]> sigrok.org Git - libsigrok.git/blobdiff - src/hardware/asix-sigma/protocol.c
asix-sigma: force strict boolen arith in LUT item manipulation
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
index f052c51cc6091ece3ff8dc0160d771a1df6ca57a..e87795e8e6e82ee6067797bd6738b485953c9935 100644 (file)
@@ -4,6 +4,7 @@
  * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
  * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
  * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
+ * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
  *
  * This program is free software: you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
@@ -36,7 +37,7 @@
  * few discrete values, while setter routines accept any user specified
  * rate that is supported by the hardware.
  */
-SR_PRIV const uint64_t samplerates[] = {
+static const uint64_t samplerates[] = {
        /* 50MHz and integer divider. 1/2/5 steps (where possible). */
        SR_KHZ(200), SR_KHZ(500),
        SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
@@ -45,7 +46,10 @@ SR_PRIV const uint64_t samplerates[] = {
        SR_MHZ(100), SR_MHZ(200),
 };
 
-SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
+SR_PRIV GVariant *sigma_get_samplerates_list(void)
+{
+       return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
+}
 
 static const char *firmware_files[] = {
        [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
@@ -57,62 +61,223 @@ static const char *firmware_files[] = {
 
 #define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
 
-static int sigma_read(struct dev_context *devc, void *buf, size_t size)
+static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
 {
+       struct dev_context *devc;
+       int vid, pid;
+       const char *serno;
        int ret;
 
-       ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.is_open)
+               return SR_OK;
+
+       vid = devc->id.vid;
+       pid = devc->id.pid;
+       serno = sdi->serial_num;
+       if (!vid || !pid || !serno || !*serno)
+               return SR_ERR_ARG;
+
+       ret = ftdi_init(&devc->ftdi.ctx);
+       if (ret < 0) {
+               sr_err("Cannot initialize FTDI context (%d): %s.",
+                       ret, ftdi_get_error_string(&devc->ftdi.ctx));
+               return SR_ERR_IO;
+       }
+       ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
+               vid, pid, NULL, serno, 0);
        if (ret < 0) {
-               sr_err("ftdi_read_data failed: %s",
-                       ftdi_get_error_string(&devc->ftdic));
+               sr_err("Cannot open device (%d): %s.",
+                       ret, ftdi_get_error_string(&devc->ftdi.ctx));
+               return SR_ERR_IO;
        }
+       devc->ftdi.is_open = TRUE;
+
+       return SR_OK;
+}
+
+static int sigma_ftdi_close(struct dev_context *devc)
+{
+       int ret;
+
+       ret = ftdi_usb_close(&devc->ftdi.ctx);
+       devc->ftdi.is_open = FALSE;
+       devc->ftdi.must_close = FALSE;
+       ftdi_deinit(&devc->ftdi.ctx);
+
+       return ret == 0 ? SR_OK : SR_ERR_IO;
+}
+
+SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+
+       if (!sdi)
+               return SR_ERR_ARG;
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.is_open)
+               return SR_OK;
+
+       ret = sigma_ftdi_open(sdi);
+       if (ret != SR_OK)
+               return ret;
+       devc->ftdi.must_close = TRUE;
 
        return ret;
 }
 
-static int sigma_write(struct dev_context *devc, const void *buf, size_t size)
+SR_PRIV int sigma_check_close(struct dev_context *devc)
 {
        int ret;
 
-       ret = ftdi_write_data(&devc->ftdic, buf, size);
-       if (ret < 0)
-               sr_err("ftdi_write_data failed: %s",
-                       ftdi_get_error_string(&devc->ftdic));
-       else if ((size_t) ret != size)
-               sr_err("ftdi_write_data did not complete write.");
+       if (!devc)
+               return SR_ERR_ARG;
+
+       if (devc->ftdi.must_close) {
+               ret = sigma_ftdi_close(devc);
+               if (ret != SR_OK)
+                       return ret;
+               devc->ftdi.must_close = FALSE;
+       }
+
+       return SR_OK;
+}
+
+SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+
+       if (!sdi)
+               return SR_ERR_ARG;
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       ret = sigma_ftdi_open(sdi);
+       if (ret != SR_OK)
+               return ret;
+       devc->ftdi.must_close = FALSE;
+
+       return SR_OK;
+}
+
+SR_PRIV int sigma_force_close(struct dev_context *devc)
+{
+       return sigma_ftdi_close(devc);
+}
+
+/*
+ * BEWARE! Error propagation is important, as are kinds of return values.
+ *
+ * - Raw USB tranport communicates the number of sent or received bytes,
+ *   or negative error codes in the external library's(!) range of codes.
+ * - Internal routines at the "sigrok driver level" communicate success
+ *   or failure in terms of SR_OK et al error codes.
+ * - Main loop style receive callbacks communicate booleans which arrange
+ *   for repeated calls to drive progress during acquisition.
+ *
+ * Careful consideration by maintainers is essential, because all of the
+ * above kinds of values are assignment compatbile from the compiler's
+ * point of view. Implementation errors will go unnoticed at build time.
+ */
+
+static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
+{
+       int ret;
+
+       ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
+       if (ret < 0) {
+               sr_err("USB data read failed: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
+       }
 
        return ret;
 }
 
+static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
+{
+       int ret;
+
+       ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
+       if (ret < 0) {
+               sr_err("USB data write failed: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
+       } else if ((size_t)ret != size) {
+               sr_err("USB data write length mismatch.");
+       }
+
+       return ret;
+}
+
+static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
+{
+       int ret;
+
+       ret = sigma_read_raw(devc, buf, size);
+       if (ret < 0 || (size_t)ret != size)
+               return SR_ERR_IO;
+
+       return SR_OK;
+}
+
+static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
+{
+       int ret;
+
+       ret = sigma_write_raw(devc, buf, size);
+       if (ret < 0 || (size_t)ret != size)
+               return SR_ERR_IO;
+
+       return SR_OK;
+}
+
+/*
+ * Implementor's note: The local write buffer's size shall suffice for
+ * any know FPGA register transaction that is involved in the supported
+ * feature set of this sigrok device driver. If the length check trips,
+ * that's a programmer's error and needs adjustment in the complete call
+ * stack of the respective code path.
+ */
+#define SIGMA_MAX_REG_DEPTH    32
+
 /*
- * NOTE: We chose the buffer size to be large enough to hold any write to the
- * device. We still print a message just in case.
+ * Implementor's note: The FPGA command set supports register access
+ * with automatic address adjustment. This operation is documented to
+ * wrap within a 16-address range, it cannot cross boundaries where the
+ * register address' nibble overflows. An internal helper assumes that
+ * callers remain within this auto-adjustment range, and thus multi
+ * register access requests can never exceed that count.
  */
+#define SIGMA_MAX_REG_COUNT    16
+
 SR_PRIV int sigma_write_register(struct dev_context *devc,
        uint8_t reg, uint8_t *data, size_t len)
 {
-       uint8_t buf[80], *wrptr;
-       size_t idx, count;
-       int ret;
+       uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
+       size_t idx;
 
