]> sigrok.org Git - libsigrok.git/blobdiff - src/hardware/kingst-la2016/protocol.c
kingst-la2016: adjust config param checks, threshold range check
[libsigrok.git] / src / hardware / kingst-la2016 / protocol.c
index 22c47f475510b2674e57fd3023c7adb355499c94..dc1a24a5193b6f0a96933e9f15443480b0eb2c5b 100644 (file)
  */
 
 #include <config.h>
-#include <stdint.h>
-#include <string.h>
-#include <glib.h>
-#include <glib/gstdio.h>
-#include <stdio.h>
-#include <errno.h>
-#include <math.h>
-#include <inttypes.h>
+
 #include <libsigrok/libsigrok.h>
+#include <string.h>
+
 #include "libsigrok-internal.h"
 #include "protocol.h"
 
-#define FPGA_FIRMWARE  "kingst-la2016a-fpga.bitstream"
-#define UC_FIRMWARE    "kingst-la-%04x.fw"
-
-#define MAX_SAMPLE_RATE  SR_MHZ(200)
-#define MAX_SAMPLE_DEPTH 10e9
-#define MAX_PWM_FREQ     SR_MHZ(20)
-#define PWM_CLOCK        SR_MHZ(200)
+/* USB PID dependent MCU firmware. Model dependent FPGA bitstream. */
+#define MCU_FWFILE_FMT "kingst-la-%04x.fw"
+#define FPGA_FWFILE_FMT        "kingst-%s-fpga.bitstream"
 
-/* usb vendor class control requests to the cypress FX2 microcontroller */
-#define        CMD_EEPROM      0xa2    /* ctrl_in reads, ctrl_out writes */
-#define        CMD_FPGA_INIT   0x50    /* used before and after FPGA bitstream loading */
-#define        CMD_FPGA_SPI    0x20    /* access registers in the FPGA over SPI bus, ctrl_in reads, ctrl_out writes */
-#define        CMD_FPGA_ENABLE 0x10
-#define        CMD_BULK_RESET  0x38    /* flush FX2 usb endpoint 6 IN fifos */
-#define        CMD_BULK_START  0x30    /* begin transfer of capture data via usb endpoint 6 IN */
-#define        CMD_KAUTH       0x60    /* communicate with authentication ic U10, not used */
+/*
+ * List of supported devices and their features. See @ref kingst_model
+ * for the fields' type and meaning. Table is sorted by EEPROM magic.
+ *
+ * TODO
+ * - Below LA1016 properties were guessed, need verification.
+ * - Add LA5016 and LA5032 devices when their EEPROM magic is known.
+ * - Does LA1010 fit the driver implementation? Samplerates vary with
+ *   channel counts, lack of local sample memory. Most probably not.
+ */
+static const struct kingst_model models[] = {
+       { 2, "LA2016", "la2016", SR_MHZ(200), 16, 1, },
+       { 3, "LA1016", "la1016", SR_MHZ(100), 16, 1, },
+       { 8, "LA2016", "la2016a1", SR_MHZ(200), 16, 1, },
+       { 9, "LA1016", "la1016a1", SR_MHZ(100), 16, 1, },
+};
+
+/* USB vendor class control requests, executed by the Cypress FX2 MCU. */
+#define CMD_FPGA_ENABLE        0x10
+#define CMD_FPGA_SPI   0x20    /* R/W access to FPGA registers via SPI. */
+#define CMD_BULK_START 0x30    /* Start sample data download via USB EP6 IN. */
+#define CMD_BULK_RESET 0x38    /* Flush FIFO of FX2 USB EP6 IN. */
+#define CMD_FPGA_INIT  0x50    /* Used before and after FPGA bitstream upload. */
+#define CMD_KAUTH      0x60    /* Communicate to auth IC (U10). Not used. */
+#define CMD_EEPROM     0xa2    /* R/W access to EEPROM content. */
 
 /*
- * fpga spi register addresses for control request CMD_FPGA_SPI:
- * There are around 60 byte-wide registers within the fpga and
- * these are the base addresses used for accessing them.
- * On the spi bus, the msb of the address byte is set for read
- * and cleared for write, but that is handled by the fx2 mcu
- * as appropriate. In this driver code just use IN transactions
- * to read, OUT to write.
+ * FPGA register addresses (base addresses when registers span multiple
+ * bytes, in that case data is kept in little endian format). Passed to
+ * CMD_FPGA_SPI requests. The FX2 MCU transparently handles the detail
+ * of SPI transfers encoding the read (1) or write (0) direction in the
+ * MSB of the address field. There are some 60 byte-wide FPGA registers.
+ *
+ * Unfortunately the FPGA registers change their meaning between the
+ * read and write directions of access, or exclusively provide one of
+ * these directions and not the other. This is an arbitrary vendor's
+ * choice, there is nothing which the sigrok driver could do about it.
+ * Values written to registers typically cannot get read back, neither
+ * verified after writing a configuration, nor queried upon startup for
+ * automatic detection of the current configuration. Neither appear to
+ * be there echo registers for presence and communication checks, nor
+ * version identifying registers, as far as we know.
  */
-#define        REG_RUN         0x00    /* read capture status, write capture start */
-#define        REG_PWM_EN      0x02    /* user pwm channels on/off */
-#define        REG_CAPT_MODE   0x03    /* set to 0x00 for capture to sdram, 0x01 bypass sdram for streaming */
-#define        REG_BULK        0x08    /* write start address and number of bytes for capture data bulk upload */
-#define        REG_SAMPLING    0x10    /* write capture config, read capture data location in sdram */
-#define        REG_TRIGGER     0x20    /* write level and edge trigger config */
-#define        REG_THRESHOLD   0x68    /* write two pwm configs to control input threshold dac */
-#define        REG_PWM1        0x70    /* write config for user pwm1 */
-#define        REG_PWM2        0x78    /* write config for user pwm2 */
+#define REG_RUN                0x00    /* Read capture status, write start capture. */
+#define REG_PWM_EN     0x02    /* User PWM channels on/off. */
+#define REG_CAPT_MODE  0x03    /* Write 0x00 capture to SDRAM, 0x01 streaming. */
+#define REG_BULK       0x08    /* Write start addr, byte count to download samples. */
+#define REG_SAMPLING   0x10    /* Write capture config, read capture SDRAM location. */
+#define REG_TRIGGER    0x20    /* write level and edge trigger config. */
+#define REG_THRESHOLD  0x68    /* Write PWM config to setup input threshold DAC. */
+#define REG_PWM1       0x70    /* Write config for user PWM1. */
+#define REG_PWM2       0x78    /* Write config for user PWM2. */
+
+/* Bit patterns to write to REG_RUN, setup run mode. */
+#define RUNMODE_HALT   0x00
+#define RUNMODE_RUN    0x03
+
+/* Bit patterns when reading from REG_RUN, get run state. */
+#define RUNSTATE_IDLE_BIT      (1UL << 0)
+#define RUNSTATE_DRAM_BIT      (1UL << 1)
+#define RUNSTATE_TRGD_BIT      (1UL << 2)
+#define RUNSTATE_POST_BIT      (1UL << 3)
+
+/* Properties related to the layout of capture data downloads. */
+#define NUM_PACKETS_IN_CHUNK   5
+#define TRANSFER_PACKET_LENGTH 16
 
 static int ctrl_in(const struct sr_dev_inst *sdi,
-                  uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
-                  void *data, uint16_t wLength)
+       uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
+       void *data, uint16_t wLength)
 {
        struct sr_usb_dev_inst *usb;
        int ret;
 
        usb = sdi->conn;
 
-       if ((ret = libusb_control_transfer(
-                    usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
-                    bRequest, wValue, wIndex, (unsigned char *)data, wLength,
-                    DEFAULT_TIMEOUT_MS)) != wLength) {
-               sr_err("failed to read %d bytes via ctrl-in %d %#x, %d: %s.",
-                      wLength, bRequest, wValue, wIndex,
-                      libusb_error_name(ret));
+       ret = libusb_control_transfer(usb->devhdl,
+               LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_IN,
+               bRequest, wValue, wIndex, data, wLength,
+               DEFAULT_TIMEOUT_MS);
+       if (ret != wLength) {
+               sr_dbg("USB ctrl in: %d bytes, req %d val %#x idx %d: %s.",
+                       wLength, bRequest, wValue, wIndex,
+                       libusb_error_name(ret));
+               sr_err("Cannot read %d bytes from USB: %s.",
+                       wLength, libusb_error_name(ret));
                return SR_ERR;
        }
 
@@ -92,74 +125,154 @@ static int ctrl_in(const struct sr_dev_inst *sdi,
 }
 
 static int ctrl_out(const struct sr_dev_inst *sdi,
-                   uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
-                   void *data, uint16_t wLength)
+       uint8_t bRequest, uint16_t wValue, uint16_t wIndex,
+       void *data, uint16_t wLength)
 {
        struct sr_usb_dev_inst *usb;
        int ret;
 
        usb = sdi->conn;
 
