]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/zeroplus-logic-cube/api.c
sr_dev_close(): Set status to SR_ST_INACTIVE.
[libsigrok.git] / src / hardware / zeroplus-logic-cube / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "protocol.h"
22
23#define VENDOR_NAME "ZEROPLUS"
24#define USB_INTERFACE 0
25#define USB_CONFIGURATION 1
26#define NUM_TRIGGER_STAGES 4
27#define PACKET_SIZE 2048 /* ?? */
28
29//#define ZP_EXPERIMENTAL
30
31struct zp_model {
32 uint16_t vid;
33 uint16_t pid;
34 const char *model_name;
35 unsigned int channels;
36 unsigned int sample_depth; /* In Ksamples/channel */
37 unsigned int max_sampling_freq;
38};
39
40/*
41 * Note -- 16032, 16064 and 16128 *usually* -- but not always -- have the
42 * same 128K sample depth.
43 */
44static const struct zp_model zeroplus_models[] = {
45 {0x0c12, 0x7002, "LAP-16128U", 16, 128, 200},
46 {0x0c12, 0x7009, "LAP-C(16064)", 16, 64, 100},
47 {0x0c12, 0x700a, "LAP-C(16128)", 16, 128, 200},
48 {0x0c12, 0x700b, "LAP-C(32128)", 32, 128, 200},
49 {0x0c12, 0x700c, "LAP-C(321000)", 32, 1024, 200},
50 {0x0c12, 0x700d, "LAP-C(322000)", 32, 2048, 200},
51 {0x0c12, 0x700e, "LAP-C(16032)", 16, 32, 100},
52 {0x0c12, 0x7016, "LAP-C(162000)", 16, 2048, 200},
53 {0x0c12, 0x7100, "AKIP-9101", 16, 256, 200},
54 ALL_ZERO
55};
56
57static const uint32_t drvopts[] = {
58 SR_CONF_LOGIC_ANALYZER,
59};
60
61static const uint32_t devopts[] = {
62 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET | SR_CONF_LIST,
63 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
64 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
65 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
66 SR_CONF_VOLTAGE_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
67};
68
69static const int32_t trigger_matches[] = {
70 SR_TRIGGER_ZERO,
71 SR_TRIGGER_ONE,
72};
73
74/*
75 * ZEROPLUS LAP-C (16032) numbers the 16 channels A0-A7 and B0-B7.
76 * We currently ignore other untested/unsupported devices here.
77 */
78static const char *channel_names[] = {
79 "A0", "A1", "A2", "A3", "A4", "A5", "A6", "A7",
80 "B0", "B1", "B2", "B3", "B4", "B5", "B6", "B7",
81 "C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7",
82 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
83};
84
85/*
86 * The hardware supports more samplerates than these, but these are the
87 * options hardcoded into the vendor's Windows GUI.
88 */
89
90static const uint64_t samplerates_100[] = {
91 SR_HZ(100),
92 SR_HZ(500),
93 SR_KHZ(1),
94 SR_KHZ(5),
95 SR_KHZ(25),
96 SR_KHZ(50),
97 SR_KHZ(100),
98 SR_KHZ(200),
99 SR_KHZ(400),
100 SR_KHZ(800),
101 SR_MHZ(1),
102 SR_MHZ(10),
103 SR_MHZ(25),
104 SR_MHZ(50),
105 SR_MHZ(80),
106 SR_MHZ(100),
107};
108
109const uint64_t samplerates_200[] = {
110 SR_HZ(100),
111 SR_HZ(500),
112 SR_KHZ(1),
113 SR_KHZ(5),
114 SR_KHZ(25),
115 SR_KHZ(50),
116 SR_KHZ(100),
117 SR_KHZ(200),
118 SR_KHZ(400),
119 SR_KHZ(800),
120 SR_MHZ(1),
121 SR_MHZ(10),
122 SR_MHZ(25),
123 SR_MHZ(50),
124 SR_MHZ(80),
125 SR_MHZ(100),
126 SR_MHZ(150),
127 SR_MHZ(200),
128};
129
130SR_PRIV int zp_set_samplerate(struct dev_context *devc, uint64_t samplerate)
131{
132 int i;
133
134 for (i = 0; ARRAY_SIZE(samplerates_200); i++)
135 if (samplerate == samplerates_200[i])
136 break;
137
138 if (i == ARRAY_SIZE(samplerates_200) || samplerate > devc->max_samplerate) {
139 sr_err("Unsupported samplerate: %" PRIu64 "Hz.", samplerate);
140 return SR_ERR_ARG;
141 }
142
143 sr_info("Setting samplerate to %" PRIu64 "Hz.", samplerate);
144
145 if (samplerate >= SR_MHZ(1))
146 analyzer_set_freq(samplerate / SR_MHZ(1), FREQ_SCALE_MHZ);
147 else if (samplerate >= SR_KHZ(1))
148 analyzer_set_freq(samplerate / SR_KHZ(1), FREQ_SCALE_KHZ);
149 else
150 analyzer_set_freq(samplerate, FREQ_SCALE_HZ);
151
152 devc->cur_samplerate = samplerate;
153
154 return SR_OK;
155}
156
