]> sigrok.org Git - libsigrok.git/blobdiff - hardware/sysclk-lwla/protocol.c
sysclk-lwla: Implement support for the LWLA1034.
[libsigrok.git] / hardware / sysclk-lwla / protocol.c
index 0aa0406f082f4a40358c37c01d674e6a210ba7ec..5b3dd6fc504dd3281e177242a5a46b27efcae355 100644 (file)
  */
 
 #include "protocol.h"
+#include <string.h>
 
-SR_PRIV int sysclk_lwla_receive_data(int fd, int revents, void *cb_data)
+/* Bit mask covering all 34 channels. */
+#define ALL_CHANNELS_MASK (((uint64_t)1 << NUM_PROBES) - 1)
+
+/* Bit mask for the RLE repeat-count-follows flag. */
+#define RLE_FLAG_LEN_FOLLOWS ((uint64_t)1 << 35)
+
+/* Start address of capture status memory area to read. */
+#define CAP_STAT_ADDR 5
+
+/* Number of 64-bit words read from the capture status memory. */
+#define CAP_STAT_LEN 5
+
+/* The bitstream filenames are indexed by the clock source enumeration.
+ */
+static const char *const bitstream_map[] = {
+       FIRMWARE_DIR "/sysclk-lwla1034-off.bitstream",
+       FIRMWARE_DIR "/sysclk-lwla1034-int.bitstream",
+       FIRMWARE_DIR "/sysclk-lwla1034-extpos.bitstream",
+       FIRMWARE_DIR "/sysclk-lwla1034-extneg.bitstream",
+};
+
+/* Submit an already filled-in USB transfer.
+ */
+static int submit_transfer(struct dev_context *devc,
+                          struct libusb_transfer *xfer)
+{
+       int ret;
+
+       ret = libusb_submit_transfer(xfer);
+
+       if (ret != 0) {
+               sr_err("Submit transfer failed: %s.", libusb_error_name(ret));
+               devc->transfer_error = TRUE;
+               return SR_ERR;
+       }
+
+       return SR_OK;
+}
+
+/* Set up the LWLA in preparation for an acquisition session.
+ */
+static int capture_setup(const struct sr_dev_inst *sdi)
 {
-       const struct sr_dev_inst *sdi;
        struct dev_context *devc;
+       uint64_t divider_count;
+       uint64_t memory_limit;
+       uint16_t command[3 + 10*4];
 
-       (void)fd;
+       devc = sdi->priv;
 
-       if (!(sdi = cb_data))
-               return TRUE;
+       command[0] = LWLA_WORD(CMD_CAP_SETUP);
+       command[1] = LWLA_WORD(0); /* address */
+       command[2] = LWLA_WORD(10); /* length */
+
+       command[3] = LWLA_WORD_0(devc->channel_mask);
+       command[4] = LWLA_WORD_1(devc->channel_mask);
+       command[5] = LWLA_WORD_2(devc->channel_mask);
+       command[6] = LWLA_WORD_3(devc->channel_mask);
+
+       /* Set the clock divide counter maximum for samplerates of up to
+        * 100 MHz. At the highest samplerate of 125 MHz the clock divider
+        * is bypassed.