-       if (2 + 2 * len > sizeof(buf)) {
-               sr_err("Write buffer too small to write %zu bytes.", len);
+       if (len > SIGMA_MAX_REG_DEPTH) {
+               sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
                return SR_ERR_BUG;
        }
 
        wrptr = buf;
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
-       write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
        for (idx = 0; idx < len; idx++) {
-               write_u8_inc(&wrptr, REG_DATA_LOW | (data[idx] & 0xf));
-               write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data[idx] >> 4));
+               write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
+               write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
        }
-       count = wrptr - buf;
-       ret = sigma_write(devc, buf, count);
-       if (ret != SR_OK)
-               return ret;
 
-       return SR_OK;
+       return sigma_write_sr(devc, buf, wrptr - buf);
 }
 
 SR_PRIV int sigma_set_register(struct dev_context *devc,
@@ -125,41 +290,77 @@ static int sigma_read_register(struct dev_context *devc,
        uint8_t reg, uint8_t *data, size_t len)
 {
        uint8_t buf[3], *wrptr;
+       int ret;
 
        wrptr = buf;
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (reg & 0xf));
-       write_u8_inc(&wrptr, REG_ADDR_HIGH | (reg >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
        write_u8_inc(&wrptr, REG_READ_ADDR);
-       sigma_write(devc, buf, wrptr - buf);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
+
+       return sigma_read_sr(devc, data, len);
+}
 
-       return sigma_read(devc, data, len);
+static int sigma_get_register(struct dev_context *devc,
+       uint8_t reg, uint8_t *data)
+{
+       return sigma_read_register(devc, reg, data, sizeof(*data));
+}
+
+static int sigma_get_registers(struct dev_context *devc,
+       uint8_t reg, uint8_t *data, size_t count)
+{
+       uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
+       size_t idx;
+       int ret;
+
+       if (count > SIGMA_MAX_REG_COUNT) {
+               sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
+               return SR_ERR_BUG;
+       }
+
+       wrptr = buf;
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
+       for (idx = 0; idx < count; idx++)
+               write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
+
+       return sigma_read_sr(devc, data, count);
 }
 
 static int sigma_read_pos(struct dev_context *devc,
-       uint32_t *stoppos, uint32_t *triggerpos)
+       uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
 {
+       uint8_t result[7];
+       const uint8_t *rdptr;
+       uint32_t v32;
+       uint8_t v8;
+       int ret;
+
        /*
-        * Read 6 registers starting at trigger position LSB.
-        * Which yields two 24bit counter values.
+        * Read 7 registers starting at trigger position LSB.
+        * Which yields two 24bit counter values, and mode flags.
         */
-       const uint8_t buf[] = {
-               REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-               REG_READ_ADDR | REG_ADDR_INC,
-       }, *rdptr;
-       uint8_t result[6];
-
-       sigma_write(devc, buf, sizeof(buf));
-
-       sigma_read(devc, result, sizeof(result));
+       ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
+               result, sizeof(result));
+       if (ret != SR_OK)
+               return ret;
 
        rdptr = &result[0];
-       *triggerpos = read_u24le_inc(&rdptr);
-       *stoppos = read_u24le_inc(&rdptr);
+       v32 = read_u24le_inc(&rdptr);
+       if (triggerpos)
+               *triggerpos = v32;
+       v32 = read_u24le_inc(&rdptr);
+       if (stoppos)
+               *stoppos = v32;
+       v8 = read_u8_inc(&rdptr);
+       if (mode)
+               *mode = v8;
 
        /*
         * These positions consist of "the memory row" in the MSB fields,
@@ -172,32 +373,33 @@ static int sigma_read_pos(struct dev_context *devc,
         * cater for the timestamps when the decrement carries over to
         * a different memory row.
         */
-       if ((--*stoppos & ROW_MASK) == ROW_MASK)
+       if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
                *stoppos -= CLUSTERS_PER_ROW;
-       if ((--*triggerpos & ROW_MASK) == ROW_MASK)
+       if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
                *triggerpos -= CLUSTERS_PER_ROW;
 
        return SR_OK;
 }
 
 static int sigma_read_dram(struct dev_context *devc,
-       uint16_t startchunk, size_t numchunks, uint8_t *data)
+       size_t startchunk, size_t numchunks, uint8_t *data)
 {
-       uint8_t buf[128], *wrptr;
+       uint8_t buf[128], *wrptr, regval;
        size_t chunk;
-       int sel;
+       int sel, ret;
        gboolean is_last;
 
        if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
-               sr_err("Read buffer too small to read %zu DRAM rows", numchunks);
+               sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
                return SR_ERR_BUG;
        }
 
        /* Communicate DRAM start address (memory row, aka samples line). */
        wrptr = buf;
-       write_u8_inc(&wrptr, startchunk >> 8);
-       write_u8_inc(&wrptr, startchunk & 0xff);
-       sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
+       write_u16be_inc(&wrptr, startchunk);
+       ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
        /*
         * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
@@ -210,93 +412,121 @@ static int sigma_read_dram(struct dev_context *devc,
        for (chunk = 0; chunk < numchunks; chunk++) {
                sel = chunk % 2;
                is_last = chunk == numchunks - 1;
-               if (!is_last)
-                       write_u8_inc(&wrptr, REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel));
-               write_u8_inc(&wrptr, REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel));
+               if (!is_last) {
+                       regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
+                       write_u8_inc(&wrptr, regval);
+               }
+               regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
+               write_u8_inc(&wrptr, regval);
                if (!is_last)
                        write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
        }
-       sigma_write(devc, buf, wrptr - buf);
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
-       return sigma_read(devc, data, numchunks * ROW_LENGTH_BYTES);
+       return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
 }
 
 /* Upload trigger look-up tables to Sigma. */
 SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
        struct triggerlut *lut)
 {
-       int i;
-       uint8_t tmp[2];
+       size_t lut_addr;
        uint16_t bit;
-       uint8_t buf[6], *wrptr, regval;
+       uint8_t m3d, m2d, m1d, m0d;
+       uint8_t buf[6], *wrptr, v8;
+       uint16_t selreg;
+       int ret;
 