157static GSList *scan(struct sr_dev_driver *di, GSList *options)
158{
159 struct sr_dev_inst *sdi;
160 struct drv_context *drvc;
161 struct dev_context *devc;
162 const struct zp_model *prof;
163 struct libusb_device_descriptor des;
164 struct libusb_device_handle *hdl;
165 libusb_device **devlist;
166 GSList *devices;
167 int ret, i, j;
168 char serial_num[64], connection_id[64];
169
170 (void)options;
171
172 drvc = di->context;
173
174 devices = NULL;
175
176 /* Find all ZEROPLUS analyzers and add them to device list. */
177 libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist); /* TODO: Errors. */
178
179 for (i = 0; devlist[i]; i++) {
180 libusb_get_device_descriptor(devlist[i], &des);
181
182 if ((ret = libusb_open(devlist[i], &hdl)) < 0)
183 continue;
184
185 if (des.iSerialNumber == 0) {
186 serial_num[0] = '\0';
187 } else if ((ret = libusb_get_string_descriptor_ascii(hdl,
188 des.iSerialNumber, (unsigned char *) serial_num,
189 sizeof(serial_num))) < 0) {
190 sr_warn("Failed to get serial number string descriptor: %s.",
191 libusb_error_name(ret));
192 continue;
193 }
194
195 libusb_close(hdl);
196
197 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
198
199 prof = NULL;
200 for (j = 0; j < zeroplus_models[j].vid; j++) {
201 if (des.idVendor == zeroplus_models[j].vid &&
202 des.idProduct == zeroplus_models[j].pid) {
203 prof = &zeroplus_models[j];
204 }
205 }
206 /* Skip if the device was not found. */
207 if (!prof)
208 continue;
209 sr_info("Found ZEROPLUS %s.", prof->model_name);
210
211 /* Register the device with libsigrok. */
212 sdi = g_malloc0(sizeof(struct sr_dev_inst));
213 sdi->status = SR_ST_INACTIVE;
214 sdi->vendor = g_strdup(VENDOR_NAME);
215 sdi->model = g_strdup(prof->model_name);
216 sdi->serial_num = g_strdup(serial_num);
217 sdi->connection_id = g_strdup(connection_id);
218
219 /* Allocate memory for our private driver context. */
220 devc = g_malloc0(sizeof(struct dev_context));
221 sdi->priv = devc;
222 devc->prof = prof;
223 devc->num_channels = prof->channels;
224#ifdef ZP_EXPERIMENTAL
225 devc->max_sample_depth = 128 * 1024;
226 devc->max_samplerate = 200;
227#else
228 devc->max_sample_depth = prof->sample_depth * 1024;
229 devc->max_samplerate = prof->max_sampling_freq;
230#endif
231 devc->max_samplerate *= SR_MHZ(1);
232 devc->memory_size = MEMORY_SIZE_8K;
233 // memset(devc->trigger_buffer, 0, NUM_TRIGGER_STAGES);
234
235 /* Fill in channellist according to this device's profile. */
236 for (j = 0; j < devc->num_channels; j++)
237 sr_channel_new(sdi, j, SR_CHANNEL_LOGIC, TRUE,
238 channel_names[j]);
239
240 devices = g_slist_append(devices, sdi);
241 sdi->inst_type = SR_INST_USB;
242 sdi->conn = sr_usb_dev_inst_new(
243 libusb_get_bus_number(devlist[i]),
244 libusb_get_device_address(devlist[i]), NULL);
245 }
246 libusb_free_device_list(devlist, 1);
247
248 return std_scan_complete(di, devices);
249}
250
251static int dev_open(struct sr_dev_inst *sdi)
252{
253 struct sr_dev_driver *di = sdi->driver;
254 struct dev_context *devc;
255 struct drv_context *drvc;
256 struct sr_usb_dev_inst *usb;
257 int ret;
258
259 drvc = di->context;
260 usb = sdi->conn;
261 devc = sdi->priv;
262
263 ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb);
264 if (ret != SR_OK)
265 return ret;
266
267 ret = libusb_set_configuration(usb->devhdl, USB_CONFIGURATION);
268 if (ret < 0) {
269 sr_err("Unable to set USB configuration %d: %s.",
270 USB_CONFIGURATION, libusb_error_name(ret));
271 return SR_ERR;
272 }
273
274 ret = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
275 if (ret != 0) {
276 sr_err("Unable to claim interface: %s.",
277 libusb_error_name(ret));
278 return SR_ERR;
279 }
280
281 /* Set default configuration after power on. */
282 if (analyzer_read_status(usb->devhdl) == 0)
283 analyzer_configure(usb->devhdl);
284
