]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/uni-t-dmm/api.c
Add support for the Tenma 77-9380A multimeter.
[libsigrok.git] / src / hardware / uni-t-dmm / api.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include <config.h>
22#include <stdlib.h>
23#include <string.h>
24#include <libsigrok/libsigrok.h>
25#include "libsigrok-internal.h"
26#include "protocol.h"
27
28#define UNI_T_UT_D04_NEW "1a86.e008"
29
30static const uint32_t scanopts[] = {
31 SR_CONF_CONN,
32};
33
34static const uint32_t devopts[] = {
35 SR_CONF_MULTIMETER,
36 SR_CONF_CONTINUOUS,
37 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
38 SR_CONF_LIMIT_MSEC | SR_CONF_SET,
39};
40
41/*
42 * Note 1: The actual baudrate of the Cyrustek ES519xx chip used in this DMM
43 * is 19230. However, the WCH CH9325 chip (UART to USB/HID) used in (some
44 * versions of) the UNI-T UT-D04 cable doesn't support 19230 baud. It only
45 * supports 19200, and setting an unsupported baudrate will result in the
46 * default of 2400 being used (which will not work with this DMM, of course).
47 */
48
49static int dev_clear(const struct sr_dev_driver *di)
50{
51 return std_dev_clear(di, NULL);
52}
53
54static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
55{
56 return std_init(sr_ctx, di, LOG_PREFIX);
57}
58
59static GSList *scan(struct sr_dev_driver *di, GSList *options)
60{
61 GSList *usb_devices, *devices, *l;
62 struct sr_dev_inst *sdi;
63 struct dev_context *devc;
64 struct drv_context *drvc;
65 struct dmm_info *dmm;
66 struct sr_usb_dev_inst *usb;
67 struct sr_config *src;
68 const char *conn;
69
70 drvc = di->context;
71 dmm = (struct dmm_info *)di;
72
73 conn = NULL;
74 for (l = options; l; l = l->next) {
75 src = l->data;
76 switch (src->key) {
77 case SR_CONF_CONN:
78 conn = g_variant_get_string(src->data, NULL);
79 break;
80 }
81 }
82 if (!conn)
83 return NULL;
84
85 devices = NULL;
86 if (!(usb_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn))) {
87 g_slist_free_full(usb_devices, g_free);
88 return NULL;
89 }
90
91 for (l = usb_devices; l; l = l->next) {
92 usb = l->data;
93 devc = g_malloc0(sizeof(struct dev_context));
94 devc->first_run = TRUE;
95 sdi = g_malloc0(sizeof(struct sr_dev_inst));
96 sdi->status = SR_ST_INACTIVE;
97 sdi->vendor = g_strdup(dmm->vendor);
98 sdi->model = g_strdup(dmm->device);
99 sdi->priv = devc;
100 sdi->driver = di;
101 sr_channel_new(sdi, 0, SR_CHANNEL_ANALOG, TRUE, "P1");
102 sdi->inst_type = SR_INST_USB;
103 sdi->conn = usb;
104 drvc->instances = g_slist_append(drvc->instances, sdi);
105 devices = g_slist_append(devices, sdi);
106 }
107
108 return devices;
109}
110
111static GSList *dev_list(const struct sr_dev_driver *di)
112{
113 return ((struct drv_context *)(di->context))->instances;
114}
115
116static int dev_open(struct sr_dev_inst *sdi)
117{
118 struct sr_dev_driver *di;
119 struct drv_context *drvc;
120 struct sr_usb_dev_inst *usb;
121 int ret;
122
123 di = sdi->driver;
124 drvc = di->context;
125 usb = sdi->conn;
126
127 if ((ret = sr_usb_open(drvc->sr_ctx->libusb_ctx, usb)) == SR_OK)
128 sdi->status = SR_ST_ACTIVE;
129
130 return ret;
131}
132
133static int dev_close(struct sr_dev_inst *sdi)
134{
135 /* TODO */
136
137 sdi->status = SR_ST_INACTIVE;
138
139 return SR_OK;
140}
141
142static int cleanup(const struct sr_dev_driver *di)
143{
144 return dev_clear(di);
145}
146
147static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
148 const struct sr_channel_group *cg)