-       if ((ret = libusb_control_transfer(
-                    usb->devhdl, LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
-                    bRequest, wValue, wIndex, (unsigned char*)data, wLength,
-                    DEFAULT_TIMEOUT_MS)) != wLength) {
-               sr_err("failed to write %d bytes via ctrl-out %d %#x, %d: %s.",
-                      wLength, bRequest, wValue, wIndex,
-                      libusb_error_name(ret));
+       ret = libusb_control_transfer(usb->devhdl,
+               LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT,
+               bRequest, wValue, wIndex, data, wLength,
+               DEFAULT_TIMEOUT_MS);
+       if (ret != wLength) {
+               sr_dbg("USB ctrl out: %d bytes, req %d val %#x idx %d: %s.",
+                       wLength, bRequest, wValue, wIndex,
+                       libusb_error_name(ret));
+               sr_err("Cannot write %d bytes to USB: %s.",
+                       wLength, libusb_error_name(ret));
                return SR_ERR;
        }
 
        return SR_OK;
 }
 
-static int upload_fpga_bitstream(const struct sr_dev_inst *sdi)
+/*
+ * Check the necessity for FPGA bitstream upload, because another upload
+ * would take some 600ms which is undesirable after program startup. Try
+ * to access some FPGA registers and check the values' plausibility. The
+ * check should fail on the safe side, request another upload when in
+ * doubt. A positive response (the request to continue operation with the
+ * currently active bitstream) should be conservative. Accessing multiple
+ * registers is considered cheap compared to the cost of bitstream upload.
+ *
+ * It helps though that both the vendor software and the sigrok driver
+ * use the same bundle of MCU firmware and FPGA bitstream for any of the
+ * supported models. We don't expect to successfully communicate to the
+ * device yet disagree on its protocol. Ideally we would access version
+ * identifying registers for improved robustness, but are not aware of
+ * any. A bitstream reload can always be forced by a power cycle.
+ */
+static int check_fpga_bitstream(const struct sr_dev_inst *sdi)
+{
+       uint8_t init_rsp;
+       int ret;
+       uint16_t run_state;
+       uint8_t pwm_en;
+       size_t read_len;
+       uint8_t buff[sizeof(run_state)];
+       const uint8_t *rdptr;
+
+       sr_dbg("Checking operation of the FPGA bitstream.");
+
+       init_rsp = ~0;
+       ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &init_rsp, sizeof(init_rsp));
+       if (ret != SR_OK || init_rsp != 0) {
+               sr_dbg("FPGA init query failed, or unexpected response.");
+               return SR_ERR_IO;
+       }
+
+       read_len = sizeof(run_state);
+       ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, read_len);
+       if (ret != SR_OK) {
+               sr_dbg("FPGA register access failed (run state).");
+               return SR_ERR_IO;
+       }
+       rdptr = buff;
+       run_state = read_u16le_inc(&rdptr);
+       sr_spew("FPGA register: run state 0x%04x.", run_state);
+       if (run_state && (run_state & 0x3) != 0x1) {
+               sr_dbg("Unexpected FPGA register content (run state).");
+               return SR_ERR_DATA;
+       }
+       if (run_state && (run_state & ~0xf) != 0x85e0) {
+               sr_dbg("Unexpected FPGA register content (run state).");
+               return SR_ERR_DATA;
+       }
+
+       read_len = sizeof(pwm_en);
+       ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, buff, read_len);
+       if (ret != SR_OK) {
+               sr_dbg("FPGA register access failed (PWM enable).");
+               return SR_ERR_IO;
+       }
+       rdptr = buff;
+       pwm_en = read_u8_inc(&rdptr);
+       sr_spew("FPGA register: PWM enable 0x%02x.", pwm_en);
+       if ((pwm_en & 0x3) != 0x0) {
+               sr_dbg("Unexpected FPGA register content (PWM enable).");
+               return SR_ERR_DATA;
+       }
+
+       sr_info("Could re-use current FPGA bitstream. No upload required.");
+       return SR_OK;
+}
+
+static int upload_fpga_bitstream(const struct sr_dev_inst *sdi,
+       const char *bitstream_fname)
 {
-       struct dev_context *devc;
        struct drv_context *drvc;
        struct sr_usb_dev_inst *usb;
        struct sr_resource bitstream;
+       uint32_t bitstream_size;
        uint8_t buffer[sizeof(uint32_t)];
        uint8_t *wrptr;
-       uint8_t cmd_resp;
        uint8_t block[4096];
        int len, act_len;
        unsigned int pos;
        int ret;
-       unsigned int zero_pad_to = 0x2c000;
+       unsigned int zero_pad_to;
 
-       devc = sdi->priv;
        drvc = sdi->driver->context;
        usb = sdi->conn;
 
-       sr_info("Uploading FPGA bitstream '%s'.", FPGA_FIRMWARE);
+       sr_info("Uploading FPGA bitstream '%s'.", bitstream_fname);
 
-       ret = sr_resource_open(drvc->sr_ctx, &bitstream, SR_RESOURCE_FIRMWARE, FPGA_FIRMWARE);
+       ret = sr_resource_open(drvc->sr_ctx, &bitstream,
+               SR_RESOURCE_FIRMWARE, bitstream_fname);
        if (ret != SR_OK) {
-               sr_err("could not find la2016 firmware %s!", FPGA_FIRMWARE);
+               sr_err("Cannot find FPGA bitstream %s.", bitstream_fname);
                return ret;
        }
 
-       devc->bitstream_size = (uint32_t)bitstream.size;
+       bitstream_size = (uint32_t)bitstream.size;
        wrptr = buffer;
-       write_u32le_inc(&wrptr, devc->bitstream_size);
-       if ((ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer)) != SR_OK) {
-               sr_err("failed to give upload init command");
+       write_u32le_inc(&wrptr, bitstream_size);
+       ret = ctrl_out(sdi, CMD_FPGA_INIT, 0x00, 0, buffer, wrptr - buffer);
+       if (ret != SR_OK) {
+               sr_err("Cannot initiate FPGA bitstream upload.");
                sr_resource_close(drvc->sr_ctx, &bitstream);
                return ret;
        }
+       zero_pad_to = bitstream_size;
+       zero_pad_to += LA2016_EP2_PADDING - 1;
+       zero_pad_to /= LA2016_EP2_PADDING;
+       zero_pad_to *= LA2016_EP2_PADDING;
 
        pos = 0;
        while (1) {
                if (pos < bitstream.size) {
-                       len = (int)sr_resource_read(drvc->sr_ctx, &bitstream, &block, sizeof(block));
+                       len = (int)sr_resource_read(drvc->sr_ctx, &bitstream,
+                               block, sizeof(block));
                        if (len < 0) {
-                               sr_err("failed to read from fpga bitstream!");
+                               sr_err("Cannot read FPGA bitstream.");
                                sr_resource_close(drvc->sr_ctx, &bitstream);
                                return SR_ERR;
                        }
                } else {
-                       // fill with zero's until zero_pad_to
+                       /*  Zero-pad until 'zero_pad_to'. */
                        len = zero_pad_to - pos;
                        if ((unsigned)len > sizeof(block))
                                len = sizeof(block);
@@ -168,41 +281,55 @@ static int upload_fpga_bitstream(const struct sr_dev_inst *sdi)
                if (len == 0)
                        break;
 
-               ret = libusb_bulk_transfer(usb->devhdl, 2, (unsigned char*)&block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
+               ret = libusb_bulk_transfer(usb->devhdl, USB_EP_FPGA_BITSTREAM,
+                       &block[0], len, &act_len, DEFAULT_TIMEOUT_MS);
                if (ret != 0) {
-                       sr_dbg("failed to write fpga bitstream block at %#x len %d: %s.", pos, (int)len, libusb_error_name(ret));
+                       sr_dbg("Cannot write FPGA bitstream, block %#x len %d: %s.",
+                               pos, (int)len, libusb_error_name(ret));
                        ret = SR_ERR;
                        break;
                }
                if (act_len != len) {
-                       sr_dbg("failed to write fpga bitstream block at %#x len %d: act_len is %d.", pos, (int)len, act_len);
+                       sr_dbg("Short write for FPGA bitstream, block %#x len %d: got %d.",
+                               pos, (int)len, act_len);
                        ret = SR_ERR;
                        break;
                }
                pos += len;
        }
        sr_resource_close(drvc->sr_ctx, &bitstream);
-       if (ret != 0)
+       if (ret != SR_OK)
                return ret;
-       sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.", bitstream.size);
+       sr_info("FPGA bitstream upload (%" PRIu64 " bytes) done.",
+               bitstream.size);
+
+       return SR_OK;
+}
+
+static int enable_fpga_bitstream(const struct sr_dev_inst *sdi)
+{
+       int ret;
+       uint8_t resp;
 
-       if ((ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &cmd_resp, sizeof(cmd_resp))) != SR_OK) {
-               sr_err("failed to read response after FPGA bitstream upload");
+       ret = ctrl_in(sdi, CMD_FPGA_INIT, 0x00, 0, &resp, sizeof(resp));
+       if (ret != SR_OK) {
+               sr_err("Cannot read response after FPGA bitstream upload.");
                return ret;
        }
-       if (cmd_resp != 0) {
-               sr_err("after fpga bitstream upload command response is 0x%02x, expect 0!", cmd_resp);
+       if (resp != 0) {
+               sr_err("Unexpected FPGA bitstream upload response, got 0x%02x, want 0.",
+                       resp);
                return SR_ERR;
        }
+       g_usleep(30 * 1000);
 
