + data_text, data_text]])
537 put_uart_field(9, Ann.PARITY_OK if parity_ok else Ann.PARITY_ERR)
538 put_uart_field(10, Ann.STOP_OK if stop_ok else Ann.STOP_ERR)
539
540 # Emit binary data stream. Have bytes interpreted at higher layers.
541 if valid_frame:
542 byte_ss, byte_es = self.bits[0].ss, self.bits[-1].es
543 self.put_bin_bytes(byte_ss, byte_es, Ann.BIN_BYTES, bytes([data_val]))
544 self.handle_byte(byte_ss, byte_es, data_val)
545
546 # Reset internal state for the next frame.
547 self.bits = []
548
c9947048 549 def handle_clk_edge(self, clock_pin, data_pin):
f0349f7f
GS
550 # Sample the data line on rising clock edges. Always, for TX and for
551 # RX bytes alike.
552 if clock_pin == 1:
553 self.data_sample = data_pin
554 return
555
556 # Falling clock edges are boundaries for bit slots. Inspect previously
557 # sampled bits on falling clock edges, when the start and end sample
558 # numbers were determined. Only inspect bit slots of known clock
559 # periods (avoid interpreting the DATA line when the "enabled" state
560 # has not yet been determined).
561 self.ss_last_fall = self.ss_curr_fall
c9947048 562 self.ss_curr_fall = self.samplenum
f0349f7f
GS
563 if self.ss_last_fall is None:
564 return
565
566 # Have the past bit slot processed.
567 bit_ss, bit_es = self.ss_last_fall, self.ss_curr_fall
568 bit_val = self.data_sample
569 self.handle_bits(bit_ss, bit_es, bit_val)
570
6a239714
GS
571 def decode(self):
572 while True:
c9947048 573 self.handle_clk_edge(*self.wait({0: 'e'}))