+        */
+       if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
+               divider_count = SR_MHZ(100) / devc->samplerate - 1;
+       else
+               divider_count = 0;
+
+       command[7]  = LWLA_WORD_0(divider_count);
+       command[8]  = LWLA_WORD_1(divider_count);
+       command[9]  = LWLA_WORD_2(divider_count);
+       command[10] = LWLA_WORD_3(divider_count);
+
+       command[11] = LWLA_WORD_0(devc->trigger_values);
+       command[12] = LWLA_WORD_1(devc->trigger_values);
+       command[13] = LWLA_WORD_2(devc->trigger_values);
+       command[14] = LWLA_WORD_3(devc->trigger_values);
+
+       command[15] = LWLA_WORD_0(devc->trigger_edge_mask);
+       command[16] = LWLA_WORD_1(devc->trigger_edge_mask);
+       command[17] = LWLA_WORD_2(devc->trigger_edge_mask);
+       command[18] = LWLA_WORD_3(devc->trigger_edge_mask);
+
+       command[19] = LWLA_WORD_0(devc->trigger_mask);
+       command[20] = LWLA_WORD_1(devc->trigger_mask);
+       command[21] = LWLA_WORD_2(devc->trigger_mask);
+       command[22] = LWLA_WORD_3(devc->trigger_mask);
+
+       /* Set the capture memory full threshold. This is slightly less
+        * than the actual maximum, most likely in order to compensate for
+        * pipeline latency.
+        */
+       memory_limit = MEMORY_DEPTH - 16;
+
+       command[23] = LWLA_WORD_0(memory_limit);
+       command[24] = LWLA_WORD_1(memory_limit);
+       command[25] = LWLA_WORD_2(memory_limit);
+       command[26] = LWLA_WORD_3(memory_limit);
+
+       /* Fill remaining 64-bit words with zeroes. */
+       memset(&command[27], 0, 16 * sizeof(uint16_t));
+
+       return lwla_send_command(sdi->conn, command, G_N_ELEMENTS(command));
+}
+
+/* Issue a register write command as an asynchronous USB transfer.
+ */
+static int issue_write_reg(const struct sr_dev_inst *sdi,
+                          unsigned int reg, unsigned int value)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       acq->xfer_buf_out[0] = LWLA_WORD(CMD_WRITE_REG);
+       acq->xfer_buf_out[1] = LWLA_WORD(reg);
+       acq->xfer_buf_out[2] = LWLA_WORD_0(value);
+       acq->xfer_buf_out[3] = LWLA_WORD_1(value);
+
+       acq->xfer_out->length = 4 * sizeof(uint16_t);
+
+       return submit_transfer(devc, acq->xfer_out);
+}
+
+/* Issue a register write command as an asynchronous USB transfer for the
+ * next register/value pair of the currently active register write sequence.
+ */
+static int issue_next_write_reg(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct regval_pair *regval;
+       int ret;
+
+       devc = sdi->priv;
+
+       if (devc->reg_write_pos >= devc->reg_write_len) {
+               sr_err("Already written all registers in sequence.");
+               return SR_ERR_BUG;
+       }
+       regval = &devc->reg_write_seq[devc->reg_write_pos];
+
+       ret = issue_write_reg(sdi, regval->reg, regval->val);
+       if (ret != SR_OK)
+               return ret;
+
+       ++devc->reg_write_pos;
+       return SR_OK;
+}
+
+/* Issue a capture status request as an asynchronous USB transfer.
+ */
+static void request_capture_status(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       acq->xfer_buf_out[0] = LWLA_WORD(CMD_CAP_STATUS);
+       acq->xfer_buf_out[1] = LWLA_WORD(CAP_STAT_ADDR);
+       acq->xfer_buf_out[2] = LWLA_WORD(CAP_STAT_LEN);
+
+       acq->xfer_out->length = 3 * sizeof(uint16_t);
+
+       if (submit_transfer(devc, acq->xfer_out) == SR_OK)
+               devc->state = STATE_STATUS_REQUEST;
+}
+
+/* Issue a request for the capture buffer fill level as
+ * an asynchronous USB transfer.
+ */
+static void request_capture_length(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_REG);
+       acq->xfer_buf_out[1] = LWLA_WORD(REG_MEM_FILL);
+
+       acq->xfer_out->length = 2 * sizeof(uint16_t);
+
+       if (submit_transfer(devc, acq->xfer_out) == SR_OK)
+               devc->state = STATE_LENGTH_REQUEST;
+}
+
+/* Initiate the capture memory read operation:  Reset the acquisition state
+ * and start a sequence of register writes in order to set up the device for
+ * reading from the capture buffer.