-       /* Transpose the table and send to Sigma. */
-       for (i = 0; i < 16; i++) {
-               bit = 1 << i;
+       /*
+        * Translate the LUT part of the trigger configuration from the
+        * application's perspective to the hardware register's bitfield
+        * layout. Send the LUT to the device. This configures the logic
+        * which combines pin levels or edges.
+        */
+       for (lut_addr = 0; lut_addr < 16; lut_addr++) {
+               bit = BIT(lut_addr);
 
-               tmp[0] = tmp[1] = 0;
+               /* - M4 M3S M3Q */
+               m3d = 0;
+               if (lut->m4 & bit)
+                       m3d |= BIT(2);
+               if (lut->m3s & bit)
+                       m3d |= BIT(1);
+               if (lut->m3q & bit)
+                       m3d |= BIT(0);
 
-               if (lut->m2d[0] & bit)
-                       tmp[0] |= 0x01;
-               if (lut->m2d[1] & bit)
-                       tmp[0] |= 0x02;
-               if (lut->m2d[2] & bit)
-                       tmp[0] |= 0x04;
+               /* M2D3 M2D2 M2D1 M2D0 */
+               m2d = 0;
                if (lut->m2d[3] & bit)
-                       tmp[0] |= 0x08;
+                       m2d |= BIT(3);
+               if (lut->m2d[2] & bit)
+                       m2d |= BIT(2);
+               if (lut->m2d[1] & bit)
+                       m2d |= BIT(1);
+               if (lut->m2d[0] & bit)
+                       m2d |= BIT(0);
 
-               if (lut->m3 & bit)
-                       tmp[0] |= 0x10;
-               if (lut->m3s & bit)
-                       tmp[0] |= 0x20;
-               if (lut->m4 & bit)
-                       tmp[0] |= 0x40;
+               /* M1D3 M1D2 M1D1 M1D0 */
+               m1d = 0;
+               if (lut->m1d[3] & bit)
+                       m1d |= BIT(3);
+               if (lut->m1d[2] & bit)
+                       m1d |= BIT(2);
+               if (lut->m1d[1] & bit)
+                       m1d |= BIT(1);
+               if (lut->m1d[0] & bit)
+                       m1d |= BIT(0);
 
-               if (lut->m0d[0] & bit)
-                       tmp[1] |= 0x01;
-               if (lut->m0d[1] & bit)
-                       tmp[1] |= 0x02;
-               if (lut->m0d[2] & bit)
-                       tmp[1] |= 0x04;
+               /* M0D3 M0D2 M0D1 M0D0 */
+               m0d = 0;
                if (lut->m0d[3] & bit)
-                       tmp[1] |= 0x08;
-
-               if (lut->m1d[0] & bit)
-                       tmp[1] |= 0x10;
-               if (lut->m1d[1] & bit)
-                       tmp[1] |= 0x20;
-               if (lut->m1d[2] & bit)
-                       tmp[1] |= 0x40;
-               if (lut->m1d[3] & bit)
-                       tmp[1] |= 0x80;
+                       m0d |= BIT(3);
+               if (lut->m0d[2] & bit)
+                       m0d |= BIT(2);
+               if (lut->m0d[1] & bit)
+                       m0d |= BIT(1);
+               if (lut->m0d[0] & bit)
+                       m0d |= BIT(0);
 
                /*
-                * This logic seems redundant, but separates the value
-                * determination from the wire format, and is useful
-                * during future maintenance and research.
+                * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
+                * TriggerSelect register, then strobe the LUT write by
+                * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
+                * programming.
                 */
                wrptr = buf;
-               write_u8_inc(&wrptr, tmp[0]);
-               write_u8_inc(&wrptr, tmp[1]);
-               sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
-               sigma_set_register(devc, WRITE_TRIGGER_SELECT2, 0x30 | i);
+               write_u8_inc(&wrptr, (m3d << 4) | (m2d << 0));
+               write_u8_inc(&wrptr, (m1d << 4) | (m0d << 0));
+               ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
+                       buf, wrptr - buf);
+               if (ret != SR_OK)
+                       return ret;
+               v8 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
+                       (lut_addr & TRGSEL2_LUT_ADDR_MASK);
+               ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, v8);
+               if (ret != SR_OK)
+                       return ret;
        }
 
-       /* Send the parameters */
+       /*
+        * Send the parameters. This covers counters and durations.
+        */
        wrptr = buf;
-       regval = 0;
-       regval |= lut->params.selc << 6;
-       regval |= lut->params.selpresc << 0;
-       write_u8_inc(&wrptr, regval);
-       regval = 0;
-       regval |= lut->params.selinc << 6;
-       regval |= lut->params.selres << 4;
-       regval |= lut->params.sela << 2;
-       regval |= lut->params.selb << 0;
-       write_u8_inc(&wrptr, regval);
-       write_u16le_inc(&wrptr, lut->params.cmpb);
-       write_u16le_inc(&wrptr, lut->params.cmpa);
-       sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
+       selreg = 0;
+       selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
+       selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
+       selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
+       selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
+       selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
+       selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
+       write_u16be_inc(&wrptr, selreg);
+       write_u16be_inc(&wrptr, lut->params.cmpb);
+       write_u16be_inc(&wrptr, lut->params.cmpa);
+       ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
+       if (ret != SR_OK)
+               return ret;
 
        return SR_OK;
 }
@@ -323,14 +553,14 @@ SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
  * mode and sending configuration data. Set D7 and toggle D2, D3, D4
  * a few times.
  */
-#define BB_PIN_CCLK (1 << 0) /* D0, CCLK */
-#define BB_PIN_PROG (1 << 1) /* D1, PROG */
-#define BB_PIN_D2   (1 << 2) /* D2, (part of) SUICIDE */
-#define BB_PIN_D3   (1 << 3) /* D3, (part of) SUICIDE */
-#define BB_PIN_D4   (1 << 4) /* D4, (part of) SUICIDE (unused?) */
-#define BB_PIN_INIT (1 << 5) /* D5, INIT, input pin */
-#define BB_PIN_DIN  (1 << 6) /* D6, DIN */
-#define BB_PIN_D7   (1 << 7) /* D7, (part of) SUICIDE */
+#define BB_PIN_CCLK BIT(0) /* D0, CCLK */
+#define BB_PIN_PROG BIT(1) /* D1, PROG */
+#define BB_PIN_D2   BIT(2) /* D2, (part of) SUICIDE */
+#define BB_PIN_D3   BIT(3) /* D3, (part of) SUICIDE */
+#define BB_PIN_D4   BIT(4) /* D4, (part of) SUICIDE (unused?) */
+#define BB_PIN_INIT BIT(5) /* D5, INIT, input pin */
+#define BB_PIN_DIN  BIT(6) /* D6, DIN */
+#define BB_PIN_D7   BIT(7) /* D7, (part of) SUICIDE */
 