-       g_usleep(30000);
-
-       if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0)) != SR_OK) {
-               sr_err("failed enable fpga");
+       ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x01, 0, NULL, 0);
+       if (ret != SR_OK) {
+               sr_err("Cannot enable FPGA after bitstream upload.");
                return ret;
        }
+       g_usleep(40 * 1000);
 
-       g_usleep(40000);
        return SR_OK;
 }
 
@@ -210,59 +337,50 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
 {
        struct dev_context *devc;
        int ret;
-
-       devc = sdi->priv;
-
-       uint16_t duty_R79,duty_R56;
+       uint16_t duty_R79, duty_R56;
        uint8_t buf[2 * sizeof(uint16_t)];
        uint8_t *wrptr;
 
-       /* clamp threshold setting within valid range for LA2016 */
-       if (voltage > 4.0) {
-               voltage = 4.0;
-       }
-       else if (voltage < -4.0) {
-               voltage = -4.0;
-       }
+       devc = sdi->priv;
 
-       /*
-        * The fpga has two programmable pwm outputs which feed a dac that
-        * is used to adjust input offset. The dac changes the input
-        * swing around the fixed fpga input threshold.
-        * The two pwm outputs can be seen on R79 and R56 respectvely.
-        * Frequency is fixed at 100kHz and duty is varied.
-        * The R79 pwm uses just three settings.
-        * The R56 pwm varies with required threshold and its behaviour
-        * also changes depending on the setting of R79 PWM.
-        */
+       /* Clamp threshold setting to valid range for LA2016. */
+       if (voltage > LA2016_THR_VOLTAGE_MAX) {
+               voltage = LA2016_THR_VOLTAGE_MAX;
+       } else if (voltage < -LA2016_THR_VOLTAGE_MAX) {
+               voltage = -LA2016_THR_VOLTAGE_MAX;
+       }
 
        /*
-        * calculate required pwm duty register values from requested threshold voltage
-        * see last page of schematic (on wiki) for an explanation of these numbers
+        * Two PWM output channels feed one DAC which generates a bias
+        * voltage, which offsets the input probe's voltage level, and
+        * in combination with the FPGA pins' fixed threshold result in
+        * a programmable input threshold from the user's perspective.
+        * The PWM outputs can be seen on R79 and R56 respectively, the
+        * frequency is 100kHz and the duty cycle varies. The R79 PWM
+        * uses three discrete settings. The R56 PWM varies with desired
+        * thresholds and depends on the R79 PWM configuration. See the
+        * schematics comments which discuss the formulae.
         */
        if (voltage >= 2.9) {
-               duty_R79 = 0;           /* this pwm is off (0V)*/
+               duty_R79 = 0;           /* PWM off (0V). */
                duty_R56 = (uint16_t)(302 * voltage - 363);
-       }
-       else if (voltage <= -0.4) {
-               duty_R79 = 0x02D7;      /* 72% duty */
-               duty_R56 = (uint16_t)(302 * voltage + 1090);
-       }
-       else {
-               duty_R79 = 0x00f2;      /* 25% duty */
+       } else if (voltage > -0.4) {
+               duty_R79 = 0x00f2;      /* 25% duty cycle. */
                duty_R56 = (uint16_t)(302 * voltage + 121);
+       } else {
+               duty_R79 = 0x02d7;      /* 72% duty cycle. */
+               duty_R56 = (uint16_t)(302 * voltage + 1090);
        }
 
-       /* clamp duty register values at sensible limits */
+       /* Clamp duty register values to sensible limits. */
        if (duty_R56 < 10) {
                duty_R56 = 10;
-       }
-       else if (duty_R56 > 1100) {
+       } else if (duty_R56 > 1100) {
                duty_R56 = 1100;
        }
 
-       sr_dbg("set threshold voltage %.2fV", voltage);
-       sr_dbg("duty_R56=0x%04x, duty_R79=0x%04x", duty_R56, duty_R79);
+       sr_dbg("Set threshold voltage %.2fV.", voltage);
+       sr_dbg("Duty cycle values: R56 0x%04x, R79 0x%04x.", duty_R56, duty_R79);
 
        wrptr = buf;
        write_u16le_inc(&wrptr, duty_R56);
@@ -270,7 +388,7 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
 
        ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_THRESHOLD, 0, buf, wrptr - buf);
        if (ret != SR_OK) {
-               sr_err("error setting new threshold voltage of %.2fV", voltage);
+               sr_err("Cannot set threshold voltage %.2fV.", voltage);
                return ret;
        }
        devc->threshold_voltage = voltage;
@@ -278,114 +396,134 @@ static int set_threshold_voltage(const struct sr_dev_inst *sdi, float voltage)
        return SR_OK;
 }
 
-static int enable_pwm(const struct sr_dev_inst *sdi, uint8_t p1, uint8_t p2)
+/*
+ * Communicates a channel's configuration to the device after the
+ * parameters may have changed. Configuration of one channel may
+ * interfere with other channels since they share FPGA registers.
+ */
+static int set_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
 {
+       static uint8_t reg_bases[] = { REG_PWM1, REG_PWM2, };
+
        struct dev_context *devc;
-       uint8_t cfg;
+       struct pwm_setting *params;
+       uint8_t reg_base;
+       double val_f;
+       uint32_t val_u;
+       uint32_t period, duty;
+       size_t ch;
        int ret;
+       uint8_t enable_all, enable_cfg, reg_val;
+       uint8_t buf[REG_PWM2 - REG_PWM1]; /* Width of one REG_PWMx. */
+       uint8_t *wrptr;
 
        devc = sdi->priv;
-       cfg = 0;
+       if (idx >= ARRAY_SIZE(devc->pwm_setting))
+               return SR_ERR_ARG;
+       params = &devc->pwm_setting[idx];
+       if (idx >= ARRAY_SIZE(reg_bases))
+               return SR_ERR_ARG;
+       reg_base = reg_bases[idx];
 
-       if (p1) cfg |= 1 << 0;
-       if (p2) cfg |= 1 << 1;
+       /*
+        * Map application's specs to hardware register values. Do math
+        * in floating point initially, but convert to u32 eventually.
+        */
+       sr_dbg("PWM config, app spec, ch %zu, en %d, freq %.1f, duty %.1f.",
+               idx, params->enabled ? 1 : 0, params->freq, params->duty);
+       val_f = PWM_CLOCK;
+       val_f /= params->freq;
+       val_u = val_f;
+       period = val_u;
+       val_f = period;
+       val_f *= params->duty;
+       val_f /= 100.0;
+       val_f += 0.5;
+       val_u = val_f;
+       duty = val_u;
+       sr_dbg("PWM config, reg 0x%04x, freq %u, duty %u.",
+               (unsigned)reg_base, (unsigned)period, (unsigned)duty);
+
+       /* Get the "enabled" state of all supported PWM channels. */
+       enable_all = 0;
+       for (ch = 0; ch < ARRAY_SIZE(devc->pwm_setting); ch++) {
+               if (!devc->pwm_setting[ch].enabled)
+                       continue;
+               enable_all |= 1U << ch;
+       }
+       enable_cfg = 1U << idx;
+       sr_spew("PWM config, enable all 0x%02hhx, cfg 0x%02hhx.",
+               enable_all, enable_cfg);
 
-       sr_dbg("set pwm enable %d %d", p1, p2);
-       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0, &cfg, sizeof(cfg));
+       /*
+        * Disable the to-get-configured channel before its parameters
+        * will change. Or disable and exit when the channel is supposed
+        * to get turned off.
+        */
+       sr_spew("PWM config, disabling before param change.");
+       reg_val = enable_all & ~enable_cfg;
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
+               &reg_val, sizeof(reg_val));
        if (ret != SR_OK) {
-               sr_err("error setting new pwm enable 0x%02x", cfg);
+               sr_err("Cannot adjust PWM enabled state.");
                return ret;
        }
-       devc->pwm_setting[0].enabled = (p1) ? 1 : 0;
-       devc->pwm_setting[1].enabled = (p2) ? 1 : 0;
+       if (!params->enabled)
+               return SR_OK;
 
-       return SR_OK;
-}
-
-static int set_pwm(const struct sr_dev_inst *sdi, uint8_t which, float freq, float duty)
-{
-       int CTRL_PWM[] = { REG_PWM1, REG_PWM2 };
-       struct dev_context *devc;
-       pwm_setting_dev_t cfg;
-       pwm_setting_t *setting;
-       int ret;
-       uint8_t buf[2 * sizeof(uint32_t)];
-       uint8_t *wrptr;
-
-       devc = sdi->priv;
-
-       if (which < 1 || which > 2) {
-               sr_err("invalid pwm channel: %d", which);
-               return SR_ERR;
-       }
-       if (freq > MAX_PWM_FREQ) {
-               sr_err("pwm frequency too high: %.1f", freq);
-               return SR_ERR;
-       }
-       if (duty > 100 || duty < 0) {
-               sr_err("invalid pwm percentage: %f", duty);
-               return SR_ERR;
+       /* Write register values to device. */
+       sr_spew("PWM config, sending new parameters.");
+       wrptr = buf;
+       write_u32le_inc(&wrptr, period);
+       write_u32le_inc(&wrptr, duty);
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, reg_base, 0, buf, wrptr - buf);
+       if (ret != SR_OK) {
+               sr_err("Cannot change PWM parameters.");
+               return ret;
        }
 