+ */
+static void issue_read_start(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+       struct regval_pair *regvals;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       /* Reset RLE state. */
+       acq->rle = RLE_STATE_DATA;
+       acq->sample  = 0;
+       acq->run_len = 0;
+
+       acq->captured_samples    = 0;
+       acq->transferred_samples = 0;
+
+       /* For some reason, the start address is 4 rather than 0. */
+       acq->mem_addr_done = 4;
+       acq->mem_addr_next = 4;
+       acq->mem_addr_stop = acq->mem_addr_fill;
+
+       /* Byte offset into the packet output buffer. */
+       acq->out_offset = 0;
+
+       regvals = devc->reg_write_seq;
+
+       regvals[0].reg = REG_DIV_BYPASS;
+       regvals[0].val = 1;
+
+       regvals[1].reg = REG_MEM_CTRL2;
+       regvals[1].val = 2;
+
+       regvals[2].reg = REG_MEM_CTRL4;
+       regvals[2].val = 4;
+
+       devc->reg_write_pos = 0;
+       devc->reg_write_len = 3;
+
+       if (issue_next_write_reg(sdi) == SR_OK)
+               devc->state = STATE_READ_PREPARE;
+}
+
+static void issue_read_end(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+
+       devc = sdi->priv;
+
+       if (issue_write_reg(sdi, REG_DIV_BYPASS, 0) == SR_OK)
+               devc->state = STATE_READ_END;
+}
+
+/* Decode an incoming reponse to a buffer fill level request and act on it
+ * as appropriate.  Note that this function changes the device context state.
+ */
+static void process_capture_length(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       if (acq->xfer_in->actual_length != 4) {
+               sr_err("Received size %d doesn't match expected size 4.",
+                      acq->xfer_in->actual_length);
+               devc->transfer_error = TRUE;
+               return;
+       }
+       acq->mem_addr_fill = LWLA_READ32(acq->xfer_buf_in);
+
+       sr_dbg("%lu words in capture buffer.",
+              (unsigned long)acq->mem_addr_fill);
+
+       if (acq->mem_addr_fill > 0 && sdi->status == SR_ST_ACTIVE)
+               issue_read_start(sdi);
+       else
+               issue_read_end(sdi);
+}
+
+/* Initiate a sequence of register write commands with the effect of
+ * cancelling a running capture operation.  This sets a new device state
+ * if issuing the first command succeeds.
+ */
+static void issue_stop_capture(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct regval_pair *regvals;
+
+       devc = sdi->priv;
+
+       if (devc->stopping_in_progress)
+               return;
+
+       regvals = devc->reg_write_seq;
+
+       regvals[0].reg = REG_CMD_CTRL2;
+       regvals[0].val = 10;
+
+       regvals[1].reg = REG_CMD_CTRL3;
+       regvals[1].val = 0;
+
+       regvals[2].reg = REG_CMD_CTRL4;
+       regvals[2].val = 0;
+
+       regvals[3].reg = REG_CMD_CTRL1;
+       regvals[3].val = 0;
+
+       regvals[4].reg = REG_DIV_BYPASS;
+       regvals[4].val = 0;
+
+       devc->reg_write_pos = 0;
+       devc->reg_write_len = 5;
+
+       if (issue_next_write_reg(sdi) == SR_OK) {
+               devc->stopping_in_progress = TRUE;
+               devc->state = STATE_STOP_CAPTURE;
+       }
+}
+
+/* Decode an incoming capture status reponse and act on it as appropriate.
+ * Note that this function changes the device state.
+ */
+static void process_capture_status(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       if (acq->xfer_in->actual_length != CAP_STAT_LEN * 8) {
+               sr_err("Received size %d doesn't match expected size %d.",
+                      acq->xfer_in->actual_length, CAP_STAT_LEN * 8);
+               devc->transfer_error = TRUE;
+               return;
+       }
+
+       /* TODO: Find out the actual bit width of these fields as stored
+        * in the FPGA.  These fields are definitely less than 64 bit wide
+        * internally, and the unused bits occasionally even contain garbage.
