]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
teleinfo: Fix measured quantity (energy, not power).
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64 {SR_CONF_SIGNAL_GENERATOR, SR_T_STRING, NULL, "Signal generator", NULL},
65 {SR_CONF_POWERMETER, SR_T_STRING, NULL, "Power meter", NULL},
66
67 /* Driver scan options */
68 {SR_CONF_CONN, SR_T_STRING, "conn",
69 "Connection", NULL},
70 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
71 "Serial communication", NULL},
72 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
73 "Modbus slave address", NULL},
74 {SR_CONF_FORCE_DETECT, SR_T_STRING, "force_detect",
75 "Forced detection", NULL},
76
77 /* Device (or channel group) configuration */
78 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
79 "Sample rate", NULL},
80 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
81 "Pre-trigger capture ratio", NULL},
82 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
83 "Pattern", NULL},
84 {SR_CONF_RLE, SR_T_BOOL, "rle",
85 "Run length encoding", NULL},
86 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
87 "Trigger slope", NULL},
88 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
89 "Averaging", NULL},
90 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
91 "Number of samples to average over", NULL},
92 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
93 "Trigger source", NULL},
94 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
95 "Horizontal trigger position", NULL},
96 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
97 "Buffer size", NULL},
98 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
99 "Time base", NULL},
100 {SR_CONF_FILTER, SR_T_BOOL, "filter",
101 "Filter", NULL},
102 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
103 "Volts/div", NULL},
104 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
105 "Coupling", NULL},
106 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
107 "Trigger matches", NULL},
108 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
109 "Sample interval", NULL},
110 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
111 "Number of horizontal divisions", NULL},
112 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
113 "Number of vertical divisions", NULL},
114 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
115 "Sound pressure level frequency weighting", NULL},
116 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
117 "Sound pressure level time weighting", NULL},
118 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
119 "Sound pressure level measurement range", NULL},
120 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
121 "Hold max", NULL},
122 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
123 "Hold min", NULL},
124 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
125 "Voltage threshold", NULL },
126 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
127 "External clock mode", NULL},
128 {SR_CONF_SWAP, SR_T_BOOL, "swap",
129 "Swap channel order", NULL},
130 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
131 "Center frequency", NULL},
132 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
133 "Number of logic channels", NULL},
134 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
135 "Number of analog channels", NULL},
136 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
137 "Current voltage", NULL},
138 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
139 "Voltage target", NULL},
140 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
141 "Current current", NULL},
142 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
143 "Current limit", NULL},
144 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
145 "Channel enabled", NULL},
146 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
147 "Channel modes", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
149 "Over-voltage protection enabled", NULL},
150 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
151 "Over-voltage protection active", NULL},
152 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
153 "Over-voltage protection threshold", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
155 "Over-current protection enabled", NULL},
156 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
157 "Over-current protection active", NULL},
158 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
159 "Over-current protection threshold", NULL},
160 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
161 "Clock edge", NULL},
162 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
163 "Amplitude", NULL},
164 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
165 "Channel regulation", NULL},
166 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
167 "Over-temperature protection", NULL},
168 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
169 "Output frequency", NULL},
170 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
171 "Output frequency target", NULL},
172 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
173 "Measured quantity", NULL},
174 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
175 "Equivalent circuit model", NULL},
176 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
177 "Over-temperature protection active", NULL},
178 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
179 "Under-voltage condition", NULL},
180 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
181 "Under-voltage condition active", NULL},
182 {SR_CONF_UNDER_VOLTAGE_CONDITION_THRESHOLD, SR_T_FLOAT, "uvc_threshold",
183 "Under-voltage condition threshold", NULL},
184 {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
185 "Trigger level", NULL},
186 {SR_CONF_EXTERNAL_CLOCK_SOURCE, SR_T_STRING, "external_clock_source",
187 "External clock source", NULL},
188 {SR_CONF_OFFSET, SR_T_FLOAT, "offset",
189 "Offset", NULL},
190 {SR_CONF_TRIGGER_PATTERN, SR_T_STRING, "triggerpattern",
191 "Trigger pattern", NULL},
192 {SR_CONF_HIGH_RESOLUTION, SR_T_BOOL, "highresolution",
193 "High resolution", NULL},
194 {SR_CONF_PEAK_DETECTION, SR_T_BOOL, "peakdetection",
195 "Peak detection", NULL},
196 {SR_CONF_LOGIC_THRESHOLD, SR_T_STRING, "logic_threshold",
197 "Logic threshold (predefined)", NULL},
198 {SR_CONF_LOGIC_THRESHOLD_CUSTOM, SR_T_FLOAT, "logic_threshold_custom",
199 "Logic threshold (custom)", NULL},
200 {SR_CONF_RANGE, SR_T_STRING, "range",
201 "Range", NULL},
202 {SR_CONF_DIGITS, SR_T_STRING, "digits",
203 "Digits", NULL},
204
205 /* Special stuff */
206 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
207 "Session file", NULL},