 #define BB_BITRATE (750 * 1000)
 #define BB_PINMASK (0xff & ~BB_PIN_INIT)
@@ -371,30 +601,48 @@ static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
                BB_PIN_CCLK,
                BB_PIN_CCLK,
        };
-       int retries, ret;
+       size_t retries;
+       int ret;
        uint8_t data;
 
        /* Section 2. part 1), do the FPGA suicide. */
-       sigma_write(devc, suicide, sizeof(suicide));
-       sigma_write(devc, suicide, sizeof(suicide));
-       sigma_write(devc, suicide, sizeof(suicide));
-       sigma_write(devc, suicide, sizeof(suicide));
+       ret = SR_OK;
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
+       if (ret != SR_OK)
+               return SR_ERR_IO;
        g_usleep(10 * 1000);
 
        /* Section 2. part 2), pulse PROG. */
-       sigma_write(devc, init_array, sizeof(init_array));
+       ret = sigma_write_sr(devc, init_array, sizeof(init_array));
+       if (ret != SR_OK)
+               return ret;
        g_usleep(10 * 1000);
-       ftdi_usb_purge_buffers(&devc->ftdic);
+       ftdi_usb_purge_buffers(&devc->ftdi.ctx);
 
-       /* Wait until the FPGA asserts INIT_B. */
+       /*
+        * Wait until the FPGA asserts INIT_B. Check in a maximum number
+        * of bursts with a given delay between them. Read as many pin
+        * capture results as the combination of FTDI chip and FTID lib
+        * may provide. Cope with absence of pin capture data in a cycle.
+        * This approach shall result in fast reponse in case of success,
+        * low cost of execution during wait, reliable error handling in
+        * the transport layer, and robust response to failure or absence
+        * of result data (hardware inactivity after stimulus).
+        */
        retries = 10;
        while (retries--) {
-               ret = sigma_read(devc, &data, sizeof(data));
-               if (ret < 0)
-                       return ret;
-               if (data & BB_PIN_INIT)
-                       return SR_OK;
-               g_usleep(10 * 1000);
+               do {
+                       ret = sigma_read_raw(devc, &data, sizeof(data));
+                       if (ret < 0)
+                               return SR_ERR_IO;
+                       if (ret == sizeof(data) && (data & BB_PIN_INIT))
+                               return SR_OK;
+               } while (ret == sizeof(data));
+               if (retries)
+                       g_usleep(10 * 1000);
        }
 
        return SR_ERR_TIMEOUT;
@@ -426,7 +674,7 @@ static int sigma_fpga_init_bitbang(struct dev_context *devc)
  */
 static int sigma_fpga_init_la(struct dev_context *devc)
 {
-       uint8_t buf[16], *wrptr;
+       uint8_t buf[20], *wrptr;
        uint8_t data_55, data_aa, mode;
        uint8_t result[3];
        const uint8_t *rdptr;
@@ -435,38 +683,45 @@ static int sigma_fpga_init_la(struct dev_context *devc)
        wrptr = buf;
 
        /* Read ID register. */
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (READ_ID & 0xf));
-       write_u8_inc(&wrptr, REG_ADDR_HIGH | (READ_ID >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
        write_u8_inc(&wrptr, REG_READ_ADDR);
 
        /* Write 0x55 to scratch register, read back. */
        data_55 = 0x55;
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_LOW | (data_55 & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_55 >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
        write_u8_inc(&wrptr, REG_READ_ADDR);
 
        /* Write 0xaa to scratch register, read back. */
        data_aa = 0xaa;
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_TEST & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_LOW | (data_aa & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (data_aa >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
        write_u8_inc(&wrptr, REG_READ_ADDR);
 
        /* Initiate SDRAM initialization in mode register. */
        mode = WMR_SDRAMINIT;
-       write_u8_inc(&wrptr, REG_ADDR_LOW | (WRITE_MODE & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_LOW | (mode & 0xf));
-       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | (mode >> 4));
+       write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
+       write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
+       write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
+       write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
 
        /*
         * Send the command sequence which contains 3 READ requests.
         * Expect to see the corresponding 3 response bytes.
         */
-       sigma_write(devc, buf, wrptr - buf);
-       ret = sigma_read(devc, result, ARRAY_SIZE(result));
-       if (ret != ARRAY_SIZE(result)) {
-               sr_err("Insufficient start response length.");
+       ret = sigma_write_sr(devc, buf, wrptr - buf);
+       if (ret != SR_OK) {
+               sr_err("Could not request LA start response.");
+               return ret;
+       }
+       ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
+       if (ret != SR_OK) {
+               sr_err("Could not receive LA start response.");
                return SR_ERR_IO;
        }
        rdptr = result;
@@ -492,7 +747,7 @@ static int sigma_fpga_init_la(struct dev_context *devc)
  * by the caller of this function.
  */
 static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
-       uint8_t **bb_cmd, gsize *bb_cmd_size)
+       uint8_t **bb_cmd, size_t *bb_cmd_size)
 {
        uint8_t *firmware;
        size_t file_size;
@@ -535,7 +790,7 @@ static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
        bb_size = file_size * 8 * 2;
        bb_stream = g_try_malloc(bb_size);
        if (!bb_stream) {
-               sr_err("%s: Failed to allocate bitbang stream", __func__);
+               sr_err("Memory allocation failed during firmware upload.");
                g_free(firmware);
                return SR_ERR_MALLOC;
        }
@@ -586,52 +841,59 @@ static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
        devc->state.state = SIGMA_CONFIG;
 
        /* Set the cable to bitbang mode. */
-       ret = ftdi_set_bitmode(&devc->ftdic, BB_PINMASK, BITMODE_BITBANG);
+       ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
        if (ret < 0) {
-               sr_err("ftdi_set_bitmode failed: %s",
-                       ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup cable mode for upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
-       ret = ftdi_set_baudrate(&devc->ftdic, BB_BITRATE);
+       ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
        if (ret < 0) {
-               sr_err("ftdi_set_baudrate failed: %s",
-                       ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup bitrate for upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
 
        /* Initiate FPGA configuration mode. */
        ret = sigma_fpga_init_bitbang(devc);
-       if (ret)
+       if (ret) {
+               sr_err("Could not initiate firmware upload to hardware");
                return ret;
+       }
 
        /* Prepare wire format of the firmware image. */
        ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
        if (ret != SR_OK) {
-               sr_err("Could not prepare file %s for download.", firmware);
+               sr_err("Could not prepare file %s for upload.", firmware);
                return ret;
        }
 