+        */
+       acq->mem_addr_fill    = LWLA_READ32(&acq->xfer_buf_in[0]);
+       acq->captured_samples = LWLA_READ32(&acq->xfer_buf_in[8])
+                               * (uint64_t)100000;
+       acq->capture_flags    = LWLA_READ32(&acq->xfer_buf_in[16])
+                               & STATUS_FLAG_MASK;
+
+       sr_spew("Captured %lu words, %" PRIu64 " samples, flags 0x%02X",
+               (unsigned long)acq->mem_addr_fill,
+               acq->captured_samples, acq->capture_flags);
+
+       if (acq->captured_samples >= devc->limit_samples) {
+               issue_stop_capture(sdi);
+               return;
+       }
+       devc->state = STATE_STATUS_WAIT;
+
+       if ((acq->capture_flags & STATUS_TRIGGERED) == 0) {
+               sr_spew("Waiting for trigger.");
+       } else if ((acq->capture_flags & STATUS_MEM_AVAIL) == 0) {
+               sr_dbg("Capture memory filled.");
+               request_capture_length(sdi);
+       } else if ((acq->capture_flags & STATUS_CAPTURING) != 0) {
+               sr_spew("Sampling in progress.");
+       }
+}
+
+/* Issue a capture buffer read request as an asynchronous USB transfer.
+ * The address and size of the memory area to read are derived from the
+ * current acquisition state.
+ */
+static void request_read_mem(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+       size_t count;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       if (acq->mem_addr_next >= acq->mem_addr_stop)
+               return;
+
+       /* Always read a multiple of 8 device words. */
+       count = (acq->mem_addr_stop - acq->mem_addr_next + 7) / 8 * 8;
+       count = MIN(count, READ_CHUNK_LEN);
+
+       acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM);
+       acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
+       acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
+       acq->xfer_buf_out[3] = LWLA_WORD_0(count);
+       acq->xfer_buf_out[4] = LWLA_WORD_1(count);
+
+       acq->xfer_out->length = 5 * sizeof(uint16_t);
+
+       if (submit_transfer(devc, acq->xfer_out) == SR_OK) {
+               acq->mem_addr_next += count;
+               devc->state = STATE_READ_REQUEST;
+       }
+}
+
+/* Send a packet of logic samples to the session bus.  The payload is taken
+ * from the acquisition state.  The return value indicates whether to stop
+ * reading more samples.
+ */
+static gboolean send_logic_packet(const struct sr_dev_inst *sdi)
+{
+       uint64_t samples;
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+       struct sr_datafeed_packet packet;
+       struct sr_datafeed_logic  logic;
+       int last;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
 
-       if (!(devc = sdi->priv))
+       if (acq->transferred_samples >= devc->limit_samples)
                return TRUE;
 
-       if (revents == G_IO_IN) {
-               /* TODO */
+       packet.type    = SR_DF_LOGIC;
+       packet.payload = &logic;
+       logic.unitsize = UNIT_SIZE;
+       logic.data     = acq->out_packet;
+       logic.length   = acq->out_offset;
+
+       samples = acq->out_offset / UNIT_SIZE;
+       last = FALSE;
+
+       /* Cut the packet short if necessary. */
+       if (acq->transferred_samples + samples >= devc->limit_samples) {
+               samples = devc->limit_samples - acq->transferred_samples;
+               logic.length = samples * UNIT_SIZE;
+               last = TRUE;
+       }
+       acq->transferred_samples += samples;
+       acq->out_offset = 0;
+
+       /* Send off logic datafeed packet. */
+       sr_session_send(sdi, &packet);
+
+       return last;
+}
+
+/* Demangle and decompress incoming sample data from the capture buffer.
