]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/hameg-hmo/protocol.c
rigol-ds: improve robustness in samplerate getting code path
[libsigrok.git] / src / hardware / hameg-hmo / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
5 * Copyright (C) 2018 Guido Trentalancia <guido@trentalancia.com>
6 *
7 * This program is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21#include <config.h>
22#include <math.h>
23#include <stdlib.h>
24#include "scpi.h"
25#include "protocol.h"
26
27SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
28 size_t group, GByteArray *pod_data);
29SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
30 struct dev_context *devc);
31SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc);
32
33static const char *hameg_scpi_dialect[] = {
34 [SCPI_CMD_GET_DIG_DATA] = ":FORM UINT,8;:POD%d:DATA?",
35 [SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?",
36 [SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s",
37 [SCPI_CMD_GET_HORIZONTAL_DIV] = ":TIM:DIV?",
38 [SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?",
39 [SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s",
40 [SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?",
41 [SCPI_CMD_GET_ANALOG_DATA] = ":FORM:BORD %s;" \
42 ":FORM REAL,32;:CHAN%d:DATA?",
43 [SCPI_CMD_GET_VERTICAL_SCALE] = ":CHAN%d:SCAL?",
44 [SCPI_CMD_SET_VERTICAL_SCALE] = ":CHAN%d:SCAL %s",
45 [SCPI_CMD_GET_DIG_POD_STATE] = ":POD%d:STAT?",
46 [SCPI_CMD_SET_DIG_POD_STATE] = ":POD%d:STAT %d",
47 [SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?",
48 [SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s",
49 [SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?",
50 [SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:TYPE EDGE;:TRIG:A:EDGE:SLOP %s",
51 [SCPI_CMD_GET_TRIGGER_PATTERN] = ":TRIG:A:PATT:SOUR?",
52 [SCPI_CMD_SET_TRIGGER_PATTERN] = ":TRIG:A:TYPE LOGIC;" \
53 ":TRIG:A:PATT:FUNC AND;" \
54 ":TRIG:A:PATT:COND \"TRUE\";" \
55 ":TRIG:A:PATT:MODE OFF;" \
56 ":TRIG:A:PATT:SOUR \"%s\"",
57 [SCPI_CMD_GET_HIGH_RESOLUTION] = ":ACQ:HRES?",
58 [SCPI_CMD_SET_HIGH_RESOLUTION] = ":ACQ:HRES %s",
59 [SCPI_CMD_GET_PEAK_DETECTION] = ":ACQ:PEAK?",
60 [SCPI_CMD_SET_PEAK_DETECTION] = ":ACQ:PEAK %s",
61 [SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?",
62 [SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d",
63 [SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?",
64 [SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?",
65 [SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %s",
66 [SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?",
67 [SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d",
68 [SCPI_CMD_GET_PROBE_UNIT] = ":PROB%d:SET:ATT:UNIT?",
69 [SCPI_CMD_GET_DIG_POD_THRESHOLD] = ":POD%d:THR?",
70 [SCPI_CMD_SET_DIG_POD_THRESHOLD] = ":POD%d:THR %s",
71 [SCPI_CMD_GET_DIG_POD_USER_THRESHOLD] = ":POD%d:THR:UDL%d?",
72 [SCPI_CMD_SET_DIG_POD_USER_THRESHOLD] = ":POD%d:THR:UDL%d %s",
73};
74
75static const char *rohde_schwarz_log_not_pod_scpi_dialect[] = {
76 [SCPI_CMD_GET_DIG_DATA] = ":FORM UINT,8;:LOG%d:DATA?",
77 [SCPI_CMD_GET_TIMEBASE] = ":TIM:SCAL?",
78 [SCPI_CMD_SET_TIMEBASE] = ":TIM:SCAL %s",
79 [SCPI_CMD_GET_HORIZONTAL_DIV] = ":TIM:DIV?",
80 [SCPI_CMD_GET_COUPLING] = ":CHAN%d:COUP?",
81 [SCPI_CMD_SET_COUPLING] = ":CHAN%d:COUP %s",
82 [SCPI_CMD_GET_SAMPLE_RATE] = ":ACQ:SRAT?",
83 [SCPI_CMD_GET_ANALOG_DATA] = ":FORM:BORD %s;" \
84 ":FORM REAL,32;:CHAN%d:DATA?",
85 [SCPI_CMD_GET_VERTICAL_SCALE] = ":CHAN%d:SCAL?",
86 [SCPI_CMD_SET_VERTICAL_SCALE] = ":CHAN%d:SCAL %s",
87 [SCPI_CMD_GET_DIG_POD_STATE] = ":LOG%d:STAT?",
88 [SCPI_CMD_SET_DIG_POD_STATE] = ":LOG%d:STAT %d",
89 [SCPI_CMD_GET_TRIGGER_SOURCE] = ":TRIG:A:SOUR?",
90 [SCPI_CMD_SET_TRIGGER_SOURCE] = ":TRIG:A:SOUR %s",
91 [SCPI_CMD_GET_TRIGGER_SLOPE] = ":TRIG:A:EDGE:SLOP?",
92 [SCPI_CMD_SET_TRIGGER_SLOPE] = ":TRIG:A:TYPE EDGE;:TRIG:A:EDGE:SLOP %s",
93 [SCPI_CMD_GET_TRIGGER_PATTERN] = ":TRIG:A:PATT:SOUR?",
94 [SCPI_CMD_SET_TRIGGER_PATTERN] = ":TRIG:A:TYPE LOGIC;" \
95 ":TRIG:A:PATT:FUNC AND;" \
96 ":TRIG:A:PATT:COND \"TRUE\";" \
97 ":TRIG:A:PATT:MODE OFF;" \
98 ":TRIG:A:PATT:SOUR \"%s\"",
99 [SCPI_CMD_GET_HIGH_RESOLUTION] = ":ACQ:HRES?",
100 [SCPI_CMD_SET_HIGH_RESOLUTION] = ":ACQ:HRES %s",
101 [SCPI_CMD_GET_PEAK_DETECTION] = ":ACQ:PEAK?",
102 [SCPI_CMD_SET_PEAK_DETECTION] = ":ACQ:PEAK %s",
103 [SCPI_CMD_GET_DIG_CHAN_STATE] = ":LOG%d:STAT?",
104 [SCPI_CMD_SET_DIG_CHAN_STATE] = ":LOG%d:STAT %d",
105 [SCPI_CMD_GET_VERTICAL_OFFSET] = ":CHAN%d:POS?", /* Might not be supported on RTB200x... */
106 [SCPI_CMD_GET_HORIZ_TRIGGERPOS] = ":TIM:POS?",
107 [SCPI_CMD_SET_HORIZ_TRIGGERPOS] = ":TIM:POS %s",
108 [SCPI_CMD_GET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT?",
109 [SCPI_CMD_SET_ANALOG_CHAN_STATE] = ":CHAN%d:STAT %d",
110 [SCPI_CMD_GET_PROBE_UNIT] = ":PROB%d:SET:ATT:UNIT?",
111 [SCPI_CMD_GET_DIG_POD_THRESHOLD] = ":DIG%d:TECH?",
112 [SCPI_CMD_SET_DIG_POD_THRESHOLD] = ":DIG%d:TECH %s",