-       cfg.period = (uint32_t)(PWM_CLOCK / freq);
-       cfg.duty = (uint32_t)(0.5f + (cfg.period * duty / 100.));
-       sr_dbg("set pwm%d period %d, duty %d", which, cfg.period, cfg.duty);
-
-       wrptr = buf;
-       write_u32le_inc(&wrptr, cfg.period);
-       write_u32le_inc(&wrptr, cfg.duty);
-       ret = ctrl_out(sdi, CMD_FPGA_SPI, CTRL_PWM[which - 1], 0, buf, wrptr - buf);
+       /* Enable configured channel after write completion. */
+       sr_spew("PWM config, enabling after param change.");
+       reg_val = enable_all | enable_cfg;
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_PWM_EN, 0,
+               &reg_val, sizeof(reg_val));
        if (ret != SR_OK) {
-               sr_err("error setting new pwm%d config %d %d", which, cfg.period, cfg.duty);
+               sr_err("Cannot adjust PWM enabled state.");
                return ret;
        }
-       setting = &devc->pwm_setting[which - 1];
-       setting->freq = freq;
-       setting->duty = duty;
 
        return SR_OK;
 }
 
-static int set_defaults(const struct sr_dev_inst *sdi)
+static uint16_t get_channels_mask(const struct sr_dev_inst *sdi)
 {
-       struct dev_context *devc;
-       int ret;
-
-       devc = sdi->priv;
-
-       devc->capture_ratio = 5; /* percent */
-       devc->cur_channels = 0xffff;
-       devc->limit_samples = 5000000;
-       devc->cur_samplerate = 200000000;
-
-       ret = set_threshold_voltage(sdi, devc->threshold_voltage);
-       if (ret)
-               return ret;
-
-       ret = enable_pwm(sdi, 0, 0);
-       if (ret)
-               return ret;
-
-       ret = set_pwm(sdi, 1, 1e3, 50);
-       if (ret)
-               return ret;
-
-       ret = set_pwm(sdi, 2, 100e3, 50);
-       if (ret)
-               return ret;
-
-       ret = enable_pwm(sdi, 1, 1);
-       if (ret)
-               return ret;
+       uint16_t channels;
+       GSList *l;
+       struct sr_channel *ch;
+
+       channels = 0;
+       for (l = sdi->channels; l; l = l->next) {
+               ch = l->data;
+               if (ch->type != SR_CHANNEL_LOGIC)
+                       continue;
+               if (!ch->enabled)
+                       continue;
+               channels |= 1UL << ch->index;
+       }
 
-       return SR_OK;
+       return channels;
 }
 
 static int set_trigger_config(const struct sr_dev_inst *sdi)
 {
        struct dev_context *devc;
        struct sr_trigger *trigger;
-       trigger_cfg_t cfg;
+       struct trigger_cfg {
+               uint32_t channels;
+               uint32_t enabled;
+               uint32_t level;
+               uint32_t high_or_falling;
+       } cfg;
        GSList *stages;
        GSList *channel;
        struct sr_trigger_stage *stage1;
@@ -400,7 +538,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi)
 
        memset(&cfg, 0, sizeof(cfg));
 
-       cfg.channels = devc->cur_channels;
+       cfg.channels = get_channels_mask(sdi);
 
        if (trigger && trigger->stages) {
                stages = trigger->stages;
@@ -412,7 +550,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi)
                channel = stage1->matches;
                while (channel) {
                        match = channel->data;
-                       ch_mask = 1 << match->channel->index;
+                       ch_mask = 1UL << match->channel->index;
 
                        switch (match->match) {
                        case SR_TRIGGER_ZERO:
@@ -425,7 +563,7 @@ static int set_trigger_config(const struct sr_dev_inst *sdi)
                                break;
                        case SR_TRIGGER_RISING:
                                if ((cfg.enabled & ~cfg.level)) {
-                                       sr_err("Only one trigger signal with falling-/rising-edge allowed.");
+                                       sr_err("Device only supports one edge trigger.");
                                        return SR_ERR;
                                }
                                cfg.level &= ~ch_mask;
@@ -433,35 +571,41 @@ static int set_trigger_config(const struct sr_dev_inst *sdi)
                                break;
                        case SR_TRIGGER_FALLING:
                                if ((cfg.enabled & ~cfg.level)) {
-                                       sr_err("Only one trigger signal with falling-/rising-edge allowed.");
+                                       sr_err("Device only supports one edge trigger.");
                                        return SR_ERR;
                                }
                                cfg.level &= ~ch_mask;
                                cfg.high_or_falling |= ch_mask;
                                break;
                        default:
-                               sr_err("Unknown trigger value.");
+                               sr_err("Unknown trigger condition.");
                                return SR_ERR;
                        }
                        cfg.enabled |= ch_mask;
                        channel = channel->next;
                }
        }
-       sr_dbg("set trigger configuration channels: 0x%04x, "
-              "trigger-enabled 0x%04x, level-triggered 0x%04x, "
-              "high/falling 0x%04x", cfg.channels, cfg.enabled, cfg.level,
-              cfg.high_or_falling);
+       sr_dbg("Set trigger config: "
+               "channels 0x%04x, trigger-enabled 0x%04x, "
+               "level-triggered 0x%04x, high/falling 0x%04x.",
+               cfg.channels, cfg.enabled, cfg.level, cfg.high_or_falling);
 
-       devc->had_triggers_configured = cfg.enabled != 0;
+       devc->trigger_involved = cfg.enabled != 0;
 
        wrptr = buf;
        write_u32le_inc(&wrptr, cfg.channels);
        write_u32le_inc(&wrptr, cfg.enabled);
        write_u32le_inc(&wrptr, cfg.level);
        write_u32le_inc(&wrptr, cfg.high_or_falling);
+       /* TODO
+        * Comment on this literal 16. Origin, meaning? Cannot be the
+        * register offset, nor the transfer length. Is it a channels
+        * count that is relevant for 16 and 32 channel models? Is it
+        * an obsolete experiment?
+        */
        ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_TRIGGER, 16, buf, wrptr - buf);
        if (ret != SR_OK) {
-               sr_err("error setting trigger config!");
+               sr_err("Cannot setup trigger configuration.");
                return ret;
        }
 
@@ -471,82 +615,216 @@ static int set_trigger_config(const struct sr_dev_inst *sdi)
 static int set_sample_config(const struct sr_dev_inst *sdi)
 {
        struct dev_context *devc;
-       double clock_divisor;
-       uint64_t total;
-       int ret;
-       uint16_t divisor;
-       uint8_t buf[2 * sizeof(uint32_t) + 48 / 8 + sizeof(uint16_t)];
+       uint64_t min_samplerate, eff_samplerate;
+       uint16_t divider_u16;
+       uint64_t limit_samples;
+       uint64_t pre_trigger_samples;
+       uint64_t pre_trigger_memory;
+       uint8_t buf[REG_TRIGGER - REG_SAMPLING]; /* Width of REG_SAMPLING. */
        uint8_t *wrptr;
+       int ret;
 
        devc = sdi->priv;
-       total = 128 * 1024 * 1024;
 
-       if (devc->cur_samplerate > MAX_SAMPLE_RATE) {
-               sr_err("too high sample rate: %" PRIu64, devc->cur_samplerate);
-               return SR_ERR;
+       if (devc->cur_samplerate > devc->model->samplerate) {
+               sr_err("Too high a sample rate: %" PRIu64 ".",
+                       devc->cur_samplerate);
+               return SR_ERR_ARG;
        }
+       min_samplerate = devc->model->samplerate;
+       min_samplerate /= 65536;
+       if (devc->cur_samplerate < min_samplerate) {
+               sr_err("Too low a sample rate: %" PRIu64 ".",
+                       devc->cur_samplerate);
+               return SR_ERR_ARG;
+       }
+       divider_u16 = devc->model->samplerate / devc->cur_samplerate;
+       eff_samplerate = devc->model->samplerate / divider_u16;
 
-       clock_divisor = MAX_SAMPLE_RATE / (double)devc->cur_samplerate;
-       if (clock_divisor > 0xffff)
-               clock_divisor = 0xffff;
-       divisor = (uint16_t)(clock_divisor + 0.5);
-       devc->cur_samplerate = MAX_SAMPLE_RATE / divisor;
-
-       if (devc->limit_samples > MAX_SAMPLE_DEPTH) {
-               sr_err("too high sample depth: %" PRIu64, devc->limit_samples);
-               return SR_ERR;
+       ret = sr_sw_limits_get_remain(&devc->sw_limits,
+               &limit_samples, NULL, NULL, NULL);
+       if (ret != SR_OK) {
+               sr_err("Cannot get acquisition limits.");
+               return ret;
+       }
+       if (limit_samples > LA2016_NUM_SAMPLES_MAX) {
+               sr_warn("Too high a sample depth: %" PRIu64 ", capping.",
+                       limit_samples);
+               limit_samples = LA2016_NUM_SAMPLES_MAX;
+       }
+       if (limit_samples == 0) {
+               limit_samples = LA2016_NUM_SAMPLES_MAX;
+               sr_dbg("Passing %" PRIu64 " to HW for unlimited samples.",
+                       limit_samples);
        }
 