        /* Write the FPGA netlist to the cable. */
        sr_info("Uploading firmware file '%s'.", firmware);
-       sigma_write(devc, buf, buf_size);
-
+       ret = sigma_write_sr(devc, buf, buf_size);
        g_free(buf);
+       if (ret != SR_OK) {
+               sr_err("Could not upload firmware file '%s'.", firmware);
+               return ret;
+       }
 
        /* Leave bitbang mode and discard pending input data. */
-       ret = ftdi_set_bitmode(&devc->ftdic, 0, BITMODE_RESET);
+       ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
        if (ret < 0) {
-               sr_err("ftdi_set_bitmode failed: %s",
-                       ftdi_get_error_string(&devc->ftdic));
+               sr_err("Could not setup cable mode after upload: %s",
+                       ftdi_get_error_string(&devc->ftdi.ctx));
                return SR_ERR;
        }
-       ftdi_usb_purge_buffers(&devc->ftdic);
-       while (sigma_read(devc, &pins, sizeof(pins)) > 0)
+       ftdi_usb_purge_buffers(&devc->ftdi.ctx);
+       while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
                ;
 
        /* Initialize the FPGA for logic-analyzer mode. */
        ret = sigma_fpga_init_la(devc);
-       if (ret != SR_OK)
+       if (ret != SR_OK) {
+               sr_err("Hardware response after firmware upload failed.");
                return ret;
+       }
 
        /* Keep track of successful firmware download completion. */
        devc->state.state = SIGMA_IDLE;
@@ -671,10 +933,10 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
        uint64_t worst_cluster_time_ms;
        uint64_t count_msecs, acquire_msecs;
 
-       sr_sw_limits_init(&devc->acq_limits);
+       sr_sw_limits_init(&devc->limit.acquire);
 
        /* Get sample count limit, convert to msecs. */
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_SAMPLES, &data);
        if (ret != SR_OK)
                return ret;
@@ -682,10 +944,10 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
        g_variant_unref(data);
        count_msecs = 0;
        if (user_count)
-               count_msecs = 1000 * user_count / devc->samplerate + 1;
+               count_msecs = 1000 * user_count / devc->clock.samplerate + 1;
 
        /* Get time limit, which is in msecs. */
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_MSEC, &data);
        if (ret != SR_OK)
                return ret;
@@ -702,16 +964,16 @@ SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
                return SR_OK;
 
        /* Add some slack, and use that timeout for acquisition. */
-       worst_cluster_time_ms = 1000 * 65536 / devc->samplerate;
+       worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate;
        acquire_msecs += 2 * worst_cluster_time_ms;
        data = g_variant_new_uint64(acquire_msecs);
-       ret = sr_sw_limits_config_set(&devc->acq_limits,
+       ret = sr_sw_limits_config_set(&devc->limit.acquire,
                SR_CONF_LIMIT_MSEC, data);
        g_variant_unref(data);
        if (ret != SR_OK)
                return ret;
 
-       sr_sw_limits_acquisition_start(&devc->acq_limits);
+       sr_sw_limits_acquisition_start(&devc->limit.acquire);
        return SR_OK;
 }
 
@@ -753,19 +1015,66 @@ SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
        return SR_ERR_ARG;
 }
 
+/* Gets called at probe time. Can seed software settings from hardware state. */
+SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+       uint8_t regaddr, regval;
+
+       devc = sdi->priv;
+       if (!devc)
+               return SR_ERR_ARG;
+
+       /* Seed configuration values from defaults. */
+       devc->firmware_idx = SIGMA_FW_NONE;
+       devc->clock.samplerate = samplerates[0];
+
+       /* TODO
+        * Ideally the device driver could retrieve recently stored
+        * details from hardware registers, thus re-use user specified
+        * configuration values across sigrok sessions. Which could
+        * avoid repeated expensive though unnecessary firmware uploads,
+        * improve performance and usability. Unfortunately it appears
+        * that the registers range which is documented as available for
+        * application use keeps providing 0xff data content. At least
+        * with the netlist version which ships with sigrok. The same
+        * was observed with unused registers in the first page.
+        */
+       return SR_ERR_NA;
+
+       /* This is for research, currently does not work yet. */
+       ret = sigma_check_open(sdi);
+       regaddr = 16;
+       regaddr = 14;
+       ret = sigma_set_register(devc, regaddr, 'F');
+       ret = sigma_get_register(devc, regaddr, &regval);
+       sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret);
+       ret = sigma_check_close(devc);
+       return ret;
+}
+
+/* Gets called after successful (volatile) hardware configuration. */
+SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi)
+{
+       /* TODO See above, registers seem to not hold written data. */
+       (void)sdi;
+       return SR_ERR_NA;
+}
+
 SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
 {
        struct dev_context *devc;
        struct drv_context *drvc;
        uint64_t samplerate;
        int ret;
-       int num_channels;
+       size_t num_channels;
 
        devc = sdi->priv;
        drvc = sdi->driver->context;
 
        /* Accept any caller specified rate which the hardware supports. */
-       ret = sigma_normalize_samplerate(devc->samplerate, &samplerate);
+       ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate);
        if (ret != SR_OK)
                return ret;
 
@@ -796,6 +1105,14 @@ SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
                devc->samples_per_event = 16 / devc->num_channels;
        }
 
+       /*
+        * Store the firmware type and most recently configured samplerate
+        * in hardware, such that subsequent sessions can start from there.
+        * This is a "best effort" approach. Failure is non-fatal.
+        */
+       if (ret == SR_OK)
+               (void)sigma_store_hw_config(sdi);
+
        return ret;
 }
 
@@ -840,7 +1157,7 @@ static int alloc_submit_buffer(struct sr_dev_inst *sdi)
        if (!buffer->sample_data)
                return SR_ERR_MALLOC;
        buffer->write_pointer = buffer->sample_data;
-       sr_sw_limits_init(&devc->feed_limits);
+       sr_sw_limits_init(&devc->limit.submit);
 
        buffer->sdi = sdi;
        memset(&buffer->logic, 0, sizeof(buffer->logic));
@@ -860,9 +1177,9 @@ static int setup_submit_limit(struct dev_context *devc)
        GVariant *data;
        uint64_t total;
 
-       limits = &devc->feed_limits;
+       limits = &devc->limit.submit;
 
-       ret = sr_sw_limits_config_get(&devc->cfg_limits,
+       ret = sr_sw_limits_config_get(&devc->limit.config,
                SR_CONF_LIMIT_SAMPLES, &data);
        if (ret != SR_OK)
                return ret;
@@ -932,7 +1249,7 @@ static int addto_submit_buffer(struct dev_context *devc,
        int ret;
 
        buffer = devc->buffer;
-       limits = &devc->feed_limits;
+       limits = &devc->limit.submit;
        if (sr_sw_limits_check(limits))
                count = 0;
 
