]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
asix-sigma: Nit, separate declaration from assignment statements
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include "protocol.h"
28
29/*
30 * The ASIX Sigma supports arbitrary integer frequency divider in
31 * the 50MHz mode. The divider is in range 1...256 , allowing for
32 * very precise sampling rate selection. This driver supports only
33 * a subset of the sampling rates.
34 */
35SR_PRIV const uint64_t samplerates[] = {
36 SR_KHZ(200), /* div=250 */
37 SR_KHZ(250), /* div=200 */
38 SR_KHZ(500), /* div=100 */
39 SR_MHZ(1), /* div=50 */
40 SR_MHZ(5), /* div=10 */
41 SR_MHZ(10), /* div=5 */
42 SR_MHZ(25), /* div=2 */
43 SR_MHZ(50), /* div=1 */
44 SR_MHZ(100), /* Special FW needed */
45 SR_MHZ(200), /* Special FW needed */
46};
47
48SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
49
50static const char sigma_firmware_files[][24] = {
51 /* 50 MHz, supports 8 bit fractions */
52 "asix-sigma-50.fw",
53 /* 100 MHz */
54 "asix-sigma-100.fw",
55 /* 200 MHz */
56 "asix-sigma-200.fw",
57 /* Synchronous clock from pin */
58 "asix-sigma-50sync.fw",
59 /* Frequency counter */
60 "asix-sigma-phasor.fw",
61};
62
63static int sigma_read(void *buf, size_t size, struct dev_context *devc)
64{
65 int ret;
66
67 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
68 if (ret < 0) {
69 sr_err("ftdi_read_data failed: %s",
70 ftdi_get_error_string(&devc->ftdic));
71 }
72
73 return ret;
74}
75
76static int sigma_write(void *buf, size_t size, struct dev_context *devc)
77{
78 int ret;
79
80 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
81 if (ret < 0) {
82 sr_err("ftdi_write_data failed: %s",
83 ftdi_get_error_string(&devc->ftdic));
84 } else if ((size_t) ret != size) {
85 sr_err("ftdi_write_data did not complete write.");
86 }
87
88 return ret;
89}
90
91/*
92 * NOTE: We chose the buffer size to be large enough to hold any write to the
93 * device. We still print a message just in case.
94 */
95SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
96 struct dev_context *devc)
97{
98 size_t i;
99 uint8_t buf[80];
100 int idx = 0;
101
102 if ((2 * len + 2) > sizeof(buf)) {
103 sr_err("Attempted to write %zu bytes, but buffer is too small.",
104 len);
105 return SR_ERR_BUG;
106 }
107
108 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
109 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
110
111 for (i = 0; i < len; i++) {
112 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
113 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
114 }
115
116 return sigma_write(buf, idx, devc);
117}
118
119SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
120{
121 return sigma_write_register(reg, &value, 1, devc);
122}
123
124static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
125 struct dev_context *devc)
126{
127 uint8_t buf[3];
128
129 buf[0] = REG_ADDR_LOW | (reg & 0xf);
130 buf[1] = REG_ADDR_HIGH | (reg >> 4);
131 buf[2] = REG_READ_ADDR;
132
133 sigma_write(buf, sizeof(buf), devc);
134
135 return sigma_read(data, len, devc);
136}
137
138static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
139{
140 uint8_t value;
141
142 if (1 != sigma_read_register(reg, &value, 1, devc)) {
143 sr_err("sigma_get_register: 1 byte expected");
144 return 0;
145 }
146
147 return value;
148}
149
150static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
151 struct dev_context *devc)
152{
153 uint8_t buf[] = {
154 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
155
156 REG_READ_ADDR | NEXT_REG,
157 REG_READ_ADDR | NEXT_REG,
158 REG_READ_ADDR | NEXT_REG,
159 REG_READ_ADDR | NEXT_REG,
160 REG_READ_ADDR | NEXT_REG,
161 REG_READ_ADDR | NEXT_REG,
162 };
163 uint8_t result[6];
164
165 sigma_write(buf, sizeof(buf), devc);
166
167 sigma_read(result, sizeof(result), devc);
168
169 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
170 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
171
172 /* Not really sure why this must be done, but according to spec. */
173 if ((--*stoppos & 0x1ff) == 0x1ff)