+ * The data chunk is taken from the acquisition state, and is expected to
+ * contain a multiple of 8 device words.
+ * All data currently in the acquisition buffer will be processed.  Packets
+ * of decoded samples are sent off to the session bus whenever the output
+ * buffer becomes full while decoding.
+ */
+static int process_sample_data(const struct sr_dev_inst *sdi)
+{
+       uint64_t sample;
+       uint64_t run_len;
+       uint64_t high_nibbles;
+       uint64_t word;
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+       uint8_t *out_p;
+       uint16_t *slice;
+       size_t expect_len;
+       size_t actual_len;
+       size_t in_words_left;
+       size_t si;
+
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       if (acq->mem_addr_done >= acq->mem_addr_stop
+                       || acq->transferred_samples >= devc->limit_samples)
+               return SR_OK;
+
+       in_words_left = MIN(acq->mem_addr_stop - acq->mem_addr_done,
+                           READ_CHUNK_LEN);
+       expect_len = LWLA1034_MEMBUF_LEN(in_words_left) * sizeof(uint16_t);
+       actual_len = acq->xfer_in->actual_length;
+
+       if (actual_len != expect_len) {
+               sr_err("Received size %lu does not match expected size %lu.",
+                      (unsigned long)actual_len, (unsigned long)expect_len);
+               devc->transfer_error = TRUE;
+               return SR_ERR;
+       }
+       acq->mem_addr_done += in_words_left;
+       slice = acq->xfer_buf_in;
+       si = 0; /* word index within slice */
+
+       for (;;) {
+               sample = acq->sample;
+               /* Expand run-length samples into session packet. */
+               for (run_len = acq->run_len; run_len > 0; --run_len) {
+                       out_p = &acq->out_packet[acq->out_offset];
+                       out_p[0] =  sample        & 0xFF;
+                       out_p[1] = (sample >>  8) & 0xFF;
+                       out_p[2] = (sample >> 16) & 0xFF;
+                       out_p[3] = (sample >> 24) & 0xFF;
+                       out_p[4] = (sample >> 32) & 0xFF;
+                       acq->out_offset += UNIT_SIZE;
+
+                       /* Send out packet if it is full. */
+                       if (acq->out_offset > PACKET_SIZE - UNIT_SIZE)
+                               if (send_logic_packet(sdi))
+                                       return SR_OK; /* sample limit reached */
+               }
+               acq->run_len = 0;
+
+               if (in_words_left == 0)
+                       break; /* done with current chunk */
+
+               /* Now work on the current slice. */
+               high_nibbles = LWLA_READ32(&slice[8 * 2]);
+               word = LWLA_READ32(&slice[si * 2]);
+               word |= (high_nibbles << (4 * si + 4)) & ((uint64_t)0xF << 32);
+
+               if (acq->rle == RLE_STATE_DATA) {
+                       acq->sample = word & ALL_CHANNELS_MASK;
+                       acq->run_len = ((word >> NUM_PROBES) & 1) + 1;
+                       if (word & RLE_FLAG_LEN_FOLLOWS)
+                               acq->rle = RLE_STATE_LEN;
+               } else {
+                       acq->run_len += word << 1;
+                       acq->rle = RLE_STATE_DATA;
+               }
+
+               /* Move to next word. */
+               if (++si >= 8) {
+                       si = 0;
+                       slice += 9 * 2;
+               }
+               --in_words_left;
+       }
+
+       /* Send out partially filled packet if it is the last one. */
+       if (acq->mem_addr_done >= acq->mem_addr_stop && acq->out_offset > 0)
+               send_logic_packet(sdi);
+
+       return SR_OK;
+}
+
+/* Finish an acquisition session.  This sends the end packet to the session
+ * bus and removes the listener for asynchronous USB transfers.