208 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
209 "Capture file", NULL},
210 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
211 "Capture unitsize", NULL},
212 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
213 "Power off", NULL},
214 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
215 "Data source", NULL},
216 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
217 "Probe factor", NULL},
218 {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
219 "Number of ADC powerline cycles", NULL},
220
221 /* Acquisition modes, sample limiting */
222 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
223 "Time limit", NULL},
224 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
225 "Sample limit", NULL},
226 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
227 "Frame limit", NULL},
228 {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
229 "Continuous sampling", NULL},
230 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
231 "Datalog", NULL},
232 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
233 "Device mode", NULL},
234 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
235 "Test mode", NULL},
236
237 ALL_ZERO
238};
239
240/* Please use the same order as in enum sr_mq (libsigrok.h). */
241static struct sr_key_info sr_key_info_mq[] = {
242 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
243 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
244 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
245 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
246 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
247 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
248 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
249 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
250 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
251 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
252 {SR_MQ_POWER, 0, "power", "Power", NULL},
253 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
254 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
255 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
256 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
257 {SR_MQ_TIME, 0, "time", "Time", NULL},
258 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
259 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
260 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
261 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
262 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
263 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
264 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
265 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
266 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
267 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
268 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
269 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
270 {SR_MQ_COUNT, 0, "count", "Count", NULL},
271 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
272 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
273 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
274 {SR_MQ_HARMONIC_RATIO, 0, "harmonic_ratio", "Harmonic ratio", NULL},
275 {SR_MQ_ENERGY, 0, "energy", "Energy", NULL},
276 ALL_ZERO
277};
278
279/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
280static struct sr_key_info sr_key_info_mqflag[] = {
281 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
282 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
283 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
284 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
285 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
286 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
287 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
288 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
289 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
290 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
291 "Frequency weighted (A)", NULL},
292 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
293 "Frequency weighted (C)", NULL},
294 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
295 "Frequency weighted (Z)", NULL},
296 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
297 "Frequency weighted (flat)", NULL},
298 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
299 "Time weighted (S)", NULL},
300 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
301 "Time weighted (F)", NULL},
302 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
303 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
304 "Percentage over alarm", NULL},
305 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
306 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
307 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
308 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
309 {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
310 ALL_ZERO
311};
312
313/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
314/** @private */
315SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
316{
317 switch (datatype) {
318 case SR_T_INT32:
319 return G_VARIANT_TYPE_INT32;
320 case SR_T_UINT64:
321 return G_VARIANT_TYPE_UINT64;
322 case SR_T_STRING:
323 return G_VARIANT_TYPE_STRING;
324 case SR_T_BOOL:
325 return G_VARIANT_TYPE_BOOLEAN;
326 case SR_T_FLOAT:
327 return G_VARIANT_TYPE_DOUBLE;
328 case SR_T_RATIONAL_PERIOD:
329 case SR_T_RATIONAL_VOLT:
330 case SR_T_UINT64_RANGE:
331 case SR_T_DOUBLE_RANGE:
332 return G_VARIANT_TYPE_TUPLE;
333 case SR_T_KEYVALUE:
334 return G_VARIANT_TYPE_DICTIONARY;
335 case SR_T_MQ:
336 return G_VARIANT_TYPE_TUPLE;
337 default:
338 return NULL;
339 }
340}
341
342/** @private */
343SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
344{
345 const struct sr_key_info *info;
346 const GVariantType *type, *expected;
347 char *expected_string, *type_string;
348
349 info = sr_key_info_get(SR_KEY_CONFIG, key);
350 if (!info)
351 return SR_OK;
352
353 expected = sr_variant_type_get(info->datatype);
354 type = g_variant_get_type(value);
355 if (!g_variant_type_equal(type, expected)
356 && !g_variant_type_is_subtype_of(type, expected)) {
357 expected_string = g_variant_type_dup_string(expected);
358 type_string = g_variant_type_dup_string(type);
359 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
360 info->name, expected_string, type_string);
361 g_free(expected_string);
362 g_free(type_string);
363 return SR_ERR_ARG;
364 }
365
366 return SR_OK;
367}
368
369/**
370 * Return the list of supported hardware drivers.