113 [SCPI_CMD_GET_DIG_POD_USER_THRESHOLD] = ":DIG%d:THR?",
114 [SCPI_CMD_SET_DIG_POD_USER_THRESHOLD] = ":DIG%d:THR %s",
115};
116
117static const uint32_t devopts[] = {
118 SR_CONF_OSCILLOSCOPE,
119 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
120 SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET,
121 SR_CONF_SAMPLERATE | SR_CONF_GET,
122 SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
123 SR_CONF_NUM_HDIV | SR_CONF_GET,
124 SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
125 SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
126 SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
127 SR_CONF_TRIGGER_PATTERN | SR_CONF_GET | SR_CONF_SET,
128 SR_CONF_HIGH_RESOLUTION | SR_CONF_GET | SR_CONF_SET,
129 SR_CONF_PEAK_DETECTION | SR_CONF_GET | SR_CONF_SET,
130};
131
132static const uint32_t devopts_cg_analog[] = {
133 SR_CONF_NUM_VDIV | SR_CONF_GET,
134 SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
135 SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
136};
137
138static const uint32_t devopts_cg_digital[] = {
139 SR_CONF_LOGIC_THRESHOLD | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
140 SR_CONF_LOGIC_THRESHOLD_CUSTOM | SR_CONF_GET | SR_CONF_SET,
141};
142
143static const char *coupling_options[] = {
144 "AC", // AC with 50 Ohm termination (152x, 202x, 30xx, 1202)
145 "ACL", // AC with 1 MOhm termination
146 "DC", // DC with 50 Ohm termination
147 "DCL", // DC with 1 MOhm termination
148 "GND",
149};
150
151static const char *coupling_options_rtb200x[] = {
152 "ACL", // AC with 1 MOhm termination
153 "DCL", // DC with 1 MOhm termination
154 "GND",
155};
156
157static const char *coupling_options_rtm300x[] = {
158 "ACL", // AC with 1 MOhm termination
159 "DC", // DC with 50 Ohm termination
160 "DCL", // DC with 1 MOhm termination
161 "GND",
162};
163
164static const char *scope_trigger_slopes[] = {
165 "POS",
166 "NEG",
167 "EITH",
168};
169
170/* Predefined logic thresholds. */
171static const char *logic_threshold[] = {
172 "TTL",
173 "ECL",
174 "CMOS",
175 "USER1",
176 "USER2", // overwritten by logic_threshold_custom, use USER1 for permanent setting
177};
178
179static const char *logic_threshold_rtb200x_rtm300x[] = {
180 "TTL",
181 "ECL",
182 "CMOS",
183 "MAN", // overwritten by logic_threshold_custom
184};
185
186/* This might need updates whenever logic_threshold* above change. */
187#define MAX_NUM_LOGIC_THRESHOLD_ENTRIES ARRAY_SIZE(logic_threshold)
188
189/* RTC1002, HMO Compact2 and HMO1002/HMO1202 */
190static const char *an2_dig8_trigger_sources[] = {
191 "CH1", "CH2",
192 "LINE", "EXT", "PATT", "BUS1", "BUS2",
193 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
194};
195
196/* HMO3xx2 */
197static const char *an2_dig16_trigger_sources[] = {
198 "CH1", "CH2",
199 "LINE", "EXT", "PATT", "BUS1", "BUS2",
200 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
201 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
202};
203
204/* RTB2002 and RTM3002 */
205static const char *an2_dig16_sbus_trigger_sources[] = {
206 "CH1", "CH2",
207 "LINE", "EXT", "PATT", "SBUS1", "SBUS2",
208 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
209 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
210};
211
212/* HMO Compact4 */
213static const char *an4_dig8_trigger_sources[] = {
214 "CH1", "CH2", "CH3", "CH4",
215 "LINE", "EXT", "PATT", "BUS1", "BUS2",
216 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
217};
218
219/* HMO3xx4 and HMO2524 */
220static const char *an4_dig16_trigger_sources[] = {
221 "CH1", "CH2", "CH3", "CH4",
222 "LINE", "EXT", "PATT", "BUS1", "BUS2",
223 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
224 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
225};
226
227/* RTB2004, RTM3004 and RTA4004 */
228static const char *an4_dig16_sbus_trigger_sources[] = {
229 "CH1", "CH2", "CH3", "CH4",
230 "LINE", "EXT", "PATT", "SBUS1", "SBUS2",
231 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
232 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
233};
234
235static const uint64_t timebases[][2] = {
236 /* nanoseconds */
237 { 1, 1000000000 },
238 { 2, 1000000000 },
239 { 5, 1000000000 },
240 { 10, 1000000000 },
241 { 20, 1000000000 },
242 { 50, 1000000000 },
243 { 100, 1000000000 },
244 { 200, 1000000000 },
245 { 500, 1000000000 },
246 /* microseconds */
247 { 1, 1000000 },
248 { 2, 1000000 },
249 { 5, 1000000 },
250 { 10, 1000000 },
251 { 20, 1000000 },
252 { 50, 1000000 },
253 { 100, 1000000 },
254 { 200, 1000000 },
255 { 500, 1000000 },
256 /* milliseconds */
257 { 1, 1000 },
258 { 2, 1000 },
259 { 5, 1000 },
260 { 10, 1000 },
261 { 20, 1000 },
262 { 50, 1000 },
263 { 100, 1000 },
264 { 200, 1000 },
265 { 500, 1000 },
266 /* seconds */
267 { 1, 1 },
268 { 2, 1 },
269 { 5, 1 },
270 { 10, 1 },
271 { 20, 1 },
272 { 50, 1 },
273};
274
275/* HMO Compact series (HMO722/724/1022/1024/1522/1524/2022/2024) do
276 * not support 1 ns timebase setting.