+ */
+static void end_acquisition(struct sr_dev_inst *sdi)
+{
+       struct drv_context *drvc;
+       struct dev_context *devc;
+       struct sr_datafeed_packet packet;
+
+       drvc = sdi->driver->priv;
+       devc = sdi->priv;
+
+       if (devc->state == STATE_IDLE)
+               return;
+
+       devc->state = STATE_IDLE;
+
+       /* Remove USB file descriptors from polling. */
+       usb_source_remove(drvc->sr_ctx);
+
+       packet.type = SR_DF_END;
+       sr_session_send(sdi, &packet);
+
+       lwla_free_acquisition_state(devc->acquisition);
+       devc->acquisition = NULL;
+
+       sdi->status = SR_ST_ACTIVE;
+}
+
+/* USB output transfer completion callback.
+ */
+static void receive_transfer_out(struct libusb_transfer *transfer)
+{
+       struct sr_dev_inst *sdi;
+       struct dev_context *devc;
+
+       sdi  = transfer->user_data;
+       devc = sdi->priv;
+
+       if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
+               sr_err("Transfer to device failed: %d.", transfer->status);
+               devc->transfer_error = TRUE;
+               return;
+       }
+
+       if (devc->reg_write_pos < devc->reg_write_len) {
+               issue_next_write_reg(sdi);
+       } else {
+               switch (devc->state) {
+               case STATE_START_CAPTURE:
+                       devc->state = STATE_STATUS_WAIT;
+                       break;
+               case STATE_STATUS_REQUEST:
+                       devc->state = STATE_STATUS_RESPONSE;
+                       submit_transfer(devc, devc->acquisition->xfer_in);
+                       break;
+               case STATE_STOP_CAPTURE:
+                       if (sdi->status == SR_ST_ACTIVE)
+                               request_capture_length(sdi);
+                       else
+                               end_acquisition(sdi);
+                       break;
+               case STATE_LENGTH_REQUEST:
+                       devc->state = STATE_LENGTH_RESPONSE;
+                       submit_transfer(devc, devc->acquisition->xfer_in);
+                       break;
+               case STATE_READ_PREPARE:
+                       request_read_mem(sdi);
+                       break;
+               case STATE_READ_REQUEST:
+                       devc->state = STATE_READ_RESPONSE;
+                       submit_transfer(devc, devc->acquisition->xfer_in);
+                       break;
+               case STATE_READ_END:
+                       end_acquisition(sdi);
+                       break;
+               default:
+                       sr_err("Unexpected device state %d.", devc->state);
+                       break;
+               }
+       }
+}
+
+/* USB input transfer completion callback.
+ */
+static void receive_transfer_in(struct libusb_transfer *transfer)
+{
+       struct sr_dev_inst *sdi;
+       struct dev_context *devc;
+       struct acquisition_state *acq;
+
+       sdi  = transfer->user_data;
+       devc = sdi->priv;
+       acq  = devc->acquisition;
+
+       if (transfer->status != LIBUSB_TRANSFER_COMPLETED) {
+               sr_err("Transfer from device failed: %d.", transfer->status);
+               devc->transfer_error = TRUE;
+               return;
+       }
+
+       switch (devc->state) {
+       case STATE_STATUS_RESPONSE:
+               process_capture_status(sdi);
+               break;
+       case STATE_LENGTH_RESPONSE:
+               process_capture_length(sdi);
+               break;
+       case STATE_READ_RESPONSE:
+               if (process_sample_data(sdi) == SR_OK
+                               && acq->mem_addr_next < acq->mem_addr_stop
+                               && acq->transferred_samples < devc->limit_samples)
+                       request_read_mem(sdi);
+               else
+                       issue_read_end(sdi);
+               break;
+       default:
+               sr_err("Unexpected device state %d.", devc->state);
+               break;
+       }
+}
+
+/* Initialize the LWLA.  This downloads a bitstream into the FPGA
+ * and executes a simple device test sequence.