-       devc->pre_trigger_size = (devc->capture_ratio * devc->limit_samples) / 100;
+       /*
+        * The acquisition configuration communicates "pre-trigger"
+        * specs in several formats. sigrok users provide a percentage
+        * (0-100%), which translates to a pre-trigger samples count
+        * (assuming that a total samples count limit was specified).
+        * The device supports hardware compression, which depends on
+        * slowly changing input data to be effective. Fast changing
+        * input data may occupy more space in sample memory than its
+        * uncompressed form would. This is why a third parameter can
+        * limit the amount of sample memory to use for pre-trigger
+        * data. Only the upper 24 bits of that memory size spec get
+        * communicated to the device (written to its FPGA register).
+        *
+        * TODO Determine whether the pre-trigger memory size gets
+        * specified in samples or in bytes. A previous implementation
+        * suggests bytes but this is suspicious when every other spec
+        * is in terms of samples.
+        */
+       if (devc->trigger_involved) {
+               pre_trigger_samples = limit_samples;
+               pre_trigger_samples *= devc->capture_ratio;
+               pre_trigger_samples /= 100;
+               pre_trigger_memory = devc->model->memory_bits;
+               pre_trigger_memory *= UINT64_C(1024 * 1024 * 1024);
+               pre_trigger_memory /= 8; /* devc->model->channel_count ? */
+               pre_trigger_memory *= devc->capture_ratio;
+               pre_trigger_memory /= 100;
+       } else {
+               sr_dbg("No trigger setup, skipping pre-trigger config.");
+               pre_trigger_samples = 1;
+               pre_trigger_memory = 0;
+       }
+       /* Ensure non-zero value after LSB shift out in HW reg. */
+       if (pre_trigger_memory < 0x100) {
+               pre_trigger_memory = 0x100;
+       }
 
-       sr_dbg("set sampling configuration %.0fkHz, %d samples, trigger-pos %d%%",
-              devc->cur_samplerate / 1e3, (unsigned int)devc->limit_samples, (unsigned int)devc->capture_ratio);
+       sr_dbg("Set sample config: %" PRIu64 "kHz, %" PRIu64 " samples.",
+               eff_samplerate / SR_KHZ(1), limit_samples);
+       sr_dbg("Capture ratio %" PRIu64 "%%, count %" PRIu64 ", mem %" PRIu64 ".",
+               devc->capture_ratio, pre_trigger_samples, pre_trigger_memory);
 
+       /*
+        * The acquisition configuration occupies a total of 16 bytes:
+        * - A 34bit total samples count limit (up to 10 billions) that
+        *   is kept in a 40bit register.
+        * - A 34bit pre-trigger samples count limit (up to 10 billions)
+        *   in another 40bit register.
+        * - A 32bit pre-trigger memory space limit (in bytes) of which
+        *   the upper 24bits are kept in an FPGA register.
+        * - A 16bit clock divider which gets applied to the maximum
+        *   samplerate of the device.
+        * - An 8bit register of unknown meaning. Currently always 0.
+        */
        wrptr = buf;
-       write_u32le_inc(&wrptr, devc->limit_samples);
+       write_u40le_inc(&wrptr, limit_samples);
+       write_u40le_inc(&wrptr, pre_trigger_samples);
+       write_u24le_inc(&wrptr, pre_trigger_memory >> 8);
+       write_u16le_inc(&wrptr, divider_u16);
        write_u8_inc(&wrptr, 0);
-       write_u32le_inc(&wrptr, devc->pre_trigger_size);
-       write_u32le_inc(&wrptr, ((total * devc->capture_ratio) / 100) & 0xFFFFFF00 );
-       write_u16le_inc(&wrptr, divisor);
-       write_u8_inc(&wrptr, 0);
-
        ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, wrptr - buf);
        if (ret != SR_OK) {
-               sr_err("error setting sample config!");
+               sr_err("Cannot setup acquisition configuration.");
                return ret;
        }
 
        return SR_OK;
 }
 
-/**
- * lowest 2 bit are probably:
- * 2: recording
- * 1: finished
- * next 2 bit indicate whether we are still waiting for triggering
- * 0: waiting
- * 3: triggered
+/*
+ * FPGA register REG_RUN holds the run state (u16le format). Bit fields
+ * of interest:
+ *   bit 0: value 1 = idle
+ *   bit 1: value 1 = writing to SDRAM
+ *   bit 2: value 0 = waiting for trigger, 1 = trigger seen
+ *   bit 3: value 0 = pretrigger sampling, 1 = posttrigger sampling
+ * The meaning of other bit fields is unknown.
+ *
+ * Typical values in order of appearance during execution:
+ *   0x85e1: idle, no acquisition pending
+ *     IDLE set, TRGD don't care, POST don't care; DRAM don't care
+ *     "In idle state." Takes precedence over all others.
+ *   0x85e2: pre-sampling, samples before the trigger position,
+ *     when capture ratio > 0%
+ *     IDLE clear, TRGD clear, POST clear; DRAM don't care
+ *     "Not idle any more, no post yet, not triggered yet."
+ *   0x85ea: pre-sampling complete, now waiting for the trigger
+ *     (whilst sampling continuously)
+ *     IDLE clear, TRGD clear, POST set; DRAM don't care
+ *     "Post set thus after pre, not triggered yet"
+ *   0x85ee: trigger seen, capturing post-trigger samples, running
+ *     IDLE clear, TRGD set, POST set; DRAM don't care
+ *     "Triggered and in post, not idle yet."
+ *   0x85ed: idle
+ *     IDLE set, TRGD don't care, POST don't care; DRAM don't care
+ *     "In idle state." TRGD/POST don't care, same meaning as above.
  */
+static const uint16_t runstate_mask_idle = RUNSTATE_IDLE_BIT;
+static const uint16_t runstate_patt_idle = RUNSTATE_IDLE_BIT;
+static const uint16_t runstate_mask_step =
+       RUNSTATE_IDLE_BIT | RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
+static const uint16_t runstate_patt_pre_trig = 0;
+static const uint16_t runstate_patt_wait_trig = RUNSTATE_POST_BIT;
+static const uint16_t runstate_patt_post_trig =
+       RUNSTATE_TRGD_BIT | RUNSTATE_POST_BIT;
+
 static uint16_t run_state(const struct sr_dev_inst *sdi)
 {
-       uint16_t state;
+       static uint16_t previous_state;
+
        int ret;
+       uint16_t state;
+       uint8_t buff[sizeof(state)];
+       const uint8_t *rdptr;
+       const char *label;
 
-       if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, &state, sizeof(state))) != SR_OK) {
-               sr_err("failed to read run state!");
+       ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_RUN, 0, buff, sizeof(state));
+       if (ret != SR_OK) {
+               sr_err("Cannot read run state.");
                return ret;
        }
-       sr_dbg("run_state: 0x%04x", state);
+       rdptr = buff;
+       state = read_u16le_inc(&rdptr);
+
+       /*
+        * Avoid flooding the log, only dump values as they change.
+        * The routine is called about every 50ms.
+        */
+       if (state == previous_state)
+               return state;
+
+       previous_state = state;
+       label = NULL;
+       if ((state & runstate_mask_idle) == runstate_patt_idle)
+               label = "idle";
+       if ((state & runstate_mask_step) == runstate_patt_pre_trig)
+               label = "pre-trigger sampling";
+       if ((state & runstate_mask_step) == runstate_patt_wait_trig)
+               label = "sampling, waiting for trigger";
+       if ((state & runstate_mask_step) == runstate_patt_post_trig)
+               label = "post-trigger sampling";
+       if (label && *label)
+               sr_dbg("Run state: 0x%04x (%s).", state, label);
+       else
+               sr_dbg("Run state: 0x%04x.", state);
 
        return state;
 }
 
-static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t fast_blinking)
+static int la2016_is_idle(const struct sr_dev_inst *sdi)
+{
+       uint16_t state;
+
+       state = run_state(sdi);
+       if ((state & runstate_mask_idle) == runstate_patt_idle)
+               return 1;
+
+       return 0;
+}
+
+static int set_run_mode(const struct sr_dev_inst *sdi, uint8_t mode)
 {
        int ret;
 
-       if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &fast_blinking, sizeof(fast_blinking))) != SR_OK) {
-               sr_err("failed to send set-run-mode command %d", fast_blinking);
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_RUN, 0, &mode, sizeof(mode));
+       if (ret != SR_OK) {
+               sr_err("Cannot configure run mode %d.", mode);
                return ret;
        }
 
@@ -562,8 +840,9 @@ static int get_capture_info(const struct sr_dev_inst *sdi)
 
        devc = sdi->priv;
 
-       if ((ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf))) != SR_OK) {
-               sr_err("failed to read capture info!");
+       ret = ctrl_in(sdi, CMD_FPGA_SPI, REG_SAMPLING, 0, buf, sizeof(buf));
+       if (ret != SR_OK) {
+               sr_err("Cannot read capture info.");
                return ret;
        }
 
@@ -572,22 +851,46 @@ static int get_capture_info(const struct sr_dev_inst *sdi)
        devc->info.n_rep_packets_before_trigger = read_u32le_inc(&rdptr);
        devc->info.write_pos = read_u32le_inc(&rdptr);
 
-       sr_dbg("capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x%d",
-              devc->info.n_rep_packets, devc->info.n_rep_packets,
-              devc->info.n_rep_packets_before_trigger, devc->info.n_rep_packets_before_trigger,
-              devc->info.write_pos, devc->info.write_pos);
+       sr_dbg("Capture info: n_rep_packets: 0x%08x/%d, before_trigger: 0x%08x/%d, write_pos: 0x%08x/%d.",
+               devc->info.n_rep_packets, devc->info.n_rep_packets,
+               devc->info.n_rep_packets_before_trigger,
+               devc->info.n_rep_packets_before_trigger,
+               devc->info.write_pos, devc->info.write_pos);
 