285 analyzer_reset(usb->devhdl);
286 analyzer_initialize(usb->devhdl);
287
288 //analyzer_set_memory_size(MEMORY_SIZE_512K);
289 // analyzer_set_freq(g_freq, g_freq_scale);
290 analyzer_set_trigger_count(1);
291 // analyzer_set_ramsize_trigger_address((((100 - g_pre_trigger)
292 // * get_memory_size(g_memory_size)) / 100) >> 2);
293
294#if 0
295 if (g_double_mode == 1)
296 analyzer_set_compression(COMPRESSION_DOUBLE);
297 else if (g_compression == 1)
298 analyzer_set_compression(COMPRESSION_ENABLE);
299 else
300#endif
301 analyzer_set_compression(COMPRESSION_NONE);
302
303 if (devc->cur_samplerate == 0) {
304 /* Samplerate hasn't been set. Default to 1MHz. */
305 analyzer_set_freq(1, FREQ_SCALE_MHZ);
306 devc->cur_samplerate = SR_MHZ(1);
307 }
308
309 if (devc->cur_threshold == 0)
310 set_voltage_threshold(devc, 1.5);
311
312 return SR_OK;
313}
314
315static int dev_close(struct sr_dev_inst *sdi)
316{
317 struct sr_usb_dev_inst *usb;
318
319 usb = sdi->conn;
320
321 if (!usb->devhdl)
322 return SR_ERR_BUG;
323
324 sr_info("Closing device on %d.%d (logical) / %s (physical) interface %d.",
325 usb->bus, usb->address, sdi->connection_id, USB_INTERFACE);
326 libusb_release_interface(usb->devhdl, USB_INTERFACE);
327 libusb_reset_device(usb->devhdl);
328 libusb_close(usb->devhdl);
329 usb->devhdl = NULL;
330
331 return SR_OK;
332}
333
334static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
335 const struct sr_channel_group *cg)
336{
337 struct dev_context *devc;
338 GVariant *range[2];
339
340 (void)cg;
341
342 if (!sdi)
343 return SR_ERR_ARG;
344
345 devc = sdi->priv;
346
347 switch (key) {
348 case SR_CONF_SAMPLERATE:
349 *data = g_variant_new_uint64(devc->cur_samplerate);
350 break;
351 case SR_CONF_CAPTURE_RATIO:
352 *data = g_variant_new_uint64(devc->capture_ratio);
353 break;
354 case SR_CONF_VOLTAGE_THRESHOLD:
355 range[0] = g_variant_new_double(devc->cur_threshold);
356 range[1] = g_variant_new_double(devc->cur_threshold);
357 *data = g_variant_new_tuple(range, 2);
358 break;
359 default:
360 return SR_ERR_NA;
361 }
362
363 return SR_OK;
364}
365
366static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
367 const struct sr_channel_group *cg)
368{
369 struct dev_context *devc;
370 gdouble low, high;
371
372 (void)cg;
373
374 devc = sdi->priv;
375
376 switch (key) {
377 case SR_CONF_SAMPLERATE:
378 return zp_set_samplerate(devc, g_variant_get_uint64(data));
379 case SR_CONF_LIMIT_SAMPLES:
380 return set_limit_samples(devc, g_variant_get_uint64(data));
381 case SR_CONF_CAPTURE_RATIO:
382 return set_capture_ratio(devc, g_variant_get_uint64(data));
383 case SR_CONF_VOLTAGE_THRESHOLD:
384 g_variant_get(data, "(dd)", &low, &high);
385 return set_voltage_threshold(devc, (low + high) / 2.0);
386 default:
387 return SR_ERR_NA;
388 }
389
390 return SR_OK;
391}
392
393static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
394 const struct sr_channel_group *cg)
395{
396 struct dev_context *devc;
397 GVariant *gvar, *grange[2];
398 GVariantBuilder gvb;
399 double v;
400 GVariant *range[2];
401
402 (void)cg;
403
404 switch (key) {
405 case SR_CONF_DEVICE_OPTIONS:
406 if (!sdi) {
407 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
408 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
409 } else {
410 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
411 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
412 }
413 break;
414 case SR_CONF_SAMPLERATE:
415 devc = sdi->priv;
416 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
417 if (devc->prof->max_sampling_freq == 100) {
418 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
419 samplerates_100, ARRAY_SIZE(samplerates_100),
420 sizeof(uint64_t));
421 } else if (devc->prof->max_sampling_freq == 200) {
422 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
423 samplerates_200, ARRAY_SIZE(samplerates_200),