+ */
+SR_PRIV int lwla_init_device(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+       uint32_t value;
+
+       devc = sdi->priv;
+
+       /* Select internal clock if it hasn't been set yet */
+       if (devc->selected_clock_source == CLOCK_SOURCE_NONE)
+               devc->selected_clock_source = CLOCK_SOURCE_INT;
+
+       /* Force reload of bitstream */
+       devc->cur_clock_source = CLOCK_SOURCE_NONE;
+
+       ret = lwla_set_clock_source(sdi);
+
+       if (ret != SR_OK)
+               return ret;
+
+       ret = lwla_write_reg(sdi->conn, REG_CMD_CTRL2, 100);
+       if (ret != SR_OK)
+               return ret;
+
+       ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL1, &value);
+       if (ret != SR_OK)
+               return ret;
+       sr_info("Received test word 0x%08X back.", value);
+       if (value != 0x12345678)
+               return SR_ERR;
+
+       ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL4, &value);
+       if (ret != SR_OK)
+               return ret;
+       sr_info("Received test word 0x%08X back.", value);
+       if (value != 0x12345678)
+               return SR_ERR;
+
+       ret = lwla_read_reg(sdi->conn, REG_CMD_CTRL3, &value);
+       if (ret != SR_OK)
+               return ret;
+       sr_info("Received test word 0x%08X back.", value);
+       if (value != 0x87654321)
+               return SR_ERR;
+
+       return ret;
+}
+
+/* Select the LWLA clock source.  If the clock source changed from the
+ * previous setting, this will download a new bitstream to the FPGA.
+ */
+SR_PRIV int lwla_set_clock_source(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       int ret;
+       enum clock_source selected;
+
+       devc = sdi->priv;
+       selected = devc->selected_clock_source;
+
+       if (devc->cur_clock_source != selected) {
+               devc->cur_clock_source = CLOCK_SOURCE_NONE;
+
+               if (selected >= 0 && selected < G_N_ELEMENTS(bitstream_map)) {
+                       ret = lwla_send_bitstream(sdi->conn,
+                                                 bitstream_map[selected]);
+                       if (ret == SR_OK)
+                               devc->cur_clock_source = selected;
+                       return ret;
+               }
        }
+       return SR_OK;
+}
+
+/* Configure the LWLA in preparation for an acquisition session.
+ */
+SR_PRIV int lwla_setup_acquisition(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct sr_usb_dev_inst *usb;
+       struct regval_pair regvals[7];
+       int ret;
+
+       devc = sdi->priv;
+       usb  = sdi->conn;
+
+       regvals[0].reg = REG_MEM_CTRL2;
+       regvals[0].val = 2;
+
+       regvals[1].reg = REG_MEM_CTRL2;
+       regvals[1].val = 1;
+
+       regvals[2].reg = REG_CMD_CTRL2;
+       regvals[2].val = 10;
+
+       regvals[3].reg = REG_CMD_CTRL3;
+       regvals[3].val = 0x74;
+
+       regvals[4].reg = REG_CMD_CTRL4;
+       regvals[4].val = 0;
+
+       regvals[5].reg = REG_CMD_CTRL1;
+       regvals[5].val = 0;
+
+       regvals[6].reg = REG_DIV_BYPASS;
+       regvals[6].val = (devc->samplerate > SR_MHZ(100)) ? 1 : 0;
+
+       ret = lwla_write_regs(usb, regvals, G_N_ELEMENTS(regvals));
+       if (ret != SR_OK)
+               return ret;
+
+       return capture_setup(sdi);
+}
+
+/* Start the capture operation on the LWLA device.  Beginning with this
+ * function, all USB transfers will be asynchronous until the end of the
+ * acquisition session.