371 *
372 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
373 *
374 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
375 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
376 * The user should NOT g_free() this list, sr_exit() will do that.
377 *
378 * @since 0.4.0
379 */
380SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
381{
382 if (!ctx)
383 return NULL;
384
385 return ctx->driver_list;
386}
387
388/**
389 * Initialize a hardware driver.
390 *
391 * This usually involves memory allocations and variable initializations
392 * within the driver, but _not_ scanning for attached devices.
393 * The API call sr_driver_scan() is used for that.
394 *
395 * @param ctx A libsigrok context object allocated by a previous call to
396 * sr_init(). Must not be NULL.
397 * @param driver The driver to initialize. This must be a pointer to one of
398 * the entries returned by sr_driver_list(). Must not be NULL.
399 *
400 * @retval SR_OK Success
401 * @retval SR_ERR_ARG Invalid parameter(s).
402 * @retval SR_ERR_BUG Internal errors.
403 * @retval other Another negative error code upon other errors.
404 *
405 * @since 0.2.0
406 */
407SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
408{
409 int ret;
410
411 if (!ctx) {
412 sr_err("Invalid libsigrok context, can't initialize.");
413 return SR_ERR_ARG;
414 }
415
416 if (!driver) {
417 sr_err("Invalid driver, can't initialize.");
418 return SR_ERR_ARG;
419 }
420
421 /* No log message here, too verbose and not very useful. */
422
423 if ((ret = driver->init(driver, ctx)) < 0)
424 sr_err("Failed to initialize the driver: %d.", ret);
425
426 return ret;
427}
428
429/**
430 * Enumerate scan options supported by this driver.
431 *
432 * Before calling sr_driver_scan_options_list(), the user must have previously
433 * initialized the driver by calling sr_driver_init().
434 *
435 * @param driver The driver to enumerate options for. This must be a pointer
436 * to one of the entries returned by sr_driver_list(). Must not
437 * be NULL.
438 *
439 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
440 * entry is a configuration key that is supported as a scan option.
441 * The array must be freed by the caller using g_array_free().
442 *
443 * @since 0.4.0
444 */
445SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
446{
447 GVariant *gvar;
448 const uint32_t *opts;
449 gsize num_opts;
450 GArray *result;
451
452 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
453 return NULL;
454
455 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
456
457 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
458
459 g_array_insert_vals(result, 0, opts, num_opts);
460
461 g_variant_unref(gvar);
462
463 return result;
464}
465
466static int check_options(struct sr_dev_driver *driver, GSList *options,
467 uint32_t optlist_key, struct sr_dev_inst *sdi,
468 struct sr_channel_group *cg)
469{
470 struct sr_config *src;
471 const struct sr_key_info *srci;
472 GVariant *gvar_opts;
473 GSList *l;
474 const uint32_t *opts;
475 gsize num_opts, i;
476 int ret;
477
478 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
479 /* Driver publishes no options for this optlist. */
480 return SR_ERR;
481 }
482
483 ret = SR_OK;
484 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
485 for (l = options; l; l = l->next) {
486 src = l->data;
487 for (i = 0; i < num_opts; i++) {
488 if (opts[i] == src->key)
489 break;
490 }
491 if (i == num_opts) {
492 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
493 /* Shouldn't happen. */
494 sr_err("Invalid option %d.", src->key);
495 else
496 sr_err("Invalid option '%s'.", srci->id);
497 ret = SR_ERR_ARG;
498 break;
499 }
500 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
501 ret = SR_ERR_ARG;
502 break;
503 }
504 }
505 g_variant_unref(gvar_opts);
506
507 return ret;
508}
509
510/**
511 * Tell a hardware driver to scan for devices.