-       if (devc->info.n_rep_packets % 5)
-               sr_warn("number of packets is not as expected multiples of 5: %d", devc->info.n_rep_packets);
+       if (devc->info.n_rep_packets % NUM_PACKETS_IN_CHUNK) {
+               sr_warn("Unexpected packets count %lu, not a multiple of %d.",
+                       (unsigned long)devc->info.n_rep_packets,
+                       NUM_PACKETS_IN_CHUNK);
+       }
 
        return SR_OK;
 }
 
-SR_PRIV int la2016_upload_firmware(struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
+SR_PRIV int la2016_upload_firmware(const struct sr_dev_inst *sdi,
+       struct sr_context *sr_ctx, libusb_device *dev, uint16_t product_id)
 {
-       char fw_file[1024];
-       snprintf(fw_file, sizeof(fw_file) - 1, UC_FIRMWARE, product_id);
-       return ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
+       struct dev_context *devc;
+       char *fw_file;
+       int ret;
+
+       devc = sdi ? sdi->priv : NULL;
+
+       fw_file = g_strdup_printf(MCU_FWFILE_FMT, product_id);
+       sr_info("USB PID %04hx, MCU firmware '%s'.", product_id, fw_file);
+
+       ret = ezusb_upload_firmware(sr_ctx, dev, USB_CONFIGURATION, fw_file);
+       if (ret != SR_OK) {
+               g_free(fw_file);
+               return ret;
+       }
+
+       if (devc) {
+               devc->mcu_firmware = fw_file;
+               fw_file = NULL;
+       }
+       g_free(fw_file);
+
+       return SR_OK;
 }
 
 SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
@@ -603,8 +906,9 @@ SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
                return ret;
 
        cmd = 0;
-       if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd))) != SR_OK) {
-               sr_err("failed to send stop sampling command");
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_CAPT_MODE, 0, &cmd, sizeof(cmd));
+       if (ret != SR_OK) {
+               sr_err("Cannot send command to stop sampling.");
                return ret;
        }
 
@@ -621,29 +925,44 @@ SR_PRIV int la2016_setup_acquisition(const struct sr_dev_inst *sdi)
 
 SR_PRIV int la2016_start_acquisition(const struct sr_dev_inst *sdi)
 {
-       return set_run_mode(sdi, 3);
+       int ret;
+
+       ret = set_run_mode(sdi, RUNMODE_RUN);
+       if (ret != SR_OK)
+               return ret;
+
+       return SR_OK;
 }
 
-SR_PRIV int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
+static int la2016_stop_acquisition(const struct sr_dev_inst *sdi)
 {
-       return set_run_mode(sdi, 0);
+       int ret;
+
+       ret = set_run_mode(sdi, RUNMODE_HALT);
+       if (ret != SR_OK)
+               return ret;
+
+       return SR_OK;
 }
 
 SR_PRIV int la2016_abort_acquisition(const struct sr_dev_inst *sdi)
 {
-       return la2016_stop_acquisition(sdi);
-}
+       int ret;
+       struct dev_context *devc;
 
-SR_PRIV int la2016_has_triggered(const struct sr_dev_inst *sdi)
-{
-       uint16_t state;
+       ret = la2016_stop_acquisition(sdi);
+       if (ret != SR_OK)
+               return ret;
 
-       state = run_state(sdi);
+       devc = sdi ? sdi->priv : NULL;
+       if (devc && devc->transfer)
+               libusb_cancel_transfer(devc->transfer);
 
-       return (state & 0x3) == 1;
+       return SR_OK;
 }
 
-SR_PRIV int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfer_cb_fn cb)
+static int la2016_start_download(const struct sr_dev_inst *sdi,
+       libusb_transfer_cb_fn cb)
 {
        struct dev_context *devc;
        struct sr_usb_dev_inst *usb;
@@ -656,7 +975,8 @@ SR_PRIV int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfe
        devc = sdi->priv;
        usb = sdi->conn;
 
-       if ((ret = get_capture_info(sdi)) != SR_OK)
+       ret = get_capture_info(sdi);
+       if (ret != SR_OK)
                return ret;
 
        devc->n_transfer_packets_to_read = devc->info.n_rep_packets / NUM_PACKETS_IN_CHUNK;
@@ -664,44 +984,55 @@ SR_PRIV int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfe
        devc->read_pos = devc->info.write_pos - devc->n_bytes_to_read;
        devc->n_reps_until_trigger = devc->info.n_rep_packets_before_trigger;
 
-       sr_dbg("want to read %d tfer-packets starting from pos %d",
-              devc->n_transfer_packets_to_read, devc->read_pos);
+       sr_dbg("Want to read %u xfer-packets starting from pos %" PRIu32 ".",
+               devc->n_transfer_packets_to_read, devc->read_pos);
 
-       if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
-               sr_err("failed to reset bulk state");
+       ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
+       if (ret != SR_OK) {
+               sr_err("Cannot reset USB bulk state.");
                return ret;
        }
-       sr_dbg("will read from 0x%08x, 0x%08x bytes", devc->read_pos, devc->n_bytes_to_read);
+       sr_dbg("Will read from 0x%08lx, 0x%08x bytes.",
+               (unsigned long)devc->read_pos, devc->n_bytes_to_read);
        wrptr = wrbuf;
        write_u32le_inc(&wrptr, devc->read_pos);
        write_u32le_inc(&wrptr, devc->n_bytes_to_read);
-       if ((ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf)) != SR_OK) {
-               sr_err("failed to send bulk config");
+       ret = ctrl_out(sdi, CMD_FPGA_SPI, REG_BULK, 0, wrbuf, wrptr - wrbuf);
+       if (ret != SR_OK) {
+               sr_err("Cannot send USB bulk config.");
                return ret;
        }
-       if ((ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0)) != SR_OK) {
-               sr_err("failed to unblock bulk transfers");
+       ret = ctrl_out(sdi, CMD_BULK_START, 0x00, 0, NULL, 0);
+       if (ret != SR_OK) {
+               sr_err("Cannot unblock USB bulk transfers.");
                return ret;
        }
 
+       /*
+        * Pick a buffer size for all USB transfers. The buffer size
+        * must be a multiple of the endpoint packet size. And cannot
+        * exceed a maximum value.
+        */
        to_read = devc->n_bytes_to_read;
-       if (to_read > LA2016_BULK_MAX)
-               to_read = LA2016_BULK_MAX;
-
+       if (to_read >= LA2016_USB_BUFSZ) /* Multiple transfers. */
+               to_read = LA2016_USB_BUFSZ;
+       else /* One transfer. */
+               to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
        buffer = g_try_malloc(to_read);
        if (!buffer) {
-               sr_err("Failed to allocate %d bytes for bulk transfer", to_read);
+               sr_dbg("USB bulk transfer size %d bytes.", (int)to_read);
+               sr_err("Cannot allocate buffer for USB bulk transfer.");
                return SR_ERR_MALLOC;
        }
 
        devc->transfer = libusb_alloc_transfer(0);
-       libusb_fill_bulk_transfer(
-               devc->transfer, usb->devhdl,
-               0x86, buffer, to_read,
-               cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
+       libusb_fill_bulk_transfer(devc->transfer,
+               usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
+               buffer, to_read, cb, (void *)sdi, DEFAULT_TIMEOUT_MS);
 
-       if ((ret = libusb_submit_transfer(devc->transfer)) != 0) {
-               sr_err("Failed to submit transfer: %s.", libusb_error_name(ret));
+       ret = libusb_submit_transfer(devc->transfer);
+       if (ret != 0) {
+               sr_err("Cannot submit USB transfer: %s.", libusb_error_name(ret));
                libusb_free_transfer(devc->transfer);
                devc->transfer = NULL;
                g_free(buffer);
@@ -711,107 +1042,389 @@ SR_PRIV int la2016_start_retrieval(const struct sr_dev_inst *sdi, libusb_transfe
        return SR_OK;
 }
 
-SR_PRIV int la2016_init_device(const struct sr_dev_inst *sdi)
+/*
+ * A chunk (received via USB) contains a number of transfers (USB length
+ * divided by 16) which contain a number of packets (5 per transfer) which
+ * contain a number of samples (8bit repeat count per 16bit sample data).
+ */
+static void send_chunk(struct sr_dev_inst *sdi,
+       const uint8_t *packets, size_t num_xfers)
 {
        struct dev_context *devc;
-       int ret;
-       uint32_t i1;
-       uint32_t i2[2];
-       uint16_t state;
+       size_t num_pkts;
+       const uint8_t *rp;
+       uint16_t sample_value;
+       size_t repetitions;
+       uint8_t sample_buff[sizeof(sample_value)];
 