277 */
278static const uint64_t timebases_hmo_compact[][2] = {
279 /* nanoseconds */
280 { 2, 1000000000 },
281 { 5, 1000000000 },
282 { 10, 1000000000 },
283 { 20, 1000000000 },
284 { 50, 1000000000 },
285 { 100, 1000000000 },
286 { 200, 1000000000 },
287 { 500, 1000000000 },
288 /* microseconds */
289 { 1, 1000000 },
290 { 2, 1000000 },
291 { 5, 1000000 },
292 { 10, 1000000 },
293 { 20, 1000000 },
294 { 50, 1000000 },
295 { 100, 1000000 },
296 { 200, 1000000 },
297 { 500, 1000000 },
298 /* milliseconds */
299 { 1, 1000 },
300 { 2, 1000 },
301 { 5, 1000 },
302 { 10, 1000 },
303 { 20, 1000 },
304 { 50, 1000 },
305 { 100, 1000 },
306 { 200, 1000 },
307 { 500, 1000 },
308 /* seconds */
309 { 1, 1 },
310 { 2, 1 },
311 { 5, 1 },
312 { 10, 1 },
313 { 20, 1 },
314 { 50, 1 },
315};
316
317static const uint64_t vdivs[][2] = {
318 /* millivolts */
319 { 1, 1000 },
320 { 2, 1000 },
321 { 5, 1000 },
322 { 10, 1000 },
323 { 20, 1000 },
324 { 50, 1000 },
325 { 100, 1000 },
326 { 200, 1000 },
327 { 500, 1000 },
328 /* volts */
329 { 1, 1 },
330 { 2, 1 },
331 { 5, 1 },
332 { 10, 1 },
333};
334
335static const char *scope_analog_channel_names[] = {
336 "CH1", "CH2", "CH3", "CH4",
337};
338
339static const char *scope_digital_channel_names[] = {
340 "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
341 "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
342};
343
344static struct scope_config scope_models[] = {
345 {
346 /* HMO Compact2: HMO722/1022/1522/2022 support only 8 digital channels. */
347 .name = {"HMO722", "HMO1022", "HMO1522", "HMO2022", NULL},
348 .analog_channels = 2,
349 .digital_channels = 8,
350
351 .analog_names = &scope_analog_channel_names,
352 .digital_names = &scope_digital_channel_names,
353
354 .devopts = &devopts,
355 .num_devopts = ARRAY_SIZE(devopts),
356
357 .devopts_cg_analog = &devopts_cg_analog,
358 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
359
360 .devopts_cg_digital = &devopts_cg_digital,
361 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
362
363 .coupling_options = &coupling_options,
364 .num_coupling_options = ARRAY_SIZE(coupling_options),
365
366 .logic_threshold = &logic_threshold,
367 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
368 .logic_threshold_for_pod = TRUE,
369
370 .trigger_sources = &an2_dig8_trigger_sources,
371 .num_trigger_sources = ARRAY_SIZE(an2_dig8_trigger_sources),
372
373 .trigger_slopes = &scope_trigger_slopes,
374 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
375
376 .timebases = &timebases_hmo_compact,
377 .num_timebases = ARRAY_SIZE(timebases_hmo_compact),
378
379 .vdivs = &vdivs,
380 .num_vdivs = ARRAY_SIZE(vdivs),
381
382 .num_ydivs = 8,
383
384 .scpi_dialect = &hameg_scpi_dialect,
385 },
386 {
387 /* RTC1002 and HMO1002/HMO1202 support only 8 digital channels. */
388 .name = {"RTC1002", "HMO1002", "HMO1202", NULL},
389 .analog_channels = 2,
390 .digital_channels = 8,
391
392 .analog_names = &scope_analog_channel_names,
393 .digital_names = &scope_digital_channel_names,
394
395 .devopts = &devopts,
396 .num_devopts = ARRAY_SIZE(devopts),
397
398 .devopts_cg_analog = &devopts_cg_analog,
399 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
400
401 .devopts_cg_digital = &devopts_cg_digital,
402 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
403
404 .coupling_options = &coupling_options,
405 .num_coupling_options = ARRAY_SIZE(coupling_options),
406
407 .logic_threshold = &logic_threshold,
408 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
409 .logic_threshold_for_pod = TRUE,
410
411 .trigger_sources = &an2_dig8_trigger_sources,
412 .num_trigger_sources = ARRAY_SIZE(an2_dig8_trigger_sources),
413
414 .trigger_slopes = &scope_trigger_slopes,
415 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
416
417 .timebases = &timebases,
418 .num_timebases = ARRAY_SIZE(timebases),
419
420 .vdivs = &vdivs,
421 .num_vdivs = ARRAY_SIZE(vdivs),
422
423 .num_ydivs = 8,
424
425 .scpi_dialect = &hameg_scpi_dialect,
426 },
427 {
428 /* HMO3032/3042/3052/3522 support 16 digital channels. */
429 .name = {"HMO3032", "HMO3042", "HMO3052", "HMO3522", NULL},
430 .analog_channels = 2,
431 .digital_channels = 16,
432
433 .analog_names = &scope_analog_channel_names,
434 .digital_names = &scope_digital_channel_names,
435
436 .devopts = &devopts,
437 .num_devopts = ARRAY_SIZE(devopts),
438
439 .devopts_cg_analog = &devopts_cg_analog,
440 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
441
442 .devopts_cg_digital = &devopts_cg_digital,
443 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
444
445 .coupling_options = &coupling_options,
446 .num_coupling_options = ARRAY_SIZE(coupling_options),
447
448 .logic_threshold = &logic_threshold,
449 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
450 .logic_threshold_for_pod = TRUE,
451
452 .trigger_sources = &an2_dig16_trigger_sources,
453 .num_trigger_sources = ARRAY_SIZE(an2_dig16_trigger_sources),
454
455 .trigger_slopes = &scope_trigger_slopes,
456 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
457
458 .timebases = &timebases,
459 .num_timebases = ARRAY_SIZE(timebases),
460
461 .vdivs = &vdivs,
462 .num_vdivs = ARRAY_SIZE(vdivs),
463
464 .num_ydivs = 8,
465
466 .scpi_dialect = &hameg_scpi_dialect,
467 },
468 {
469 /* HMO Compact4: HMO724/1024/1524/2024 support only 8 digital channels. */
470 .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL},
471 .analog_channels = 4,
472 .digital_channels = 8,
473
474 .analog_names = &scope_analog_channel_names,
475 .digital_names = &scope_digital_channel_names,
476
477 .devopts = &devopts,
478 .num_devopts = ARRAY_SIZE(devopts),
479
480 .devopts_cg_analog = &devopts_cg_analog,
481 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
482
483 .devopts_cg_digital = &devopts_cg_digital,
484 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
485
486 .coupling_options = &coupling_options,
487 .num_coupling_options = ARRAY_SIZE(coupling_options),
488
489 .logic_threshold = &logic_threshold,
490 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
491 .logic_threshold_for_pod = TRUE,
492
493 .trigger_sources = &an4_dig8_trigger_sources,
494 .num_trigger_sources = ARRAY_SIZE(an4_dig8_trigger_sources),
495
496 .trigger_slopes = &scope_trigger_slopes,
497 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
498
499 .timebases = &timebases_hmo_compact,
500 .num_timebases = ARRAY_SIZE(timebases_hmo_compact),
501
502 .vdivs = &vdivs,
503 .num_vdivs = ARRAY_SIZE(vdivs),
504
505 .num_ydivs = 8,
506
507 .scpi_dialect = &hameg_scpi_dialect,
508 },
509 {
510 .name = {"HMO2524", "HMO3034", "HMO3044", "HMO3054", "HMO3524", NULL},
511 .analog_channels = 4,
512 .digital_channels = 16,
513
514 .analog_names = &scope_analog_channel_names,
515 .digital_names = &scope_digital_channel_names,
516
517 .devopts = &devopts,
518 .num_devopts = ARRAY_SIZE(devopts),
519
520 .devopts_cg_analog = &devopts_cg_analog,
521 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