512 *
513 * In addition to the detection, the devices that are found are also
514 * initialized automatically. On some devices, this involves a firmware upload,
515 * or other such measures.
516 *
517 * The order in which the system is scanned for devices is not specified. The
518 * caller should not assume or rely on any specific order.
519 *
520 * Before calling sr_driver_scan(), the user must have previously initialized
521 * the driver by calling sr_driver_init().
522 *
523 * @param driver The driver that should scan. This must be a pointer to one of
524 * the entries returned by sr_driver_list(). Must not be NULL.
525 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
526 * scanner. Can be NULL/empty.
527 *
528 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
529 * found (or errors were encountered). This list must be freed by the
530 * caller using g_slist_free(), but without freeing the data pointed
531 * to in the list.
532 *
533 * @since 0.2.0
534 */
535SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
536{
537 GSList *l;
538
539 if (!driver) {
540 sr_err("Invalid driver, can't scan for devices.");
541 return NULL;
542 }
543
544 if (!driver->context) {
545 sr_err("Driver not initialized, can't scan for devices.");
546 return NULL;
547 }
548
549 if (options) {
550 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
551 return NULL;
552 }
553
554 l = driver->scan(driver, options);
555
556 sr_spew("Scan found %d devices (%s).", g_slist_length(l), driver->name);
557
558 return l;
559}
560
561/**
562 * Call driver cleanup function for all drivers.
563 *
564 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
565 *
566 * @private
567 */
568SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
569{
570 int i;
571 struct sr_dev_driver **drivers;
572
573 if (!ctx)
574 return;
575
576 sr_dbg("Cleaning up all drivers.");
577
578 drivers = sr_driver_list(ctx);
579 for (i = 0; drivers[i]; i++) {
580 if (drivers[i]->cleanup)
581 drivers[i]->cleanup(drivers[i]);
582 drivers[i]->context = NULL;
583 }
584}
585
586/**
587 * Allocate struct sr_config.
588 *
589 * A floating reference can be passed in for data.
590 *
591 * @param key The config key to use.
592 * @param data The GVariant data to use.
593 *
594 * @return The newly allocated struct sr_config. This function is assumed
595 * to never fail.
596 *
597 * @private
598 */
599SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
600{
601 struct sr_config *src;
602
603 src = g_malloc0(sizeof(struct sr_config));
604 src->key = key;
605 src->data = g_variant_ref_sink(data);
606
607 return src;
608}
609
610/**
611 * Free struct sr_config.