-       /* this unknown_cmd1 seems to depend on the FPGA bitstream */
-       uint8_t unknown_cmd1_340[] = { 0xa3, 0x09, 0xc9, 0x8d, 0xe7, 0xad, 0x7a, 0x62, 0xb6, 0xd1, 0xbf };
-       uint8_t unknown_cmd1_342[] = { 0xa3, 0x09, 0xc9, 0xf4, 0x32, 0x4c, 0x4d, 0xee, 0xab, 0xa0, 0xdd };
-       uint8_t expected_unknown_resp1_340[] = { 0xa3, 0x10, 0xda, 0x66, 0x6b, 0x93, 0x5c, 0x55, 0x38, 0x50, 0x39, 0x51, 0x98, 0x86, 0x5d, 0x06, 0x7c, 0xea };
-       uint8_t expected_unknown_resp1_342[] = { 0xa3, 0x10, 0xb3, 0x92, 0x7b, 0xd8, 0x6b, 0xca, 0xa5, 0xab, 0x42, 0x6e, 0xda, 0xcd, 0x9d, 0xf1, 0x31, 0x2f };
-       uint8_t unknown_resp1[sizeof(expected_unknown_resp1_340)];
-       uint8_t *expected_unknown_resp1;
-       uint8_t *unknown_cmd1;
+       devc = sdi->priv;
 
-       uint8_t unknown_cmd2[] = { 0xa3, 0x01, 0xca };
-       uint8_t expected_unknown_resp2[] = { 0xa3, 0x08, 0x06, 0x83, 0x96, 0x29, 0x15, 0xe1, 0x92, 0x74, 0x00, 0x00 };
-       uint8_t unknown_resp2[sizeof(expected_unknown_resp2)];
+       /* Ignore incoming USB data after complete sample data download. */
+       if (devc->download_finished)
+               return;
 
-       devc = sdi->priv;
+       if (devc->trigger_involved && !devc->trigger_marked && devc->info.n_rep_packets_before_trigger == 0) {
+               feed_queue_logic_send_trigger(devc->feed_queue);
+               devc->trigger_marked = TRUE;
+       }
 
-       if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x20, 0, &i1, sizeof(i1))) != SR_OK) {
-               sr_err("failed to read i1");
-               return ret;
+       rp = packets;
+       while (num_xfers--) {
+               num_pkts = NUM_PACKETS_IN_CHUNK;
+               while (num_pkts--) {
+
+                       sample_value = read_u16le_inc(&rp);
+                       repetitions = read_u8_inc(&rp);
+
+                       devc->total_samples += repetitions;
+
+                       write_u16le(sample_buff, sample_value);
+                       feed_queue_logic_submit(devc->feed_queue,
+                               sample_buff, repetitions);
+                       sr_sw_limits_update_samples_read(&devc->sw_limits,
+                               repetitions);
+
+                       if (devc->trigger_involved && !devc->trigger_marked) {
+                               if (!--devc->n_reps_until_trigger) {
+                                       feed_queue_logic_send_trigger(devc->feed_queue);
+                                       devc->trigger_marked = TRUE;
+                                       sr_dbg("Trigger position after %" PRIu64 " samples, %.6fms.",
+                                               devc->total_samples,
+                                               (double)devc->total_samples / devc->cur_samplerate * 1e3);
+                               }
+                       }
+               }
+               (void)read_u8_inc(&rp); /* Skip sequence number. */
        }
-       sr_dbg("i1: 0x%08x", i1);
 
-       if ((ret = ctrl_in(sdi, CMD_EEPROM, 0x08, 0, &i2, sizeof(i2))) != SR_OK) {
-               sr_err("failed to read i2");
-               return ret;
+       if (!devc->download_finished && sr_sw_limits_check(&devc->sw_limits)) {
+               sr_dbg("Acquisition limit reached.");
+               devc->download_finished = TRUE;
        }
-       sr_dbg("i2: 0x%08x, 0x%08x", i2[0], i2[1]);
+       if (devc->download_finished) {
+               sr_dbg("Download finished, flushing session feed queue.");
+               feed_queue_logic_flush(devc->feed_queue);
+       }
+       sr_dbg("Total samples after chunk: %" PRIu64 ".", devc->total_samples);
+}
 
-       if ((ret = upload_fpga_bitstream(sdi)) != SR_OK) {
-               sr_err("failed to upload fpga bitstream");
-               return ret;
+static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
+{
+       struct sr_dev_inst *sdi;
+       struct dev_context *devc;
+       struct sr_usb_dev_inst *usb;
+       size_t num_xfers;
+       int ret;
+
+       sdi = transfer->user_data;
+       devc = sdi->priv;
+       usb = sdi->conn;
+
+       sr_dbg("receive_transfer(): status %s received %d bytes.",
+               libusb_error_name(transfer->status), transfer->actual_length);
+       /*
+        * Implementation detail: A USB transfer timeout is not fatal
+        * here. We just process whatever was received, empty input is
+        * perfectly acceptable. Reaching (or exceeding) the sw limits
+        * or exhausting the device's captured data will complete the
+        * sample data download.
+        */
+       num_xfers = transfer->actual_length / TRANSFER_PACKET_LENGTH;
+       send_chunk(sdi, transfer->buffer, num_xfers);
+
+       devc->n_bytes_to_read -= transfer->actual_length;
+       if (devc->n_bytes_to_read) {
+               uint32_t to_read = devc->n_bytes_to_read;
+               /*
+                * Determine read size for the next USB transfer. Make
+                * the buffer size a multiple of the endpoint packet
+                * size. Don't exceed a maximum value.
+                */
+               if (to_read >= LA2016_USB_BUFSZ)
+                       to_read = LA2016_USB_BUFSZ;
+               else
+                       to_read = (to_read + (LA2016_EP6_PKTSZ-1)) & ~(LA2016_EP6_PKTSZ-1);
+               libusb_fill_bulk_transfer(transfer,
+                       usb->devhdl, USB_EP_CAPTURE_DATA | LIBUSB_ENDPOINT_IN,
+                       transfer->buffer, to_read,
+                       receive_transfer, (void *)sdi, DEFAULT_TIMEOUT_MS);
+
+               ret = libusb_submit_transfer(transfer);
+               if (ret == 0)
+                       return;
+               sr_err("Cannot submit another USB transfer: %s.",
+                       libusb_error_name(ret));
        }
 
-       if (run_state(sdi) == 0xffff) {
-               sr_err("run_state after fpga bitstream upload is 0xffff!");
-               return SR_ERR;
+       g_free(transfer->buffer);
+       libusb_free_transfer(transfer);
+       devc->download_finished = TRUE;
+}
+
+SR_PRIV int la2016_receive_data(int fd, int revents, void *cb_data)
+{
+       const struct sr_dev_inst *sdi;
+       struct dev_context *devc;
+       struct drv_context *drvc;
+       struct timeval tv;
+       int ret;
+
+       (void)fd;
+       (void)revents;
+
+       sdi = cb_data;
+       devc = sdi->priv;
+       drvc = sdi->driver->context;
+
+       /*
+        * Wait for the acquisition to complete in hardware.
+        * Periodically check a potentially configured msecs timeout.
+        */
+       if (!devc->completion_seen) {
+               if (!la2016_is_idle(sdi)) {
+                       if (sr_sw_limits_check(&devc->sw_limits)) {
+                               devc->sw_limits.limit_msec = 0;
+                               sr_dbg("Limit reached. Stopping acquisition.");
+                               la2016_stop_acquisition(sdi);
+                       }
+                       /* Not yet ready for sample data download. */
+                       return TRUE;
+               }
+               sr_dbg("Acquisition completion seen (hardware).");
+               devc->sw_limits.limit_msec = 0;
+               devc->completion_seen = TRUE;
+               devc->download_finished = FALSE;
+               devc->trigger_marked = FALSE;
+               devc->total_samples = 0;
+
+               /* Initiate the download of acquired sample data. */
+               std_session_send_df_frame_begin(sdi);
+               ret = la2016_start_download(sdi, receive_transfer);
+               if (ret != SR_OK) {
+                       sr_err("Cannot start acquisition data download.");
+                       return FALSE;
+               }
+               sr_dbg("Acquisition data download started.");
+
+               return TRUE;
+       }
+
+       /* Handle USB reception. Drives sample data download. */
+       tv.tv_sec = tv.tv_usec = 0;
+       libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
+
+       /* Postprocess completion of sample data download. */
+       if (devc->download_finished) {
+               sr_dbg("Download finished, post processing.");
+
+               la2016_stop_acquisition(sdi);
+               usb_source_remove(sdi->session, drvc->sr_ctx);
+               devc->transfer = NULL;
+
+               feed_queue_logic_flush(devc->feed_queue);
+               feed_queue_logic_free(devc->feed_queue);
+               devc->feed_queue = NULL;
+               std_session_send_df_frame_end(sdi);
+               std_session_send_df_end(sdi);
+
+               sr_dbg("Download finished, done post processing.");
        }
 