522
523 .devopts_cg_digital = &devopts_cg_digital,
524 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
525
526 .coupling_options = &coupling_options,
527 .num_coupling_options = ARRAY_SIZE(coupling_options),
528
529 .logic_threshold = &logic_threshold,
530 .num_logic_threshold = ARRAY_SIZE(logic_threshold),
531 .logic_threshold_for_pod = TRUE,
532
533 .trigger_sources = &an4_dig16_trigger_sources,
534 .num_trigger_sources = ARRAY_SIZE(an4_dig16_trigger_sources),
535
536 .trigger_slopes = &scope_trigger_slopes,
537 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
538
539 .timebases = &timebases,
540 .num_timebases = ARRAY_SIZE(timebases),
541
542 .vdivs = &vdivs,
543 .num_vdivs = ARRAY_SIZE(vdivs),
544
545 .num_ydivs = 8,
546
547 .scpi_dialect = &hameg_scpi_dialect,
548 },
549 {
550 .name = {"RTB2002", NULL},
551 .analog_channels = 2,
552 .digital_channels = 16,
553
554 .analog_names = &scope_analog_channel_names,
555 .digital_names = &scope_digital_channel_names,
556
557 .devopts = &devopts,
558 .num_devopts = ARRAY_SIZE(devopts),
559
560 .devopts_cg_analog = &devopts_cg_analog,
561 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
562
563 .devopts_cg_digital = &devopts_cg_digital,
564 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
565
566 .coupling_options = &coupling_options_rtb200x,
567 .num_coupling_options = ARRAY_SIZE(coupling_options_rtb200x),
568
569 .logic_threshold = &logic_threshold_rtb200x_rtm300x,
570 .num_logic_threshold = ARRAY_SIZE(logic_threshold_rtb200x_rtm300x),
571 .logic_threshold_for_pod = FALSE,
572
573 .trigger_sources = &an2_dig16_sbus_trigger_sources,
574 .num_trigger_sources = ARRAY_SIZE(an2_dig16_sbus_trigger_sources),
575
576 .trigger_slopes = &scope_trigger_slopes,
577 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
578
579 .timebases = &timebases,
580 .num_timebases = ARRAY_SIZE(timebases),
581
582 .vdivs = &vdivs,
583 .num_vdivs = ARRAY_SIZE(vdivs),
584
585 .num_ydivs = 8,
586
587 .scpi_dialect = &rohde_schwarz_log_not_pod_scpi_dialect,
588 },
589 {
590 .name = {"RTB2004", NULL},
591 .analog_channels = 4,
592 .digital_channels = 16,
593
594 .analog_names = &scope_analog_channel_names,
595 .digital_names = &scope_digital_channel_names,
596
597 .devopts = &devopts,
598 .num_devopts = ARRAY_SIZE(devopts),
599
600 .devopts_cg_analog = &devopts_cg_analog,
601 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
602
603 .devopts_cg_digital = &devopts_cg_digital,
604 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
605
606 .coupling_options = &coupling_options_rtb200x,
607 .num_coupling_options = ARRAY_SIZE(coupling_options_rtb200x),
608
609 .logic_threshold = &logic_threshold_rtb200x_rtm300x,
610 .num_logic_threshold = ARRAY_SIZE(logic_threshold_rtb200x_rtm300x),
611 .logic_threshold_for_pod = FALSE,
612
613 .trigger_sources = &an4_dig16_sbus_trigger_sources,
614 .num_trigger_sources = ARRAY_SIZE(an4_dig16_sbus_trigger_sources),
615
616 .trigger_slopes = &scope_trigger_slopes,
617 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
618
619 .timebases = &timebases,
620 .num_timebases = ARRAY_SIZE(timebases),
621
622 .vdivs = &vdivs,
623 .num_vdivs = ARRAY_SIZE(vdivs),
624
625 .num_ydivs = 8,
626
627 .scpi_dialect = &rohde_schwarz_log_not_pod_scpi_dialect,
628 },
629 {
630 .name = {"RTM3002", NULL},
631 .analog_channels = 2,
632 .digital_channels = 16,
633
634 .analog_names = &scope_analog_channel_names,
635 .digital_names = &scope_digital_channel_names,
636
637 .devopts = &devopts,
638 .num_devopts = ARRAY_SIZE(devopts),
639
640 .devopts_cg_analog = &devopts_cg_analog,
641 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
642
643 .devopts_cg_digital = &devopts_cg_digital,
644 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
645
646 .coupling_options = &coupling_options_rtm300x,
647 .num_coupling_options = ARRAY_SIZE(coupling_options_rtm300x),
648
649 .logic_threshold = &logic_threshold_rtb200x_rtm300x,
650 .num_logic_threshold = ARRAY_SIZE(logic_threshold_rtb200x_rtm300x),
651 .logic_threshold_for_pod = FALSE,
652
653 .trigger_sources = &an2_dig16_sbus_trigger_sources,
654 .num_trigger_sources = ARRAY_SIZE(an2_dig16_sbus_trigger_sources),
655
656 .trigger_slopes = &scope_trigger_slopes,
657 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
658
659 .timebases = &timebases,
660 .num_timebases = ARRAY_SIZE(timebases),
661
662 .vdivs = &vdivs,
663 .num_vdivs = ARRAY_SIZE(vdivs),
664
665 .num_ydivs = 8,
666
667 .scpi_dialect = &rohde_schwarz_log_not_pod_scpi_dialect,
668 },
669 {
670 .name = {"RTM3004", NULL},
671 .analog_channels = 4,
672 .digital_channels = 16,
673
674 .analog_names = &scope_analog_channel_names,
675 .digital_names = &scope_digital_channel_names,
676
677 .devopts = &devopts,
678 .num_devopts = ARRAY_SIZE(devopts),
679
680 .devopts_cg_analog = &devopts_cg_analog,
681 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
682
683 .devopts_cg_digital = &devopts_cg_digital,
684 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
685
686 .coupling_options = &coupling_options_rtm300x,
687 .num_coupling_options = ARRAY_SIZE(coupling_options_rtm300x),
688
689 .logic_threshold = &logic_threshold_rtb200x_rtm300x,
690 .num_logic_threshold = ARRAY_SIZE(logic_threshold_rtb200x_rtm300x),
691 .logic_threshold_for_pod = FALSE,
692
693 .trigger_sources = &an4_dig16_sbus_trigger_sources,
694 .num_trigger_sources = ARRAY_SIZE(an4_dig16_sbus_trigger_sources),
695
696 .trigger_slopes = &scope_trigger_slopes,
697 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
698
699 .timebases = &timebases,
700 .num_timebases = ARRAY_SIZE(timebases),
701
702 .vdivs = &vdivs,
703 .num_vdivs = ARRAY_SIZE(vdivs),
704
705 .num_ydivs = 8,
706
707 .scpi_dialect = &rohde_schwarz_log_not_pod_scpi_dialect,
708 },
709 {
710 .name = {"RTA4004", NULL},
711 .analog_channels = 4,
712 .digital_channels = 16,
713
714 .analog_names = &scope_analog_channel_names,
715 .digital_names = &scope_digital_channel_names,
716
717 .devopts = &devopts,
718 .num_devopts = ARRAY_SIZE(devopts),
719
720 .devopts_cg_analog = &devopts_cg_analog,
721 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
722
723 .devopts_cg_digital = &devopts_cg_digital,
724 .num_devopts_cg_digital = ARRAY_SIZE(devopts_cg_digital),
725
726 .coupling_options = &coupling_options_rtm300x,
727 .num_coupling_options = ARRAY_SIZE(coupling_options_rtm300x),
728
729 .logic_threshold = &logic_threshold_rtb200x_rtm300x,
730 .num_logic_threshold = ARRAY_SIZE(logic_threshold_rtb200x_rtm300x),
731 .logic_threshold_for_pod = FALSE,
732
733 .trigger_sources = &an4_dig16_sbus_trigger_sources,
734 .num_trigger_sources = ARRAY_SIZE(an4_dig16_sbus_trigger_sources),
735
736 .trigger_slopes = &scope_trigger_slopes,
737 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
738
739 .timebases = &timebases,
740 .num_timebases = ARRAY_SIZE(timebases),
741
742 .vdivs = &vdivs,
743 .num_vdivs = ARRAY_SIZE(vdivs),