149{
150 struct dev_context *devc;
151
152 (void)cg;
153
154 devc = sdi->priv;
155
156 switch (key) {
157 case SR_CONF_LIMIT_MSEC:
158 devc->limit_msec = g_variant_get_uint64(data);
159 break;
160 case SR_CONF_LIMIT_SAMPLES:
161 devc->limit_samples = g_variant_get_uint64(data);
162 break;
163 default:
164 return SR_ERR_NA;
165 }
166
167 return SR_OK;
168}
169
170static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
171 const struct sr_channel_group *cg)
172{
173 (void)sdi;
174 (void)cg;
175
176 switch (key) {
177 case SR_CONF_SCAN_OPTIONS:
178 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
179 scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
180 break;
181 case SR_CONF_DEVICE_OPTIONS:
182 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
183 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
184 break;
185 default:
186 return SR_ERR_NA;
187 }
188
189 return SR_OK;
190}
191
192static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
193{
194 struct dev_context *devc;
195
196 devc = sdi->priv;
197
198 devc->cb_data = cb_data;
199
200 devc->starttime = g_get_monotonic_time();
201
202 /* Send header packet to the session bus. */
203 std_session_send_df_header(sdi, LOG_PREFIX);
204
205 sr_session_source_add(sdi->session, -1, 0, 10 /* poll_timeout */,
206 uni_t_dmm_receive_data, (void *)sdi);
207
208 return SR_OK;
209}
210
211static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
212{
213 struct sr_datafeed_packet packet;
214
215 (void)cb_data;
216
217 sr_dbg("Stopping acquisition.");
218
219 /* Send end packet to the session bus. */
220 sr_dbg("Sending SR_DF_END.");
221 packet.type = SR_DF_END;
222 sr_session_send(sdi, &packet);
223
224 sr_session_source_remove(sdi->session, -1);
225
226 return SR_OK;
227}
228
229#define DMM(ID, CHIPSET, VENDOR, MODEL, BAUDRATE, PACKETSIZE, \
230 VALID, PARSE, DETAILS) \
231 &(struct dmm_info) { \
232 { \
233 .name = ID, \
234 .longname = VENDOR " " MODEL, \
235 .api_version = 1, \
236 .init = init, \
237 .cleanup = cleanup, \
238 .scan = scan, \
239 .dev_list = dev_list, \
240 .dev_clear = dev_clear, \
241 .config_get = NULL, \
242 .config_set = config_set, \
243 .config_list = config_list, \
244 .dev_open = dev_open, \
245 .dev_close = dev_close, \
246 .dev_acquisition_start = dev_acquisition_start, \
247 .dev_acquisition_stop = dev_acquisition_stop, \
248 .context = NULL, \
249 }, \
250 VENDOR, MODEL, BAUDRATE, PACKETSIZE, \
251 VALID, PARSE, DETAILS, sizeof(struct CHIPSET##_info) \
252 }
253
254SR_PRIV const struct dmm_info *uni_t_dmm_drivers[] = {
255 DMM(
256 "tecpel-dmm-8061", fs9721,
257 "Tecpel", "DMM-8061", 2400,
258 FS9721_PACKET_SIZE,
259 sr_fs9721_packet_valid, sr_fs9721_parse,
260 sr_fs9721_00_temp_c
261 ),
262 DMM(
263 "uni-t-ut372", ut372,
264 "UNI-T", "UT372", 2400,
265 UT372_PACKET_SIZE,
266 sr_ut372_packet_valid, sr_ut372_parse,
267 NULL
268 ),
269 DMM(
270 "uni-t-ut60a", fs9721,
271 "UNI-T", "UT60A", 2400,
272 FS9721_PACKET_SIZE,
273 sr_fs9721_packet_valid, sr_fs9721_parse,
274 NULL
275 ),
276 DMM(
277 "uni-t-ut60e", fs9721,
278 "UNI-T", "UT60E", 2400,
279 FS9721_PACKET_SIZE,
280 sr_fs9721_packet_valid, sr_fs9721_parse,
281 sr_fs9721_00_temp_c
282 ),
283 DMM(
284 "uni-t-ut60g", es519xx,
285 /* The baudrate is actually 19230, see "Note 1" below. */
286 "UNI-T", "UT60G", 19200,
287 ES519XX_11B_PACKET_SIZE,
288 sr_es519xx_19200_11b_packet_valid, sr_es519xx_19200_11b_parse,
289 NULL
290 ),
291 DMM(