@@ -972,12 +1289,20 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
        struct sr_trigger_stage *stage;
        struct sr_trigger_match *match;
        const GSList *l, *m;
-       int channelbit, trigger_set;
+       uint16_t channelbit;
+       size_t trigger_set;
 
        devc = sdi->priv;
-       memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
-       if (!(trigger = sr_session_trigger_get(sdi->session)))
+       memset(&devc->trigger, 0, sizeof(devc->trigger));
+       devc->use_triggers = FALSE;
+       trigger = sr_session_trigger_get(sdi->session);
+       if (!trigger)
+               return SR_OK;
+
+       if (!ASIX_SIGMA_WITH_TRIGGER) {
+               sr_warn("Trigger support is not implemented. Ignoring the spec.");
                return SR_OK;
+       }
 
        trigger_set = 0;
        for (l = trigger->stages; l; l = l->next) {
@@ -987,12 +1312,11 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
                        /* Ignore disabled channels with a trigger. */
                        if (!match->channel->enabled)
                                continue;
-                       channelbit = 1 << match->channel->index;
-                       if (devc->samplerate >= SR_MHZ(100)) {
+                       channelbit = BIT(match->channel->index);
+                       if (devc->clock.samplerate >= SR_MHZ(100)) {
                                /* Fast trigger support. */
                                if (trigger_set) {
-                                       sr_err("Only a single pin trigger is "
-                                               "supported in 100 and 200MHz mode.");
+                                       sr_err("100/200MHz modes limited to single trigger pin.");
                                        return SR_ERR;
                                }
                                if (match->match == SR_TRIGGER_FALLING) {
@@ -1000,8 +1324,7 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
                                } else if (match->match == SR_TRIGGER_RISING) {
                                        devc->trigger.risingmask |= channelbit;
                                } else {
-                                       sr_err("Only rising/falling trigger is "
-                                               "supported in 100 and 200MHz mode.");
+                                       sr_err("100/200MHz modes limited to edge trigger.");
                                        return SR_ERR;
                                }
 
@@ -1028,13 +1351,16 @@ SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
                                 * does not permit ORed triggers.
                                 */
                                if (trigger_set > 1) {
-                                       sr_err("Only 1 rising/falling trigger is supported.");
+                                       sr_err("Limited to 1 edge trigger.");
                                        return SR_ERR;
                                }
                        }
                }
        }
 
+       /* Keep track whether triggers are involved during acquisition. */
+       devc->use_triggers = TRUE;
+
        return SR_OK;
 }
 
@@ -1043,7 +1369,7 @@ static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
        struct sigma_trigger *t)
 {
        const uint8_t *rdptr;
-       int i;
+       size_t i;
        uint16_t sample;
 
        rdptr = samples;
@@ -1086,7 +1412,9 @@ static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample
         * See the previous get_trigger_offset() implementation. This
         * code needs to get re-used here.
         */
-       (void)devc;
+       if (!devc->use_triggers)
+               return FALSE;
+
        (void)sample;
        (void)get_trigger_offset;
 
@@ -1178,7 +1506,8 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
 {
        struct sigma_state *ss;
        uint16_t tsdiff, ts, sample, item16;
-       unsigned int i;
+       size_t count;
+       size_t evt;
 
        if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
                triggered = FALSE;
@@ -1197,7 +1526,6 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
        ts = sigma_dram_cluster_ts(dram_cluster);
        tsdiff = ts - ss->lastts;
        if (tsdiff > 0) {
-               size_t count;
                sample = ss->lastsample;
                count = tsdiff * devc->samples_per_event;
                (void)check_and_submit_sample(devc, sample, count, FALSE);
@@ -1212,9 +1540,9 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
         * buffer depth is neither assumed nor required here.
         */
        sample = 0;
-       for (i = 0; i < events_in_cluster; i++) {
-               item16 = sigma_dram_cluster_data(dram_cluster, i);
-               if (devc->samplerate == SR_MHZ(200)) {
+       for (evt = 0; evt < events_in_cluster; evt++) {
+               item16 = sigma_dram_cluster_data(dram_cluster, evt);
+               if (devc->clock.samplerate == SR_MHZ(200)) {
                        sample = sigma_deinterlace_200mhz_data(item16, 0);
                        check_and_submit_sample(devc, sample, 1, triggered);
                        sample = sigma_deinterlace_200mhz_data(item16, 1);
@@ -1223,7 +1551,7 @@ static void sigma_decode_dram_cluster(struct dev_context *devc,
                        check_and_submit_sample(devc, sample, 1, triggered);
                        sample = sigma_deinterlace_200mhz_data(item16, 3);
                        check_and_submit_sample(devc, sample, 1, triggered);
-               } else if (devc->samplerate == SR_MHZ(100)) {
+               } else if (devc->clock.samplerate == SR_MHZ(100)) {
                        sample = sigma_deinterlace_100mhz_data(item16, 0);
                        check_and_submit_sample(devc, sample, 1, triggered);
                        sample = sigma_deinterlace_100mhz_data(item16, 1);
@@ -1250,19 +1578,19 @@ static int decode_chunk_ts(struct dev_context *devc,
        size_t events_in_line, size_t trigger_event)
 {
        struct sigma_dram_cluster *dram_cluster;
-       unsigned int clusters_in_line;
-       unsigned int events_in_cluster;
-       unsigned int i;
-       uint32_t trigger_cluster;
+       size_t clusters_in_line;
+       size_t events_in_cluster;
+       size_t cluster;
+       size_t trigger_cluster;
 
        clusters_in_line = events_in_line;
        clusters_in_line += EVENTS_PER_CLUSTER - 1;
        clusters_in_line /= EVENTS_PER_CLUSTER;
-       trigger_cluster = ~0;
 
        /* Check if trigger is in this chunk. */
+       trigger_cluster = ~0UL;
        if (trigger_event < EVENTS_PER_ROW) {
-               if (devc->samplerate <= SR_MHZ(50)) {
+               if (devc->clock.samplerate <= SR_MHZ(50)) {
                        trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
                                             trigger_event);
                }
@@ -1272,11 +1600,11 @@ static int decode_chunk_ts(struct dev_context *devc,
        }
 
        /* For each full DRAM cluster. */
-       for (i = 0; i < clusters_in_line; i++) {
-               dram_cluster = &dram_line->cluster[i];
+       for (cluster = 0; cluster < clusters_in_line; cluster++) {
+               dram_cluster = &dram_line->cluster[cluster];
 