744
745 .num_ydivs = 8,
746
747 .scpi_dialect = &rohde_schwarz_log_not_pod_scpi_dialect,
748 },
749};
750
751static void scope_state_dump(const struct scope_config *config,
752 struct scope_state *state)
753{
754 unsigned int i;
755 char *tmp;
756
757 for (i = 0; i < config->analog_channels; i++) {
758 tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
759 (*config->vdivs)[state->analog_channels[i].vdiv][1]);
760 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
761 i + 1, state->analog_channels[i].state ? "On" : "Off",
762 (*config->coupling_options)[state->analog_channels[i].coupling],
763 tmp, state->analog_channels[i].vertical_offset);
764 }
765
766 for (i = 0; i < config->digital_channels; i++) {
767 sr_info("State of digital channel %d -> %s", i,
768 state->digital_channels[i] ? "On" : "Off");
769 }
770
771 for (i = 0; i < config->digital_pods; i++) {
772 if (!strncmp("USER", (*config->logic_threshold)[state->digital_pods[i].threshold], 4) ||
773 !strcmp("MAN", (*config->logic_threshold)[state->digital_pods[i].threshold]))
774 sr_info("State of digital POD %d -> %s : %E (threshold)", i + 1,
775 state->digital_pods[i].state ? "On" : "Off",
776 state->digital_pods[i].user_threshold);
777 else
778 sr_info("State of digital POD %d -> %s : %s (threshold)", i + 1,
779 state->digital_pods[i].state ? "On" : "Off",
780 (*config->logic_threshold)[state->digital_pods[i].threshold]);
781 }
782
783 tmp = sr_period_string((*config->timebases)[state->timebase][0],
784 (*config->timebases)[state->timebase][1]);
785 sr_info("Current timebase: %s", tmp);
786 g_free(tmp);
787
788 tmp = sr_samplerate_string(state->sample_rate);
789 sr_info("Current samplerate: %s", tmp);
790 g_free(tmp);
791
792 if (!strcmp("PATT", (*config->trigger_sources)[state->trigger_source]))
793 sr_info("Current trigger: %s (pattern), %.2f (offset)",
794 state->trigger_pattern,
795 state->horiz_triggerpos);
796 else // Edge (slope) trigger
797 sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
798 (*config->trigger_sources)[state->trigger_source],
799 (*config->trigger_slopes)[state->trigger_slope],
800 state->horiz_triggerpos);
801}
802
803static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
804 const char *command, const char *(*array)[], unsigned int n, int *result)
805{
806 char *tmp;
807 int idx;
808
809 if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK)
810 return SR_ERR;
811
812 if ((idx = std_str_idx_s(tmp, *array, n)) < 0) {
813 g_free(tmp);
814 return SR_ERR_ARG;
815 }
816
817 *result = idx;
818
819 g_free(tmp);
820
821 return SR_OK;
822}
823
824/**
825 * This function takes a value of the form "2.000E-03" and returns the index
826 * of an array where a matching pair was found.
827 *
828 * @param value The string to be parsed.
829 * @param array The array of s/f pairs.
830 * @param array_len The number of pairs in the array.
831 * @param result The index at which a matching pair was found.
832 *
833 * @return SR_ERR on any parsing error, SR_OK otherwise.
834 */
835static int array_float_get(gchar *value, const uint64_t array[][2],
836 int array_len, unsigned int *result)
837{
838 struct sr_rational rval;
839 struct sr_rational aval;
840
841 if (sr_parse_rational(value, &rval) != SR_OK)
842 return SR_ERR;
843
844 for (int i = 0; i < array_len; i++) {
845 sr_rational_set(&aval, array[i][0], array[i][1]);
846 if (sr_rational_eq(&rval, &aval)) {
847 *result = i;
848 return SR_OK;
849 }
850 }
851
852 return SR_ERR;
853}
854
855static struct sr_channel *get_channel_by_index_and_type(GSList *channel_lhead,
856 int index, int type)
857{
858 while (channel_lhead) {
859 struct sr_channel *ch = channel_lhead->data;
860 if (ch->index == index && ch->type == type)
861 return ch;
862
863 channel_lhead = channel_lhead->next;
864 }
865
866 return 0;
867}
868
869static int analog_channel_state_get(struct sr_dev_inst *sdi,
870 const struct scope_config *config,
871 struct scope_state *state)
872{
873 unsigned int i, j;
874 char command[MAX_COMMAND_SIZE];
875 char *tmp_str;
876 struct sr_channel *ch;
877 struct sr_scpi_dev_inst *scpi = sdi->conn;
878
879 for (i = 0; i < config->analog_channels; i++) {
880 g_snprintf(command, sizeof(command),
881 (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE],
882 i + 1);
883
884 if (sr_scpi_get_bool(scpi, command,
885 &state->analog_channels[i].state) != SR_OK)
886 return SR_ERR;
887
888 ch = get_channel_by_index_and_type(sdi->channels, i, SR_CHANNEL_ANALOG);
889 if (ch)
890 ch->enabled = state->analog_channels[i].state;
891
892 g_snprintf(command, sizeof(command),
893 (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_SCALE],
894 i + 1);
895
896 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
897 return SR_ERR;
898
899 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
900 g_free(tmp_str);
901 sr_err("Could not determine array index for vertical div scale.");
902 return SR_ERR;
903 }
904
905 g_free(tmp_str);
906 state->analog_channels[i].vdiv = j;
907
908 g_snprintf(command, sizeof(command),
909 (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET],
910 i + 1);
911
912 if (sr_scpi_get_float(scpi, command,
913 &state->analog_channels[i].vertical_offset) != SR_OK)
914 return SR_ERR;
915
916 g_snprintf(command, sizeof(command),
917 (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING],
918 i + 1);
919
920 if (scope_state_get_array_option(scpi, command, config->coupling_options,
921 config->num_coupling_options,
922 &state->analog_channels[i].coupling) != SR_OK)
923 return SR_ERR;
924
925 g_snprintf(command, sizeof(command),
926 (*config->scpi_dialect)[SCPI_CMD_GET_PROBE_UNIT],
927 i + 1);
928
929 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
930 return SR_ERR;
931
932 if (tmp_str[0] == 'A')
933 state->analog_channels[i].probe_unit = 'A';
934 else
935 state->analog_channels[i].probe_unit = 'V';
936 g_free(tmp_str);
937 }
938
939 return SR_OK;
940}
941
942static int digital_channel_state_get(struct sr_dev_inst *sdi,
943 const struct scope_config *config,
944 struct scope_state *state)
945{
946 unsigned int i, idx;
947 int result = SR_ERR;
948 char *logic_threshold_short[MAX_NUM_LOGIC_THRESHOLD_ENTRIES];
949 char command[MAX_COMMAND_SIZE];
950 struct sr_channel *ch;
951 struct sr_scpi_dev_inst *scpi = sdi->conn;
952
953 for (i = 0; i < config->digital_channels; i++) {
954 g_snprintf(command, sizeof(command),
955 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE],
956 i);
957
958 if (sr_scpi_get_bool(scpi, command,
959 &state->digital_channels[i]) != SR_OK)
960 return SR_ERR;
961
962 ch = get_channel_by_index_and_type(sdi->channels, i, SR_CHANNEL_LOGIC);
963 if (ch)
964 ch->enabled = state->digital_channels[i];
965 }
966
967 /* According to the SCPI standard, on models that support multiple
968 * user-defined logic threshold settings the response to the command
969 * SCPI_CMD_GET_DIG_POD_THRESHOLD might return "USER" instead of
970 * "USER1".