424 sizeof(uint64_t));
425 } else {
426 sr_err("Internal error: Unknown max. samplerate: %d.",
427 devc->prof->max_sampling_freq);
428 return SR_ERR_ARG;
429 }
430 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
431 *data = g_variant_builder_end(&gvb);
432 break;
433 case SR_CONF_TRIGGER_MATCH:
434 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
435 trigger_matches, ARRAY_SIZE(trigger_matches),
436 sizeof(int32_t));
437 break;
438 case SR_CONF_VOLTAGE_THRESHOLD:
439 g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
440 for (v = -6.0; v <= 6.0; v += 0.1) {
441 range[0] = g_variant_new_double(v);
442 range[1] = g_variant_new_double(v);
443 gvar = g_variant_new_tuple(range, 2);
444 g_variant_builder_add_value(&gvb, gvar);
445 }
446 *data = g_variant_builder_end(&gvb);
447 break;
448 case SR_CONF_LIMIT_SAMPLES:
449 if (!sdi)
450 return SR_ERR_ARG;
451 devc = sdi->priv;
452 grange[0] = g_variant_new_uint64(0);
453 grange[1] = g_variant_new_uint64(devc->max_sample_depth);
454 *data = g_variant_new_tuple(grange, 2);
455 break;
456 default:
457 return SR_ERR_NA;
458 }
459
460 return SR_OK;
461}
462
463static int dev_acquisition_start(const struct sr_dev_inst *sdi)
464{
465 struct dev_context *devc;
466 struct sr_usb_dev_inst *usb;
467 struct sr_datafeed_packet packet;
468 struct sr_datafeed_logic logic;
469 unsigned int samples_read;
470 int res;
471 unsigned int packet_num, n;
472 unsigned char *buf;
473 unsigned int status;
474 unsigned int stop_address;
475 unsigned int now_address;
476 unsigned int trigger_address;
477 unsigned int trigger_offset;
478 unsigned int triggerbar;
479 unsigned int ramsize_trigger;
480 unsigned int memory_size;
481 unsigned int valid_samples;
482 unsigned int discard;
483 int trigger_now;
484
485 devc = sdi->priv;
486
487 if (analyzer_add_triggers(sdi) != SR_OK) {
488 sr_err("Failed to configure triggers.");
489 return SR_ERR;
490 }
491
492 usb = sdi->conn;
493
494 set_triggerbar(devc);
495
496 /* Push configured settings to device. */
497 analyzer_configure(usb->devhdl);
498
499 analyzer_start(usb->devhdl);
500 sr_info("Waiting for data.");
501 analyzer_wait_data(usb->devhdl);
502
503 status = analyzer_read_status(usb->devhdl);
504 stop_address = analyzer_get_stop_address(usb->devhdl);
505 now_address = analyzer_get_now_address(usb->devhdl);
506 trigger_address = analyzer_get_trigger_address(usb->devhdl);
507
508 triggerbar = analyzer_get_triggerbar_address();
509 ramsize_trigger = analyzer_get_ramsize_trigger_address();
510
511 n = get_memory_size(devc->memory_size);
512 memory_size = n / 4;
513
514 sr_info("Status = 0x%x.", status);
515 sr_info("Stop address = 0x%x.", stop_address);
516 sr_info("Now address = 0x%x.", now_address);
517 sr_info("Trigger address = 0x%x.", trigger_address);
518 sr_info("Triggerbar address = 0x%x.", triggerbar);
519 sr_info("Ramsize trigger = 0x%x.", ramsize_trigger);
520 sr_info("Memory size = 0x%x.", memory_size);
521
522 std_session_send_df_header(sdi);
523
524 /* Check for empty capture */
525 if ((status & STATUS_READY) && !stop_address) {
526 std_session_send_df_end(sdi);
527 return SR_OK;
528 }
529
530 buf = g_malloc(PACKET_SIZE);
531
532 /* Check if the trigger is in the samples we are throwing away */
533 trigger_now = now_address == trigger_address ||
534 ((now_address + 1) % memory_size) == trigger_address;
535
536 /*
537 * STATUS_READY doesn't clear until now_address advances past
538 * addr 0, but for our logic, clear it in that case
539 */
540 if (!now_address)
541 status &= ~STATUS_READY;
542
543 analyzer_read_start(usb->devhdl);
544
545 /* Calculate how much data to discard */
546 discard = 0;
547 if (status & STATUS_READY) {
548 /*
549 * We haven't wrapped around, we need to throw away data from
550 * our current position to the end of the buffer.