                /* The last cluster might not be full. */
-               if ((i == clusters_in_line - 1) &&
+               if ((cluster == clusters_in_line - 1) &&
                    (events_in_line % EVENTS_PER_CLUSTER)) {
                        events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
                } else {
@@ -1284,7 +1612,7 @@ static int decode_chunk_ts(struct dev_context *devc,
                }
 
                sigma_decode_dram_cluster(devc, dram_cluster,
-                       events_in_cluster, i == trigger_cluster);
+                       events_in_cluster, cluster == trigger_cluster);
        }
 
        return SR_OK;
@@ -1296,18 +1624,16 @@ static int download_capture(struct sr_dev_inst *sdi)
 
        struct dev_context *devc;
        struct sigma_dram_line *dram_line;
-       int bufsz;
        uint32_t stoppos, triggerpos;
        uint8_t modestatus;
-       uint32_t i;
-       uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
-       uint32_t dl_first_line, dl_line;
-       uint32_t dl_events_in_line;
-       uint32_t trg_line, trg_event;
+       size_t line_idx;
+       size_t dl_lines_total, dl_lines_curr, dl_lines_done;
+       size_t dl_first_line, dl_line;
+       size_t dl_events_in_line, trigger_event;
+       size_t trg_line, trg_event;
        int ret;
 
        devc = sdi->priv;
-       dl_events_in_line = EVENTS_PER_ROW;
 
        sr_info("Downloading sample data.");
        devc->state.state = SIGMA_DOWNLOAD;
@@ -1318,31 +1644,33 @@ static int download_capture(struct sr_dev_inst *sdi)
         * clusters to DRAM regardless of whether pin state changes) and
         * raise the POSTTRIGGERED flag.
         */
-       sigma_set_register(devc, WRITE_MODE, WMR_FORCESTOP | WMR_SDRAMWRITEEN);
+       modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
+       ret = sigma_set_register(devc, WRITE_MODE, modestatus);
+       if (ret != SR_OK)
+               return ret;
        do {
-               ret = sigma_read_register(devc, READ_MODE,
-                       &modestatus, sizeof(modestatus));
-               if (ret != sizeof(modestatus)) {
-                       sr_err("Could not poll for post-trigger condition.");
+               ret = sigma_get_register(devc, READ_MODE, &modestatus);
+               if (ret != SR_OK) {
+                       sr_err("Could not poll for post-trigger state.");
                        return FALSE;
                }
        } while (!(modestatus & RMR_POSTTRIGGERED));
 
        /* Set SDRAM Read Enable. */
-       sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
-
-       /* Get the current position. */
-       sigma_read_pos(devc, &stoppos, &triggerpos);
+       ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
+       if (ret != SR_OK)
+               return ret;
 
-       /* Check if trigger has fired. */
-       ret = sigma_read_register(devc, READ_MODE,
-               &modestatus, sizeof(modestatus));
-       if (ret != sizeof(modestatus)) {
-               sr_err("Could not query trigger hit.");
+       /* Get the current position. Check if trigger has fired. */
+       ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
+       if (ret != SR_OK) {
+               sr_err("Could not query capture positions/state.");
                return FALSE;
        }
-       trg_line = ~0;
-       trg_event = ~0;
+       if (!devc->use_triggers)
+               triggerpos = ~0;
+       trg_line = ~0UL;
+       trg_event = ~0UL;
        if (modestatus & RMR_TRIGGERED) {
                trg_line = triggerpos >> ROW_SHIFT;
                trg_event = triggerpos & ROW_MASK;
@@ -1380,10 +1708,10 @@ static int download_capture(struct sr_dev_inst *sdi)
 
                dl_line = dl_first_line + dl_lines_done;
                dl_line %= ROW_COUNT;
-               bufsz = sigma_read_dram(devc, dl_line, dl_lines_curr,
-                                       (uint8_t *)dram_line);
-               /* TODO: Check bufsz. For now, just avoid compiler warnings. */
-               (void)bufsz;
+               ret = sigma_read_dram(devc, dl_line, dl_lines_curr,
+                       (uint8_t *)dram_line);
+               if (ret != SR_OK)
+                       return FALSE;
 
                /* This is the first DRAM line, so find the initial timestamp. */
                if (dl_lines_done == 0) {
@@ -1392,17 +1720,18 @@ static int download_capture(struct sr_dev_inst *sdi)
                        devc->state.lastsample = 0;
                }
 
-               for (i = 0; i < dl_lines_curr; i++) {
-                       uint32_t trigger_event = ~0;
+               for (line_idx = 0; line_idx < dl_lines_curr; line_idx++) {
                        /* The last "DRAM line" need not span its full length. */
-                       if (dl_lines_done + i == dl_lines_total - 1)
+                       dl_events_in_line = EVENTS_PER_ROW;
+                       if (dl_lines_done + line_idx == dl_lines_total - 1)
                                dl_events_in_line = stoppos & ROW_MASK;
 
                        /* Test if the trigger happened on this line. */
-                       if (dl_lines_done + i == trg_line)
+                       trigger_event = ~0UL;
+                       if (dl_lines_done + line_idx == trg_line)
                                trigger_event = trg_event;
 
-                       decode_chunk_ts(devc, dram_line + i,
+                       decode_chunk_ts(devc, dram_line + line_idx,
                                dl_events_in_line, trigger_event);
                }
 
@@ -1430,7 +1759,7 @@ static int sigma_capture_mode(struct sr_dev_inst *sdi)
        struct dev_context *devc;
 
        devc = sdi->priv;
-       if (sr_sw_limits_check(&devc->acq_limits))
+       if (sr_sw_limits_check(&devc->limit.acquire))
                return download_capture(sdi);
 
        return TRUE;
@@ -1465,25 +1794,42 @@ SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
 }
 
 /* Build a LUT entry used by the trigger functions. */
-static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
+static void build_lut_entry(uint16_t *lut_entry,
+       uint16_t spec_value, uint16_t spec_mask)
 {
-       int i, j, k, bit;
-
-       /* For each quad channel. */
-       for (i = 0; i < 4; i++) {
-               entry[i] = 0xffff;
-
-               /* For each bit in LUT. */
-               for (j = 0; j < 16; j++) {
-
-                       /* For each channel in quad. */
-                       for (k = 0; k < 4; k++) {
-                               bit = 1 << (i * 4 + k);
+       size_t quad, bitidx, ch;
+       uint16_t quadmask, bitmask;
+       gboolean spec_value_low, bit_idx_low;
 