612 *
613 * @private
614 */
615SR_PRIV void sr_config_free(struct sr_config *src)
616{
617 if (!src || !src->data) {
618 sr_err("%s: invalid data!", __func__);
619 return;
620 }
621
622 g_variant_unref(src->data);
623 g_free(src);
624}
625
626/** @private */
627SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi)
628{
629 if (!sdi || !sdi->driver) {
630 sr_err("%s: Invalid arguments.", __func__);
631 return SR_ERR_ARG;
632 }
633
634 if (sdi->status != SR_ST_ACTIVE) {
635 sr_err("%s: Device instance not active, can't start.",
636 sdi->driver->name);
637 return SR_ERR_DEV_CLOSED;
638 }
639
640 sr_dbg("%s: Starting acquisition.", sdi->driver->name);
641
642 return sdi->driver->dev_acquisition_start(sdi);
643}
644
645/** @private */
646SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi)
647{
648 if (!sdi || !sdi->driver) {
649 sr_err("%s: Invalid arguments.", __func__);
650 return SR_ERR_ARG;
651 }
652
653 if (sdi->status != SR_ST_ACTIVE) {
654 sr_err("%s: Device instance not active, can't stop.",
655 sdi->driver->name);
656 return SR_ERR_DEV_CLOSED;
657 }
658
659 sr_dbg("%s: Stopping acquisition.", sdi->driver->name);
660
661 return sdi->driver->dev_acquisition_stop(sdi);
662}
663
664static void log_key(const struct sr_dev_inst *sdi,
665 const struct sr_channel_group *cg, uint32_t key, unsigned int op,
666 GVariant *data)
667{
668 const char *opstr;
669 const struct sr_key_info *srci;
670 gchar *tmp_str;
671
672 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
673 if (key == SR_CONF_DEVICE_OPTIONS)
674 return;
675
676 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
677 srci = sr_key_info_get(SR_KEY_CONFIG, key);
678
679 tmp_str = g_variant_print(data, TRUE);
680 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
681 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
682 data ? tmp_str : "NULL");
683 g_free(tmp_str);
684}
685
686static int check_key(const struct sr_dev_driver *driver,
687 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
688 uint32_t key, unsigned int op, GVariant *data)
689{
690 const struct sr_key_info *srci;
691 gsize num_opts, i;
692 GVariant *gvar_opts;
693 const uint32_t *opts;
694 uint32_t pub_opt;
695 const char *suffix;
696 const char *opstr;
697
698 if (sdi && cg)
699 suffix = " for this device instance and channel group";
700 else if (sdi)
701 suffix = " for this device instance";
702 else
703 suffix = "";
704
705 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
706 sr_err("Invalid key %d.", key);
707 return SR_ERR_ARG;
708 }
709 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
710
711 switch (key) {
712 case SR_CONF_LIMIT_MSEC:
713 case SR_CONF_LIMIT_SAMPLES:
714 case SR_CONF_SAMPLERATE:
715 /* Setting any of these to 0 is not useful. */
716 if (op != SR_CONF_SET || !data)
717 break;
718 if (g_variant_get_uint64(data) == 0) {
719 sr_err("Cannot set '%s' to 0.", srci->id);
720 return SR_ERR_ARG;
721 }
722 break;
723 case SR_CONF_CAPTURE_RATIO:
724 /* Capture ratio must always be between 0 and 100. */
725 if (op != SR_CONF_SET || !data)
726 break;
727 if (g_variant_get_uint64(data) > 100) {
728 sr_err("Capture ratio must be 0..100.");
729 return SR_ERR_ARG;
730 }
731 break;
732 }
733
734 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
735 /* Driver publishes no options. */
736 sr_err("No options available%s.", suffix);
737 return SR_ERR_ARG;
738 }
739 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
740 pub_opt = 0;
741 for (i = 0; i < num_opts; i++) {
742 if ((opts[i] & SR_CONF_MASK) == key) {
743 pub_opt = opts[i];
744 break;
745 }
746 }
747 g_variant_unref(gvar_opts);
748 if (!pub_opt) {
749 sr_err("Option '%s' not available%s.", srci->id, suffix);
750 return SR_ERR_ARG;
751 }
752
753 if (!(pub_opt & op)) {
754 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
755 return SR_ERR_ARG;
756 }
757
758 return SR_OK;
759}
760
761/**
762 * Query value of a configuration key at the given driver or device instance.
763 *
764 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
765 * @param[in] sdi (optional) If the key is specific to a device, this must
766 * contain a pointer to the struct sr_dev_inst to be checked.
767 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
768 * also be != NULL.
769 * @param[in] cg The channel group on the device for which to list the
770 * values, or NULL.
771 * @param[in] key The configuration key (SR_CONF_*).
772 * @param[in,out] data Pointer to a GVariant where the value will be stored.
773 * Must not be NULL. The caller is given ownership of the GVariant
774 * and must thus decrease the refcount after use. However if
775 * this function returns an error code, the field should be
776 * considered unused, and should not be unreferenced.
777 *
778 * @retval SR_OK Success.
779 * @retval SR_ERR Error.
780 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
781 * interpreted as an error by the caller; merely as an indication
782 * that it's not applicable.