+ */
+SR_PRIV int lwla_start_acquisition(const struct sr_dev_inst *sdi)
+{
+       struct dev_context *devc;
+       struct sr_usb_dev_inst *usb;
+       struct acquisition_state *acq;
+       struct regval_pair *regvals;
+
+       devc = sdi->priv;
+       usb  = sdi->conn;
+       acq  = devc->acquisition;
+
+       libusb_fill_bulk_transfer(acq->xfer_out, usb->devhdl, EP_COMMAND,
+                                 (unsigned char *)acq->xfer_buf_out, 0,
+                                 &receive_transfer_out,
+                                 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
+
+       libusb_fill_bulk_transfer(acq->xfer_in, usb->devhdl, EP_REPLY,
+                                 (unsigned char *)acq->xfer_buf_in,
+                                 sizeof acq->xfer_buf_in,
+                                 &receive_transfer_in,
+                                 (struct sr_dev_inst *)sdi, USB_TIMEOUT);
+
+       regvals = devc->reg_write_seq;
+
+       regvals[0].reg = REG_CMD_CTRL2;
+       regvals[0].val = 10;
+
+       regvals[1].reg = REG_CMD_CTRL3;
+       regvals[1].val = 1;
+
+       regvals[2].reg = REG_CMD_CTRL4;
+       regvals[2].val = 0;
+
+       regvals[3].reg = REG_CMD_CTRL1;
+       regvals[3].val = 0;
+
+       devc->reg_write_pos = 0;
+       devc->reg_write_len = 4;
+
+       devc->state = STATE_START_CAPTURE;
+
+       return issue_next_write_reg(sdi);
+}
+
+/* Allocate an acquisition state object.
+ */
+SR_PRIV struct acquisition_state *lwla_alloc_acquisition_state(void)
+{
+       struct acquisition_state *acq;
+
+       acq = g_try_new0(struct acquisition_state, 1);
+       if (!acq) {
+               sr_err("Acquisition state malloc failed.");
+               return NULL;
+       }
+
+       acq->xfer_in = libusb_alloc_transfer(0);
+       if (!acq->xfer_in) {
+               sr_err("Transfer malloc failed.");
+               g_free(acq);
+               return NULL;
+       }
+
+       acq->xfer_out = libusb_alloc_transfer(0);
+       if (!acq->xfer_out) {
+               sr_err("Transfer malloc failed.");
+               libusb_free_transfer(acq->xfer_in);
+               g_free(acq);
+               return NULL;
+       }
+
+       return acq;
+}
+
+/* Deallocate an acquisition state object.
+ */
+SR_PRIV void lwla_free_acquisition_state(struct acquisition_state *acq)
+{
+       if (acq) {
+               libusb_free_transfer(acq->xfer_out);
+               libusb_free_transfer(acq->xfer_in);
+               g_free(acq);
+       }
+}
+
+/* USB I/O source callback.
+ */
+SR_PRIV int lwla_receive_data(int fd, int revents, void *cb_data)
+{
+       struct sr_dev_inst *sdi;
+       struct dev_context *devc;
+       struct drv_context *drvc;
+       struct timeval tv;
+       int ret;
+
+       (void)fd;
+
+       sdi  = cb_data;
+       devc = sdi->priv;
+       drvc = sdi->driver->priv;
+
+       if (!devc || !drvc)
+               return FALSE;
+
+       /* No timeout: return immediately. */
+       tv.tv_sec  = 0;
+       tv.tv_usec = 0;
+
+       ret = libusb_handle_events_timeout_completed(drvc->sr_ctx->libusb_ctx,
+                                                    &tv, NULL);
+       if (ret != 0)
+               sr_err("Event handling failed: %s.", libusb_error_name(ret));
+
+       /* If no event flags are set the timeout must have expired. */
+       if (revents == 0 && devc->state == STATE_STATUS_WAIT) {
+               if (sdi->status == SR_ST_STOPPING)
+                       issue_stop_capture(sdi);
+               else
+                       request_capture_status(sdi);
+       }
+
+       /* Check if an error occurred on a transfer. */
+       if (devc->transfer_error)
+               end_acquisition(sdi);
 
        return TRUE;
 }