-       if (devc->bitstream_size == 0x2b602) {
-               // v3.4.0
-               unknown_cmd1 = unknown_cmd1_340;
-               expected_unknown_resp1 = expected_unknown_resp1_340;
+       return TRUE;
+}
+
+SR_PRIV int la2016_identify_device(const struct sr_dev_inst *sdi,
+       gboolean show_message)
+{
+       struct dev_context *devc;
+       uint8_t buf[8];
+       size_t rdoff, rdlen;
+       const uint8_t *rdptr;
+       uint8_t date_yy, date_mm;
+       uint8_t dinv_yy, dinv_mm;
+       uint8_t magic;
+       size_t model_idx;
+       const struct kingst_model *model;
+       int ret;
+
+       devc = sdi->priv;
+
+       /*
+        * Four EEPROM bytes at offset 0x20 are the manufacturing date,
+        * year and month in BCD format, followed by inverted values for
+        * consistency checks. For example bytes 20 04 df fb translate
+        * to 2020-04. This information can help identify the vintage of
+        * devices when unknown magic numbers are seen.
+        */
+       rdoff = 0x20;
+       rdlen = 4 * sizeof(uint8_t);
+       ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, buf, rdlen);
+       if (ret != SR_OK && !show_message) {
+               /* Non-fatal weak attempt during probe. Not worth logging. */
+               sr_dbg("Cannot access EEPROM.");
+               return SR_ERR_IO;
+       } else if (ret != SR_OK) {
+               /* Failed attempt in regular use. Non-fatal. Worth logging. */
+               sr_err("Cannot read manufacture date in EEPROM.");
        } else {
-               // v3.4.2
-               if (devc->bitstream_size != 0x2b839)
-                       sr_warn("the FPGA bitstream size %d is unknown. tested bistreams from vendor's version 3.4.0 and 3.4.2\n", devc->bitstream_size);
-               unknown_cmd1 = unknown_cmd1_342;
-               expected_unknown_resp1 = expected_unknown_resp1_342;
-       }
-       if ((ret = ctrl_out(sdi, CMD_KAUTH, 0x00, 0, unknown_cmd1, sizeof(unknown_cmd1_340))) != SR_OK) {
-               sr_err("failed to send unknown_cmd1");
-               return ret;
+               if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
+                       GString *txt;
+                       txt = sr_hexdump_new(buf, rdlen);
+                       sr_spew("Manufacture date bytes %s.", txt->str);
+                       sr_hexdump_free(txt);
+               }
+               rdptr = &buf[0];
+               date_yy = read_u8_inc(&rdptr);
+               date_mm = read_u8_inc(&rdptr);
+               dinv_yy = read_u8_inc(&rdptr);
+               dinv_mm = read_u8_inc(&rdptr);
+               sr_info("Manufacture date: 20%02hx-%02hx.", date_yy, date_mm);
+               if ((date_mm ^ dinv_mm) != 0xff || (date_yy ^ dinv_yy) != 0xff)
+                       sr_warn("Manufacture date fails checksum test.");
        }
-       g_usleep(80 * 1000);
-       if ((ret = ctrl_in(sdi, CMD_KAUTH, 0x00, 0, unknown_resp1, sizeof(unknown_resp1))) != SR_OK) {
-               sr_err("failed to read unknown_resp1");
+
+       /*
+        * Several Kingst logic analyzer devices share the same USB VID
+        * and PID. The product ID determines which MCU firmware to load.
+        * The MCU firmware provides access to EEPROM content which then
+        * allows to identify the device model. Which in turn determines
+        * which FPGA bitstream to load. Eight bytes at offset 0x08 are
+        * to get inspected.
+        *
+        * EEPROM content for model identification is kept redundantly
+        * in memory. The values are stored in verbatim and in inverted
+        * form, multiple copies are kept at different offsets. Example
+        * data:
+        *
+        *   magic 0x08
+        *    | ~magic 0xf7
+        *    | |
+        *   08f7000008f710ef
+        *            | |
+        *            | ~magic backup
+        *            magic backup
+        *
+        * Exclusively inspecting the magic byte appears to be sufficient,
+        * other fields seem to be 'don't care'.
+        *
+        *   magic 2 == LA2016 using "kingst-la2016-fpga.bitstream"
+        *   magic 3 == LA1016 using "kingst-la1016-fpga.bitstream"
+        *   magic 8 == LA2016a using "kingst-la2016a1-fpga.bitstream"
+        *              (latest v1.3.0 PCB, perhaps others)
+        *   magic 9 == LA1016a using "kingst-la1016a1-fpga.bitstream"
+        *              (latest v1.3.0 PCB, perhaps others)
+        *
+        * When EEPROM content does not match the hardware configuration
+        * (the board layout), the software may load but yield incorrect
+        * results (like swapped channels). The FPGA bitstream itself
+        * will authenticate with IC U10 and fail when its capabilities
+        * do not match the hardware model. An LA1016 won't become a
+        * LA2016 by faking its EEPROM content.
+        */
+       devc->identify_magic = 0;
+       rdoff = 0x08;
+       rdlen = 8 * sizeof(uint8_t);
+       ret = ctrl_in(sdi, CMD_EEPROM, rdoff, 0, &buf, rdlen);
+       if (ret != SR_OK) {
+               sr_err("Cannot read EEPROM device identifier bytes.");
                return ret;
        }
-       if (memcmp(unknown_resp1, expected_unknown_resp1, sizeof(unknown_resp1)))
-               sr_dbg("unknown_cmd1 response is not as expected, this is to be expected...");
+       if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
+               GString *txt;
+               txt = sr_hexdump_new(buf, rdlen);
+               sr_spew("EEPROM magic bytes %s.", txt->str);
+               sr_hexdump_free(txt);
+       }
+       if ((buf[0] ^ buf[1]) == 0xff) {
+               /* Primary copy of magic passes complement check. */
+               magic = buf[0];
+               sr_dbg("Using primary magic, value %d.", (int)magic);
+       } else if ((buf[4] ^ buf[5]) == 0xff) {
+               /* Backup copy of magic passes complement check. */
+               magic = buf[4];
+               sr_dbg("Using backup magic, value %d.", (int)magic);
+       } else {
+               sr_err("Cannot find consistent device type identification.");
+               magic = 0;
+       }
+       devc->identify_magic = magic;
+
+       devc->model = NULL;
+       for (model_idx = 0; model_idx < ARRAY_SIZE(models); model_idx++) {
+               model = &models[model_idx];
+               if (model->magic != magic)
+                       continue;
+               devc->model = model;
+               sr_info("Model '%s', %zu channels, max %" PRIu64 "MHz.",
+                       model->name, model->channel_count,
+                       model->samplerate / SR_MHZ(1));
+               devc->fpga_bitstream = g_strdup_printf(FPGA_FWFILE_FMT,
+                       model->fpga_stem);
+               sr_info("FPGA bitstream file '%s'.", devc->fpga_bitstream);
+               break;
+       }
+       if (!devc->model) {
+               sr_err("Cannot identify as one of the supported models.");
+               return SR_ERR;
+       }
 
-       state = run_state(sdi);
-       if (state != 0x85e9)
-               sr_warn("expect run state to be 0x85e9, but it reads 0x%04x", state);
+       return SR_OK;
+}
 
-       if ((ret = ctrl_out(sdi, CMD_KAUTH, 0x00, 0, unknown_cmd2, sizeof(unknown_cmd2))) != SR_OK) {
-               sr_err("failed to send unknown_cmd2");
-               return ret;
+SR_PRIV int la2016_init_hardware(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       const char *bitstream_fn;
+       int ret;
+       uint16_t state;
+
+       devc = sdi->priv;
+       bitstream_fn = devc ? devc->fpga_bitstream : "";
+
+       ret = check_fpga_bitstream(sdi);
+       if (ret != SR_OK) {
+               ret = upload_fpga_bitstream(sdi, bitstream_fn);
+               if (ret != SR_OK) {
+                       sr_err("Cannot upload FPGA bitstream.");
+                       return ret;
+               }
        }
-       g_usleep(80 * 1000);
-       if ((ret = ctrl_in(sdi, CMD_KAUTH, 0x00, 0, unknown_resp2, sizeof(unknown_resp2))) != SR_OK) {
-               sr_err("failed to read unknown_resp2");
+       ret = enable_fpga_bitstream(sdi);
+       if (ret != SR_OK) {
+               sr_err("Cannot enable FPGA bitstream after upload.");
                return ret;
        }
-       if (memcmp(unknown_resp2, expected_unknown_resp2, sizeof(unknown_resp2)))
-               sr_dbg("unknown_cmd2 response is not as expected!");
 
-       if ((ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0)) != SR_OK) {
-               sr_err("failed to send unknown_cmd3");
+       state = run_state(sdi);
+       if (state != 0x85e9) {
+               sr_warn("Unexpected run state, want 0x85e9, got 0x%04x.", state);
+       }
+
+       ret = ctrl_out(sdi, CMD_BULK_RESET, 0x00, 0, NULL, 0);
+       if (ret != SR_OK) {
+               sr_err("Cannot reset USB bulk transfer.");
                return ret;
        }
-       sr_dbg("device should be initialized");
 
-       return set_defaults(sdi);
+       sr_dbg("Device should be initialized.");
+
+       return SR_OK;
 }
 
-SR_PRIV int la2016_deinit_device(const struct sr_dev_inst *sdi)
+SR_PRIV int la2016_deinit_hardware(const struct sr_dev_inst *sdi)
 {
        int ret;
 
-       if ((ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0)) != SR_OK) {
-               sr_err("failed to send deinit command");
+       ret = ctrl_out(sdi, CMD_FPGA_ENABLE, 0x00, 0, NULL, 0);
+       if (ret != SR_OK) {
+               sr_err("Cannot deinitialize device's FPGA.");
                return ret;
        }
 
        return SR_OK;
 }
+
+SR_PRIV int la2016_write_pwm_config(const struct sr_dev_inst *sdi, size_t idx)
+{
+       return set_pwm_config(sdi, idx);
+}