971 *
972 * This makes more difficult to validate the response when the logic
973 * threshold is set to "USER1" and therefore we need to prevent device
974 * opening failures in such configuration case...
975 */
976 for (i = 0; i < config->num_logic_threshold; i++) {
977 logic_threshold_short[i] = g_strdup((*config->logic_threshold)[i]);
978 if (!strcmp("USER1", (*config->logic_threshold)[i]))
979 g_strlcpy(logic_threshold_short[i],
980 (*config->logic_threshold)[i], strlen((*config->logic_threshold)[i]));
981 }
982
983 for (i = 0; i < config->digital_pods; i++) {
984 g_snprintf(command, sizeof(command),
985 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE],
986 i + 1);
987
988 if (sr_scpi_get_bool(scpi, command,
989 &state->digital_pods[i].state) != SR_OK)
990 goto exit;
991
992 /* Check if the threshold command is based on the POD or digital channel index. */
993 if (config->logic_threshold_for_pod)
994 idx = i + 1;
995 else
996 idx = i * DIGITAL_CHANNELS_PER_POD;
997
998 g_snprintf(command, sizeof(command),
999 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_THRESHOLD],
1000 idx);
1001
1002 /* Check for both standard and shortened responses. */
1003 if (scope_state_get_array_option(scpi, command, config->logic_threshold,
1004 config->num_logic_threshold,
1005 &state->digital_pods[i].threshold) != SR_OK)
1006 if (scope_state_get_array_option(scpi, command, (const char * (*)[]) &logic_threshold_short,
1007 config->num_logic_threshold,
1008 &state->digital_pods[i].threshold) != SR_OK)
1009 goto exit;
1010
1011 /* If used-defined or custom threshold is active, get the level. */
1012 if (!strcmp("USER1", (*config->logic_threshold)[state->digital_pods[i].threshold]))
1013 g_snprintf(command, sizeof(command),
1014 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_USER_THRESHOLD],
1015 idx, 1); /* USER1 logic threshold setting. */
1016 else if (!strcmp("USER2", (*config->logic_threshold)[state->digital_pods[i].threshold]))
1017 g_snprintf(command, sizeof(command),
1018 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_USER_THRESHOLD],
1019 idx, 2); /* USER2 for custom logic_threshold setting. */
1020 else if (!strcmp("USER", (*config->logic_threshold)[state->digital_pods[i].threshold]) ||
1021 !strcmp("MAN", (*config->logic_threshold)[state->digital_pods[i].threshold]))
1022 g_snprintf(command, sizeof(command),
1023 (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_USER_THRESHOLD],
1024 idx); /* USER or MAN for custom logic_threshold setting. */
1025 if (!strcmp("USER1", (*config->logic_threshold)[state->digital_pods[i].threshold]) ||
1026 !strcmp("USER2", (*config->logic_threshold)[state->digital_pods[i].threshold]) ||
1027 !strcmp("USER", (*config->logic_threshold)[state->digital_pods[i].threshold]) ||
1028 !strcmp("MAN", (*config->logic_threshold)[state->digital_pods[i].threshold]))
1029 if (sr_scpi_get_float(scpi, command,
1030 &state->digital_pods[i].user_threshold) != SR_OK)
1031 goto exit;
1032 }
1033
1034 result = SR_OK;
1035
1036exit:
1037 for (i = 0; i < config->num_logic_threshold; i++)
1038 g_free(logic_threshold_short[i]);
1039
1040 return result;
1041}
1042
1043SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi)
1044{
1045 struct dev_context *devc;
1046 struct scope_state *state;
1047 const struct scope_config *config;
1048 float tmp_float;
1049
1050 devc = sdi->priv;
1051 config = devc->model_config;
1052 state = devc->model_state;
1053
1054 if (sr_scpi_get_float(sdi->conn,
1055 (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE],
1056 &tmp_float) != SR_OK)
1057 return SR_ERR;
1058
1059 state->sample_rate = tmp_float;
1060
1061 return SR_OK;
1062}
1063
1064SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi)
1065{
1066 struct dev_context *devc;
1067 struct scope_state *state;
1068 const struct scope_config *config;
1069 float tmp_float;
1070 unsigned int i;
1071 char *tmp_str;
1072
1073 devc = sdi->priv;
1074 config = devc->model_config;
1075 state = devc->model_state;
1076
1077 sr_info("Fetching scope state");
1078
1079 if (analog_channel_state_get(sdi, config, state) != SR_OK)
1080 return SR_ERR;
1081
1082 if (digital_channel_state_get(sdi, config, state) != SR_OK)
1083 return SR_ERR;
1084
1085 if (sr_scpi_get_string(sdi->conn,
1086 (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
1087 &tmp_str) != SR_OK)
1088 return SR_ERR;
1089
1090 if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
1091 g_free(tmp_str);
1092 sr_err("Could not determine array index for time base.");
1093 return SR_ERR;
1094 }
1095 g_free(tmp_str);
1096
1097 state->timebase = i;
1098
1099 /* Determine the number of horizontal (x) divisions. */
1100 if (sr_scpi_get_int(sdi->conn,
1101 (*config->scpi_dialect)[SCPI_CMD_GET_HORIZONTAL_DIV],
1102 (int *)&config->num_xdivs) != SR_OK)
1103 return SR_ERR;
1104
1105 if (sr_scpi_get_float(sdi->conn,
1106 (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS],
1107 &tmp_float) != SR_OK)
1108 return SR_ERR;
1109 state->horiz_triggerpos = tmp_float /
1110 (((double) (*config->timebases)[state->timebase][0] /
1111 (*config->timebases)[state->timebase][1]) * config->num_xdivs);
1112 state->horiz_triggerpos -= 0.5;
1113 state->horiz_triggerpos *= -1;
1114
1115 if (scope_state_get_array_option(sdi->conn,
1116 (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE],
1117 config->trigger_sources, config->num_trigger_sources,
1118 &state->trigger_source) != SR_OK)
1119 return SR_ERR;
1120
1121 if (scope_state_get_array_option(sdi->conn,
1122 (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE],
1123 config->trigger_slopes, config->num_trigger_slopes,
1124 &state->trigger_slope) != SR_OK)
1125 return SR_ERR;
1126
1127 if (sr_scpi_get_string(sdi->conn,
1128 (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_PATTERN],
1129 &tmp_str) != SR_OK)
1130 return SR_ERR;
1131 strncpy(state->trigger_pattern,
1132 sr_scpi_unquote_string(tmp_str),