-                               /* Set bit in entry */
-                               if ((mask & bit) && ((!(value & bit)) !=
-                                                       (!(j & (1 << k)))))
-                                       entry[i] &= ~(1 << j);
+       /*
+        * For each quad-channel-group, for each bit in the LUT (each
+        * bit pattern of the channel signals, aka LUT address), for
+        * each channel in the quad, setup the bit in the LUT entry.
+        *
+        * Start from all-ones in the LUT (true, always matches), then
+        * "pessimize the truthness" for specified conditions.
+        */
+       for (quad = 0; quad < 4; quad++) {
+               lut_entry[quad] = ~0;
+               for (bitidx = 0; bitidx < 16; bitidx++) {
+                       for (ch = 0; ch < 4; ch++) {
+                               quadmask = BIT(ch);
+                               bitmask = quadmask << (quad * 4);
+                               if (!(spec_mask & bitmask))
+                                       continue;
+                               /*
+                                * This bit is part of the spec. The
+                                * condition which gets checked here
+                                * (got checked in all implementations
+                                * so far) is uncertain. A bit position
+                                * in the current index' number(!) is
+                                * checked?
+                                */
+                               spec_value_low = !(spec_value & bitmask);
+                               bit_idx_low = !(bitidx & quadmask);
+                               if (spec_value_low == bit_idx_low)
+                                       continue;
+                               lut_entry[quad] &= ~BIT(bitidx);
                        }
                }
        }
@@ -1491,14 +1837,19 @@ static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
 
 /* Add a logical function to LUT mask. */
 static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
-       int index, int neg, uint16_t *mask)
+       size_t index, gboolean neg, uint16_t *mask)
 {
-       int i, j;
-       int x[2][2], tmp, a, b, aset, bset, rset;
+       int x[2][2], a, b, aset, bset, rset;
+       size_t bitidx;
 
-       memset(x, 0, 4 * sizeof(int));
+       /*
+        * Beware! The x, a, b, aset, bset, rset variables strictly
+        * require the limited 0..1 range. They are not interpreted
+        * as logically true, instead bit arith is done on them.
+        */
 
-       /* Trigger detect condition. */
+       /* Construct a pattern which detects the condition. */
+       memset(x, 0, sizeof(x));
        switch (oper) {
        case OP_LEVEL:
                x[0][1] = 1;
@@ -1534,8 +1885,11 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
                break;
        }
 
-       /* Transpose if neg is set. */
+       /* Transpose the pattern if the condition is negated. */
        if (neg) {
+               size_t i, j;
+               int tmp;
+
                for (i = 0; i < 2; i++) {
                        for (j = 0; j < 2; j++) {
                                tmp = x[i][j];
@@ -1545,29 +1899,30 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
                }
        }
 
-       /* Update mask with function. */
-       for (i = 0; i < 16; i++) {
-               a = (i >> (2 * index + 0)) & 1;
-               b = (i >> (2 * index + 1)) & 1;
+       /* Update the LUT mask with the function's condition. */
+       for (bitidx = 0; bitidx < 16; bitidx++) {
+               a = (bitidx & BIT(2 * index + 0)) ? 1 : 0;
+               b = (bitidx & BIT(2 * index + 1)) ? 1 : 0;
 
-               aset = (*mask >> i) & 1;
+               aset = (*mask & BIT(bitidx)) ? 1 : 0;
                bset = x[b][a];
 
-               rset = 0;
                if (func == FUNC_AND || func == FUNC_NAND)
                        rset = aset & bset;
                else if (func == FUNC_OR || func == FUNC_NOR)
                        rset = aset | bset;
                else if (func == FUNC_XOR || func == FUNC_NXOR)
                        rset = aset ^ bset;
+               else
+                       rset = 0;
 
                if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
-                       rset = !rset;
-
-               *mask &= ~(1 << i);
+                       rset = 1 - rset;
 
                if (rset)
-                       *mask |= 1 << i;
+                       *mask |= BIT(bitidx);
+               else
+                       *mask &= ~BIT(bitidx);
        }
 }
 
@@ -1579,46 +1934,59 @@ static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
 SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
        struct triggerlut *lut)
 {
-       int i,j;
-       uint16_t masks[2] = { 0, 0 };
+       uint16_t masks[2];
+       size_t bitidx, condidx;
+       uint16_t value, mask;
 
-       memset(lut, 0, sizeof(struct triggerlut));
+       /* Setup something that "won't match" in the absence of a spec. */
+       memset(lut, 0, sizeof(*lut));
+       if (!devc->use_triggers)
+               return SR_OK;
 
-       /* Constant for simple triggers. */
+       /* Start assuming simple triggers. Edges are handled below. */
        lut->m4 = 0xa000;
-
-       /* Value/mask trigger support. */
-       build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
-                       lut->m2d);
-
-       /* Rise/fall trigger support. */
-       for (i = 0, j = 0; i < 16; i++) {
-               if (devc->trigger.risingmask & (1 << i) ||
-                   devc->trigger.fallingmask & (1 << i))
-                       masks[j++] = 1 << i;
+       lut->m3q = 0xffff;
+
+       /* Process value/mask triggers. */
+       value = devc->trigger.simplevalue;
+       mask = devc->trigger.simplemask;
+       build_lut_entry(lut->m2d, value, mask);
+
+       /* Scan for and process rise/fall triggers. */
+       memset(&masks, 0, sizeof(masks));
+       condidx = 0;
+       for (bitidx = 0; bitidx < 16; bitidx++) {
+               mask = BIT(bitidx);
+               value = devc->trigger.risingmask | devc->trigger.fallingmask;
+               if (!(value & mask))
+                       continue;
+               if (condidx == 0)
+                       build_lut_entry(lut->m0d, mask, mask);
+               if (condidx == 1)
+                       build_lut_entry(lut->m1d, mask, mask);
+               masks[condidx++] = mask;
+               if (condidx == ARRAY_SIZE(masks))
+                       break;
        }
 
-       build_lut_entry(masks[0], masks[0], lut->m0d);
-       build_lut_entry(masks[1], masks[1], lut->m1d);
-
-       /* Add glue logic */
+       /* Add glue logic for rise/fall triggers. */
        if (masks[0] || masks[1]) {
-               /* Transition trigger. */
+               lut->m3q = 0;
                if (masks[0] & devc->trigger.risingmask)
-                       add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
+                       add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
                if (masks[0] & devc->trigger.fallingmask)
-                       add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
+                       add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
                if (masks[1] & devc->trigger.risingmask)
-                       add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
+                       add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
                if (masks[1] & devc->trigger.fallingmask)
-                       add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
-       } else {
-               /* Only value/mask trigger. */
-               lut->m3 = 0xffff;
+                       add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
        }
 
        /* Triggertype: event. */
-       lut->params.selres = 3;
+       lut->params.selres = TRGSEL_SELCODE_NEVER;
+       lut->params.selinc = TRGSEL_SELCODE_LEVEL;
+       lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
+       lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
 
        return SR_OK;
 }