783 *
784 * @since 0.3.0
785 */
786SR_API int sr_config_get(const struct sr_dev_driver *driver,
787 const struct sr_dev_inst *sdi,
788 const struct sr_channel_group *cg,
789 uint32_t key, GVariant **data)
790{
791 int ret;
792
793 if (!driver || !data)
794 return SR_ERR;
795
796 if (!driver->config_get)
797 return SR_ERR_ARG;
798
799 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
800 return SR_ERR_ARG;
801
802 if (sdi && !sdi->priv) {
803 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
804 return SR_ERR;
805 }
806
807 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
808 log_key(sdi, cg, key, SR_CONF_GET, *data);
809 /* Got a floating reference from the driver. Sink it here,
810 * caller will need to unref when done with it. */
811 g_variant_ref_sink(*data);
812 }
813
814 if (ret == SR_ERR_CHANNEL_GROUP)
815 sr_err("%s: No channel group specified.",
816 (sdi) ? sdi->driver->name : "unknown");
817
818 return ret;
819}
820
821/**
822 * Set value of a configuration key in a device instance.
823 *
824 * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
825 * sdi->priv must not be NULL either.
826 * @param[in] cg The channel group on the device for which to list the
827 * values, or NULL.
828 * @param[in] key The configuration key (SR_CONF_*).
829 * @param data The new value for the key, as a GVariant with GVariantType
830 * appropriate to that key. A floating reference can be passed
831 * in; its refcount will be sunk and unreferenced after use.
832 *
833 * @retval SR_OK Success.
834 * @retval SR_ERR Error.
835 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
836 * interpreted as an error by the caller; merely as an indication
837 * that it's not applicable.
838 *
839 * @since 0.3.0
840 */
841SR_API int sr_config_set(const struct sr_dev_inst *sdi,
842 const struct sr_channel_group *cg,
843 uint32_t key, GVariant *data)
844{
845 int ret;
846
847 g_variant_ref_sink(data);
848
849 if (!sdi || !sdi->driver || !sdi->priv || !data)
850 ret = SR_ERR;
851 else if (!sdi->driver->config_set)
852 ret = SR_ERR_ARG;
853 else if (sdi->status != SR_ST_ACTIVE) {
854 sr_err("%s: Device instance not active, can't set config.",
855 sdi->driver->name);
856 ret = SR_ERR_DEV_CLOSED;
857 } else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
858 return SR_ERR_ARG;
859 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
860 log_key(sdi, cg, key, SR_CONF_SET, data);
861 ret = sdi->driver->config_set(key, data, sdi, cg);
862 }
863
864 g_variant_unref(data);
865
866 if (ret == SR_ERR_CHANNEL_GROUP)
867 sr_err("%s: No channel group specified.",
868 (sdi) ? sdi->driver->name : "unknown");
869
870 return ret;
871}
872
873/**
874 * Apply configuration settings to the device hardware.
875 *
876 * @param sdi The device instance.
877 *
878 * @return SR_OK upon success or SR_ERR in case of error.
879 *
880 * @since 0.3.0
881 */
882SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
883{
884 int ret;
885
886 if (!sdi || !sdi->driver)
887 ret = SR_ERR;
888 else if (!sdi->driver->config_commit)
889 ret = SR_OK;
890 else if (sdi->status != SR_ST_ACTIVE) {
891 sr_err("%s: Device instance not active, can't commit config.",
892 sdi->driver->name);
893 ret = SR_ERR_DEV_CLOSED;
894 } else
895 ret = sdi->driver->config_commit(sdi);
896
897 return ret;
898}
899
900/**
901 * List all possible values for a configuration key.
902 *
903 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
904 * @param[in] sdi (optional) If the key is specific to a device instance, this
905 * must contain a pointer to the struct sr_dev_inst to be checked.
906 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
907 * also be != NULL.
908 * @param[in] cg The channel group on the device instance for which to list
909 * the values, or NULL. If this device instance doesn't
910 * have channel groups, this must not be != NULL.
911 * If cg is NULL, this function will return the "common" device
912 * instance options that are channel-group independent. Otherwise
913 * it will return the channel-group specific options.
914 * @param[in] key The configuration key (SR_CONF_*).