1133 MAX_ANALOG_CHANNEL_COUNT + MAX_DIGITAL_CHANNEL_COUNT);
1134 g_free(tmp_str);
1135
1136 if (sr_scpi_get_string(sdi->conn,
1137 (*config->scpi_dialect)[SCPI_CMD_GET_HIGH_RESOLUTION],
1138 &tmp_str) != SR_OK)
1139 return SR_ERR;
1140 if (!strcmp("OFF", tmp_str))
1141 state->high_resolution = FALSE;
1142 else
1143 state->high_resolution = TRUE;
1144 g_free(tmp_str);
1145
1146 if (sr_scpi_get_string(sdi->conn,
1147 (*config->scpi_dialect)[SCPI_CMD_GET_PEAK_DETECTION],
1148 &tmp_str) != SR_OK)
1149 return SR_ERR;
1150 if (!strcmp("OFF", tmp_str))
1151 state->peak_detection = FALSE;
1152 else
1153 state->peak_detection = TRUE;
1154 g_free(tmp_str);
1155
1156 if (hmo_update_sample_rate(sdi) != SR_OK)
1157 return SR_ERR;
1158
1159 sr_info("Fetching finished.");
1160
1161 scope_state_dump(config, state);
1162
1163 return SR_OK;
1164}
1165
1166static struct scope_state *scope_state_new(const struct scope_config *config)
1167{
1168 struct scope_state *state;
1169
1170 state = g_malloc0(sizeof(struct scope_state));
1171 state->analog_channels = g_malloc0_n(config->analog_channels,
1172 sizeof(struct analog_channel_state));
1173 state->digital_channels = g_malloc0_n(
1174 config->digital_channels, sizeof(gboolean));
1175 state->digital_pods = g_malloc0_n(config->digital_pods,
1176 sizeof(struct digital_pod_state));
1177
1178 return state;
1179}
1180
1181SR_PRIV void hmo_scope_state_free(struct scope_state *state)
1182{
1183 g_free(state->analog_channels);
1184 g_free(state->digital_channels);
1185 g_free(state->digital_pods);
1186 g_free(state);
1187}
1188
1189SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi)
1190{
1191 int model_index;
1192 unsigned int i, j, group;
1193 struct sr_channel *ch;
1194 struct dev_context *devc;
1195 int ret;
1196
1197 devc = sdi->priv;
1198 model_index = -1;
1199
1200 /* Find the exact model. */
1201 for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
1202 for (j = 0; scope_models[i].name[j]; j++) {
1203 if (!strcmp(sdi->model, scope_models[i].name[j])) {
1204 model_index = i;
1205 break;
1206 }
1207 }
1208 if (model_index != -1)
1209 break;
1210 }
1211
1212 if (model_index == -1) {
1213 sr_dbg("Unsupported device.");
1214 return SR_ERR_NA;
1215 }
1216
1217 /* Configure the number of PODs given the number of digital channels. */
1218 scope_models[model_index].digital_pods = scope_models[model_index].digital_channels / DIGITAL_CHANNELS_PER_POD;
1219
1220 devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
1221 scope_models[model_index].analog_channels);
1222 devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
1223 scope_models[model_index].digital_pods);
1224 if (!devc->analog_groups || !devc->digital_groups) {
1225 g_free(devc->analog_groups);
1226 g_free(devc->digital_groups);
1227 return SR_ERR_MALLOC;
1228 }
1229
1230 /* Add analog channels. */
1231 for (i = 0; i < scope_models[model_index].analog_channels; i++) {
1232 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE,
1233 (*scope_models[model_index].analog_names)[i]);
1234
1235 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
1236
1237 devc->analog_groups[i]->name = g_strdup(
1238 (char *)(*scope_models[model_index].analog_names)[i]);
1239 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
1240
1241 sdi->channel_groups = g_slist_append(sdi->channel_groups,
1242 devc->analog_groups[i]);
1243 }
1244
1245 /* Add digital channel groups. */
1246 ret = SR_OK;
1247 for (i = 0; i < scope_models[model_index].digital_pods; i++) {
1248 devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
1249 if (!devc->digital_groups[i]) {
1250 ret = SR_ERR_MALLOC;
1251 break;
1252 }
1253 devc->digital_groups[i]->name = g_strdup_printf("POD%d", i + 1);
1254 sdi->channel_groups = g_slist_append(sdi->channel_groups,
1255 devc->digital_groups[i]);
1256 }
1257 if (ret != SR_OK)
1258 return ret;
1259
1260 /* Add digital channels. */
1261 for (i = 0; i < scope_models[model_index].digital_channels; i++) {
1262 ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
1263 (*scope_models[model_index].digital_names)[i]);
1264
1265 group = i / DIGITAL_CHANNELS_PER_POD;
1266 devc->digital_groups[group]->channels = g_slist_append(
1267 devc->digital_groups[group]->channels, ch);
1268 }
1269
1270 devc->model_config = &scope_models[model_index];
1271 devc->samples_limit = 0;
1272 devc->frame_limit = 0;
1273
1274 if (!(devc->model_state = scope_state_new(devc->model_config)))
1275 return SR_ERR_MALLOC;
1276
1277 return SR_OK;
1278}
1279
1280/* Queue data of one channel group, for later submission. */
1281SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
1282 size_t group, GByteArray *pod_data)
1283{
1284 size_t size;
1285 GByteArray *store;
1286 uint8_t *logic_data;
1287 size_t idx, logic_step;
1288
1289 /*
1290 * Upon first invocation, allocate the array which can hold the
1291 * combined logic data for all channels. Assume that each channel
1292 * will yield an identical number of samples per receive call.
1293 *
1294 * As a poor man's safety measure: (Silently) skip processing
1295 * for unexpected sample counts, and ignore samples for
1296 * unexpected channel groups. Don't bother with complicated
1297 * resize logic, considering that many models only support one
1298 * pod, and the most capable supported models have two pods of
1299 * identical size. We haven't yet seen any "odd" configuration.
1300 */
1301 if (!devc->logic_data) {
1302 size = pod_data->len * devc->pod_count;
1303 store = g_byte_array_sized_new(size);
1304 memset(store->data, 0, size);
1305 store = g_byte_array_set_size(store, size);
1306 devc->logic_data = store;
1307 } else {
1308 store = devc->logic_data;
1309 size = store->len / devc->pod_count;
1310 if (group >= devc->pod_count)
1311 return;
1312 }
1313
1314 /*
1315 * Fold the data of the most recently received channel group into
1316 * the storage, where data resides for all channels combined.