551 * Additionally, the first two samples captured are always
552 * bogus.
553 */
554 discard += memory_size - now_address + 2;
555 now_address = 2;
556 }
557
558 /* If we have more samples than we need, discard them */
559 valid_samples = (stop_address - now_address) % memory_size;
560 if (valid_samples > ramsize_trigger + triggerbar) {
561 discard += valid_samples - (ramsize_trigger + triggerbar);
562 now_address += valid_samples - (ramsize_trigger + triggerbar);
563 }
564
565 sr_info("Need to discard %d samples.", discard);
566
567 /* Calculate how far in the trigger is */
568 if (trigger_now)
569 trigger_offset = 0;
570 else
571 trigger_offset = (trigger_address - now_address) % memory_size;
572
573 /* Recalculate the number of samples available */
574 valid_samples = (stop_address - now_address) % memory_size;
575
576 /* Send the incoming transfer to the session bus. */
577 samples_read = 0;
578 for (packet_num = 0; packet_num < n / PACKET_SIZE; packet_num++) {
579 unsigned int len;
580 unsigned int buf_offset;
581
582 res = analyzer_read_data(usb->devhdl, buf, PACKET_SIZE);
583 sr_info("Tried to read %d bytes, actually read %d bytes.",
584 PACKET_SIZE, res);
585
586 if (discard >= PACKET_SIZE / 4) {
587 discard -= PACKET_SIZE / 4;
588 continue;
589 }
590
591 len = PACKET_SIZE - discard * 4;
592 buf_offset = discard * 4;
593 discard = 0;
594
595 /* Check if we've read all the samples */
596 if (samples_read + len / 4 >= valid_samples)
597 len = (valid_samples - samples_read) * 4;
598 if (!len)
599 break;
600
601 if (samples_read < trigger_offset &&
602 samples_read + len / 4 > trigger_offset) {
603 /* Send out samples remaining before trigger */
604 packet.type = SR_DF_LOGIC;
605 packet.payload = &logic;
606 logic.length = (trigger_offset - samples_read) * 4;
607 logic.unitsize = 4;
608 logic.data = buf + buf_offset;
609 sr_session_send(sdi, &packet);
610 len -= logic.length;
611 samples_read += logic.length / 4;
612 buf_offset += logic.length;
613 }
614
615 if (samples_read == trigger_offset) {
616 /* Send out trigger */
617 packet.type = SR_DF_TRIGGER;
618 packet.payload = NULL;
619 sr_session_send(sdi, &packet);
620 }
621
622 /* Send out data (or data after trigger) */
623 packet.type = SR_DF_LOGIC;
624 packet.payload = &logic;
625 logic.length = len;
626 logic.unitsize = 4;
627 logic.data = buf + buf_offset;
628 sr_session_send(sdi, &packet);
629 samples_read += len / 4;
630 }
631 analyzer_read_stop(usb->devhdl);
632 g_free(buf);
633
634 std_session_send_df_end(sdi);
635
636 return SR_OK;
637}
638
639/* TODO: This stops acquisition on ALL devices, ignoring dev_index. */
640static int dev_acquisition_stop(struct sr_dev_inst *sdi)
641{
642 struct sr_usb_dev_inst *usb;
643
644 std_session_send_df_end(sdi);
645
646 usb = sdi->conn;
647 analyzer_reset(usb->devhdl);
648 /* TODO: Need to cancel and free any queued up transfers. */
649
650 return SR_OK;
651}
652
653static struct sr_dev_driver zeroplus_logic_cube_driver_info = {
654 .name = "zeroplus-logic-cube",
655 .longname = "ZEROPLUS Logic Cube LAP-C series",
656 .api_version = 1,
657 .init = std_init,
658 .cleanup = std_cleanup,
659 .scan = scan,
660 .dev_list = std_dev_list,
661 .dev_clear = NULL,
662 .config_get = config_get,
663 .config_set = config_set,
664 .config_list = config_list,
665 .dev_open = dev_open,
666 .dev_close = dev_close,
667 .dev_acquisition_start = dev_acquisition_start,
668 .dev_acquisition_stop = dev_acquisition_stop,
669 .context = NULL,
670};
671SR_REGISTER_DEV_DRIVER(zeroplus_logic_cube_driver_info);