915 * @param[in,out] data A pointer to a GVariant where the list will be stored.
916 * The caller is given ownership of the GVariant and must thus
917 * unref the GVariant after use. However if this function
918 * returns an error code, the field should be considered
919 * unused, and should not be unreferenced.
920 *
921 * @retval SR_OK Success.
922 * @retval SR_ERR Error.
923 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
924 * interpreted as an error by the caller; merely as an indication
925 * that it's not applicable.
926 *
927 * @since 0.3.0
928 */
929SR_API int sr_config_list(const struct sr_dev_driver *driver,
930 const struct sr_dev_inst *sdi,
931 const struct sr_channel_group *cg,
932 uint32_t key, GVariant **data)
933{
934 int ret;
935
936 if (!driver || !data)
937 return SR_ERR;
938
939 if (!driver->config_list)
940 return SR_ERR_ARG;
941
942 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
943 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
944 return SR_ERR_ARG;
945 }
946
947 if (sdi && !sdi->priv) {
948 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
949 return SR_ERR;
950 }
951
952 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS && !sdi) {
953 sr_err("Config keys other than SR_CONF_SCAN_OPTIONS and "
954 "SR_CONF_DEVICE_OPTIONS always need an sdi.");
955 return SR_ERR_ARG;
956 }
957
958 if (cg && sdi && !sdi->channel_groups) {
959 sr_err("Can't list config for channel group, there are none.");
960 return SR_ERR_ARG;
961 }
962
963 if (cg && sdi && !g_slist_find(sdi->channel_groups, cg)) {
964 sr_err("If a channel group is specified, it must be a valid one.");
965 return SR_ERR_ARG;
966 }
967
968 if (cg && !sdi) {
969 sr_err("Need sdi when a channel group is specified.");
970 return SR_ERR_ARG;
971 }
972
973 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
974 log_key(sdi, cg, key, SR_CONF_LIST, *data);
975 g_variant_ref_sink(*data);
976 }
977
978 if (ret == SR_ERR_CHANNEL_GROUP)
979 sr_err("%s: No channel group specified.",
980 (sdi) ? sdi->driver->name : "unknown");
981
982 return ret;
983}
984
985static struct sr_key_info *get_keytable(int keytype)
986{
987 struct sr_key_info *table;
988
989 switch (keytype) {
990 case SR_KEY_CONFIG:
991 table = sr_key_info_config;
992 break;
993 case SR_KEY_MQ:
994 table = sr_key_info_mq;
995 break;
996 case SR_KEY_MQFLAGS:
997 table = sr_key_info_mqflag;
998 break;
999 default:
1000 sr_err("Invalid keytype %d", keytype);
1001 return NULL;
1002 }
1003
1004 return table;
1005}
1006
1007/**
1008 * Get information about a key, by key.
1009 *
1010 * @param[in] keytype The namespace the key is in.
1011 * @param[in] key The key to find.
1012 *
1013 * @return A pointer to a struct sr_key_info, or NULL if the key
1014 * was not found.
1015 *
1016 * @since 0.3.0
1017 */
1018SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
1019{
1020 struct sr_key_info *table;
1021 int i;
1022
1023 if (!(table = get_keytable(keytype)))
1024 return NULL;
1025
1026 for (i = 0; table[i].key; i++) {
1027 if (table[i].key == key)
1028 return &table[i];
1029 }
1030
1031 return NULL;
1032}
1033
1034/**
1035 * Get information about a key, by name.
1036 *
1037 * @param[in] keytype The namespace the key is in.
1038 * @param[in] keyid The key id string.
1039 *
1040 * @return A pointer to a struct sr_key_info, or NULL if the key
1041 * was not found.
1042 *
1043 * @since 0.2.0
1044 */
1045SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
1046{
1047 struct sr_key_info *table;
1048 int i;
1049
1050 if (!(table = get_keytable(keytype)))
1051 return NULL;
1052
1053 for (i = 0; table[i].key; i++) {
1054 if (!table[i].id)
1055 continue;
1056 if (!strcmp(table[i].id, keyid))
1057 return &table[i];
1058 }
1059
1060 return NULL;
1061}
1062
1063/** @} */