292 "uni-t-ut61b", fs9922,
293 "UNI-T", "UT61B", 2400,
294 FS9922_PACKET_SIZE,
295 sr_fs9922_packet_valid, sr_fs9922_parse,
296 NULL
297 ),
298 DMM(
299 "uni-t-ut61c", fs9922,
300 "UNI-T", "UT61C", 2400,
301 FS9922_PACKET_SIZE,
302 sr_fs9922_packet_valid, sr_fs9922_parse,
303 NULL
304 ),
305 DMM(
306 "uni-t-ut61d", fs9922,
307 "UNI-T", "UT61D", 2400,
308 FS9922_PACKET_SIZE,
309 sr_fs9922_packet_valid, sr_fs9922_parse,
310 NULL
311 ),
312 DMM(
313 "uni-t-ut61e", es519xx,
314 /* The baudrate is actually 19230, see "Note 1" below. */
315 "UNI-T", "UT61E", 19200,
316 ES519XX_14B_PACKET_SIZE,
317 sr_es519xx_19200_14b_packet_valid, sr_es519xx_19200_14b_parse,
318 NULL
319 ),
320 DMM(
321 "uni-t-ut71a", ut71x,
322 "UNI-T", "UT71A", 2400, UT71X_PACKET_SIZE,
323 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
324 ),
325 DMM(
326 "uni-t-ut71b", ut71x,
327 "UNI-T", "UT71B", 2400, UT71X_PACKET_SIZE,
328 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
329 ),
330 DMM(
331 "uni-t-ut71c", ut71x,
332 "UNI-T", "UT71C", 2400, UT71X_PACKET_SIZE,
333 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
334 ),
335 DMM(
336 "uni-t-ut71d", ut71x,
337 "UNI-T", "UT71D", 2400, UT71X_PACKET_SIZE,
338 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
339 ),
340 DMM(
341 "uni-t-ut71e", ut71x,
342 "UNI-T", "UT71E", 2400, UT71X_PACKET_SIZE,
343 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
344 ),
345 DMM(
346 "voltcraft-vc820", fs9721,
347 "Voltcraft", "VC-820", 2400,
348 FS9721_PACKET_SIZE,
349 sr_fs9721_packet_valid, sr_fs9721_parse,
350 NULL
351 ),
352 DMM(
353 "voltcraft-vc830", fs9922,
354 /*
355 * Note: The VC830 doesn't set the 'volt' and 'diode' bits of
356 * the FS9922 protocol. Instead, it only sets the user-defined
357 * bit "z1" to indicate "diode mode" and "voltage".
358 */
359 "Voltcraft", "VC-830", 2400,
360 FS9922_PACKET_SIZE,
361 sr_fs9922_packet_valid, sr_fs9922_parse,
362 &sr_fs9922_z1_diode
363 ),
364 DMM(
365 "voltcraft-vc840", fs9721,
366 "Voltcraft", "VC-840", 2400,
367 FS9721_PACKET_SIZE,
368 sr_fs9721_packet_valid, sr_fs9721_parse,
369 sr_fs9721_00_temp_c
370 ),
371 DMM(
372 "voltcraft-vc870", vc870,
373 "Voltcraft", "VC-870", 9600, VC870_PACKET_SIZE,
374 sr_vc870_packet_valid, sr_vc870_parse, NULL
375 ),
376 DMM(
377 "voltcraft-vc920", ut71x,
378 "Voltcraft", "VC-920", 2400, UT71X_PACKET_SIZE,
379 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
380 ),
381 DMM(
382 "voltcraft-vc940", ut71x,
383 "Voltcraft", "VC-940", 2400, UT71X_PACKET_SIZE,
384 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
385 ),
386 DMM(
387 "voltcraft-vc960", ut71x,
388 "Voltcraft", "VC-960", 2400, UT71X_PACKET_SIZE,
389 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
390 ),
391 DMM(
392 "tenma-72-7730", ut71x,
393 "Tenma", "72-7730", 2400,
394 UT71X_PACKET_SIZE,
395 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
396 ),
397 DMM(
398 "tenma-72-9380a", ut71x,
399 "Tenma", "72-9380A", 2400,
400 UT71X_PACKET_SIZE,
401 sr_ut71x_packet_valid, sr_ut71x_parse, NULL
402 ),
403 DMM(
404 "tenma-72-7745", es519xx,
405 "Tenma", "72-7745", 2400,
406 FS9721_PACKET_SIZE,
407 sr_fs9721_packet_valid, sr_fs9721_parse,
408 sr_fs9721_00_temp_c
409 ),
410 DMM(
411 "tenma-72-7750", es519xx,
412 /* The baudrate is actually 19230, see "Note 1" below. */
413 "Tenma", "72-7750", 19200,
414 ES519XX_11B_PACKET_SIZE,
415 sr_es519xx_19200_11b_packet_valid, sr_es519xx_19200_11b_parse,
416 NULL
417 ),
418 NULL
419};