1317 */
1318 logic_data = store->data;
1319 logic_data += group;
1320 logic_step = devc->pod_count;
1321 for (idx = 0; idx < pod_data->len; idx++) {
1322 *logic_data = pod_data->data[idx];
1323 logic_data += logic_step;
1324 }
1325
1326 /* Truncate acquisition if a smaller number of samples has been requested. */
1327 if (devc->samples_limit > 0 && devc->logic_data->len > devc->samples_limit * devc->pod_count)
1328 devc->logic_data->len = devc->samples_limit * devc->pod_count;
1329}
1330
1331/* Submit data for all channels, after the individual groups got collected. */
1332SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
1333 struct dev_context *devc)
1334{
1335 struct sr_datafeed_packet packet;
1336 struct sr_datafeed_logic logic;
1337
1338 if (!devc->logic_data)
1339 return;
1340
1341 logic.data = devc->logic_data->data;
1342 logic.length = devc->logic_data->len;
1343 logic.unitsize = devc->pod_count;
1344
1345 packet.type = SR_DF_LOGIC;
1346 packet.payload = &logic;
1347
1348 sr_session_send(sdi, &packet);
1349}
1350
1351/* Undo previous resource allocation. */
1352SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc)
1353{
1354
1355 if (devc->logic_data) {
1356 g_byte_array_free(devc->logic_data, TRUE);
1357 devc->logic_data = NULL;
1358 }
1359 /*
1360 * Keep 'pod_count'! It's required when more frames will be
1361 * received, and does not harm when kept after acquisition.
1362 */
1363}
1364
1365SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data)
1366{
1367 struct sr_channel *ch;
1368 struct sr_dev_inst *sdi;
1369 struct dev_context *devc;
1370 struct scope_state *state;
1371 struct sr_datafeed_packet packet;
1372 GByteArray *data;
1373 struct sr_datafeed_analog analog;
1374 struct sr_analog_encoding encoding;
1375 struct sr_analog_meaning meaning;
1376 struct sr_analog_spec spec;
1377 struct sr_datafeed_logic logic;
1378 size_t group;
1379
1380 (void)fd;
1381 (void)revents;
1382
1383 if (!(sdi = cb_data))
1384 return TRUE;
1385
1386 if (!(devc = sdi->priv))
1387 return TRUE;
1388
1389 /* Although this is correct in general, the USBTMC libusb implementation
1390 * currently does not generate an event prior to the first read. Often
1391 * it is ok to start reading just after the 50ms timeout. See bug #785.
1392 if (revents != G_IO_IN)
1393 return TRUE;
1394 */
1395
1396 ch = devc->current_channel->data;
1397 state = devc->model_state;
1398
1399 /*
1400 * Send "frame begin" packet upon reception of data for the
1401 * first enabled channel.
1402 */
1403 if (devc->current_channel == devc->enabled_channels)
1404 std_session_send_df_frame_begin(sdi);
1405
1406 /*
1407 * Pass on the received data of the channel(s).
1408 */
1409 switch (ch->type) {
1410 case SR_CHANNEL_ANALOG:
1411 data = NULL;
1412 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
1413 if (data)
1414 g_byte_array_free(data, TRUE);
1415 return TRUE;
1416 }
1417
1418 packet.type = SR_DF_ANALOG;
1419
1420 analog.data = data->data;
1421 analog.num_samples = data->len / sizeof(float);
1422 /* Truncate acquisition if a smaller number of samples has been requested. */
1423 if (devc->samples_limit > 0 && analog.num_samples > devc->samples_limit)
1424 analog.num_samples = devc->samples_limit;
1425 /* TODO: Use proper 'digits' value for this device (and its modes). */
1426 sr_analog_init(&analog, &encoding, &meaning, &spec, 2);
1427 encoding.is_signed = TRUE;
1428 if (state->analog_channels[ch->index].probe_unit == 'V') {
1429 meaning.mq = SR_MQ_VOLTAGE;
1430 meaning.unit = SR_UNIT_VOLT;
1431 } else {
1432 meaning.mq = SR_MQ_CURRENT;
1433 meaning.unit = SR_UNIT_AMPERE;
1434 }
1435 meaning.channels = g_slist_append(NULL, ch);
1436 packet.payload = &analog;
1437 sr_session_send(sdi, &packet);
1438 devc->num_samples = data->len / sizeof(float);
1439 g_slist_free(meaning.channels);
1440 g_byte_array_free(data, TRUE);
1441 data = NULL;
1442 break;
1443 case SR_CHANNEL_LOGIC:
1444 data = NULL;
1445 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
1446 if (data)
1447 g_byte_array_free(data, TRUE);
1448 return TRUE;
1449 }
1450
1451 /*
1452 * If only data from the first pod is involved in the
1453 * acquisition, then the raw input bytes can get passed
1454 * forward for performance reasons. When the second pod
1455 * is involved (either alone, or in combination with the
1456 * first pod), then the received bytes need to be put
1457 * into memory in such a layout that all channel groups
1458 * get combined, and a unitsize larger than a single byte
1459 * applies. The "queue" logic transparently copes with
1460 * any such configuration. This works around the lack
1461 * of support for "meaning" to logic data, which is used
1462 * above for analog data.
1463 */
1464 if (devc->pod_count == 1) {
1465 packet.type = SR_DF_LOGIC;
1466 logic.data = data->data;
1467 logic.length = data->len;
1468 /* Truncate acquisition if a smaller number of samples has been requested. */
1469 if (devc->samples_limit > 0 && logic.length > devc->samples_limit)
1470 logic.length = devc->samples_limit;
1471 logic.unitsize = 1;
1472 packet.payload = &logic;
1473 sr_session_send(sdi, &packet);
1474 } else {
1475 group = ch->index / DIGITAL_CHANNELS_PER_POD;
1476 hmo_queue_logic_data(devc, group, data);
1477 }
1478
1479 devc->num_samples = data->len / devc->pod_count;
1480 g_byte_array_free(data, TRUE);
1481 data = NULL;
1482 break;
1483 default:
1484 sr_err("Invalid channel type.");
1485 break;
1486 }
1487
1488 /*
1489 * Advance to the next enabled channel. When data for all enabled
1490 * channels was received, then flush potentially queued logic data,
1491 * and send the "frame end" packet.
1492 */
1493 if (devc->current_channel->next) {
1494 devc->current_channel = devc->current_channel->next;
1495 hmo_request_data(sdi);
1496 return TRUE;
1497 }
1498 hmo_send_logic_packet(sdi, devc);
1499
1500 /*
1501 * Release the logic data storage after each frame. This copes
1502 * with sample counts that differ in length per frame. -- Is
1503 * this a real constraint when acquiring multiple frames with
1504 * identical device settings?
1505 */
1506 hmo_cleanup_logic_data(devc);
1507
1508 std_session_send_df_frame_end(sdi);
1509
1510 /*
1511 * End of frame was reached. Stop acquisition after the specified
1512 * number of frames or after the specified number of samples, or
1513 * continue reception by starting over at the first enabled channel.
1514 */
1515 if (++devc->num_frames >= devc->frame_limit || devc->num_samples >= devc->samples_limit) {
1516 sr_dev_acquisition_stop(sdi);
1517 hmo_cleanup_logic_data(devc);
1518 } else {
1519 devc->current_channel = devc->enabled_channels;
1520 hmo_request_data(sdi);
1521 }
1522
1523 return TRUE;
1524}