174 *stoppos -= 64;
175
176 if ((*--triggerpos & 0x1ff) == 0x1ff)
177 *triggerpos -= 64;
178
179 return 1;
180}
181
182static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
183 uint8_t *data, struct dev_context *devc)
184{
185 size_t i;
186 uint8_t buf[4096];
187 int idx;
188
189 /* Send the startchunk. Index start with 1. */
190 idx = 0;
191 buf[idx++] = startchunk >> 8;
192 buf[idx++] = startchunk & 0xff;
193 sigma_write_register(WRITE_MEMROW, buf, idx, devc);
194
195 /* Read the DRAM. */
196 idx = 0;
197 buf[idx++] = REG_DRAM_BLOCK;
198 buf[idx++] = REG_DRAM_WAIT_ACK;
199
200 for (i = 0; i < numchunks; i++) {
201 /* Alternate bit to copy from DRAM to cache. */
202 if (i != (numchunks - 1))
203 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
204
205 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
206
207 if (i != (numchunks - 1))
208 buf[idx++] = REG_DRAM_WAIT_ACK;
209 }
210
211 sigma_write(buf, idx, devc);
212
213 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
214}
215
216/* Upload trigger look-up tables to Sigma. */
217SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
218{
219 int i;
220 uint8_t tmp[2];
221 uint16_t bit;
222
223 /* Transpose the table and send to Sigma. */
224 for (i = 0; i < 16; i++) {
225 bit = 1 << i;
226
227 tmp[0] = tmp[1] = 0;
228
229 if (lut->m2d[0] & bit)
230 tmp[0] |= 0x01;
231 if (lut->m2d[1] & bit)
232 tmp[0] |= 0x02;
233 if (lut->m2d[2] & bit)
234 tmp[0] |= 0x04;
235 if (lut->m2d[3] & bit)
236 tmp[0] |= 0x08;
237
238 if (lut->m3 & bit)
239 tmp[0] |= 0x10;
240 if (lut->m3s & bit)
241 tmp[0] |= 0x20;
242 if (lut->m4 & bit)
243 tmp[0] |= 0x40;
244
245 if (lut->m0d[0] & bit)
246 tmp[1] |= 0x01;
247 if (lut->m0d[1] & bit)
248 tmp[1] |= 0x02;
249 if (lut->m0d[2] & bit)
250 tmp[1] |= 0x04;
251 if (lut->m0d[3] & bit)
252 tmp[1] |= 0x08;
253
254 if (lut->m1d[0] & bit)
255 tmp[1] |= 0x10;
256 if (lut->m1d[1] & bit)
257 tmp[1] |= 0x20;
258 if (lut->m1d[2] & bit)
259 tmp[1] |= 0x40;
260 if (lut->m1d[3] & bit)
261 tmp[1] |= 0x80;
262
263 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
264 devc);
265 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
266 }
267
268 /* Send the parameters */
269 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
270 sizeof(lut->params), devc);
271
272 return SR_OK;
273}
274
275SR_PRIV void sigma_clear_helper(void *priv)
276{
277 struct dev_context *devc;
278
279 devc = priv;
280
281 ftdi_deinit(&devc->ftdic);
282}
283
284/*
285 * Configure the FPGA for bitbang mode.
286 * This sequence is documented in section 2. of the ASIX Sigma programming
287 * manual. This sequence is necessary to configure the FPGA in the Sigma
288 * into Bitbang mode, in which it can be programmed with the firmware.
289 */
290static int sigma_fpga_init_bitbang(struct dev_context *devc)
291{
292 uint8_t suicide[] = {
293 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
294 };
295 uint8_t init_array[] = {
296 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
297 0x01, 0x01,
298 };
299 int i, ret, timeout = (10 * 1000);
300 uint8_t data;
301
302 /* Section 2. part 1), do the FPGA suicide. */
303 sigma_write(suicide, sizeof(suicide), devc);
304 sigma_write(suicide, sizeof(suicide), devc);
305 sigma_write(suicide, sizeof(suicide), devc);
306 sigma_write(suicide, sizeof(suicide), devc);
307
308 /* Section 2. part 2), do pulse on D1. */
309 sigma_write(init_array, sizeof(init_array), devc);
310 ftdi_usb_purge_buffers(&devc->ftdic);
311
312 /* Wait until the FPGA asserts D6/INIT_B. */
313 for (i = 0; i < timeout; i++) {
314 ret = sigma_read(&data, 1, devc);
315 if (ret < 0)
316 return ret;
317 /* Test if pin D6 got asserted. */
318 if (data & (1 << 5))
319 return 0;
320 /* The D6 was not asserted yet, wait a bit. */
321 g_usleep(10 * 1000);
322 }
323
324 return SR_ERR_TIMEOUT;
325}
326
327/*
328 * Configure the FPGA for logic-analyzer mode.
329 */
330static int sigma_fpga_init_la(struct dev_context *devc)
331{
332 /* Initialize the logic analyzer mode. */
333 uint8_t logic_mode_start[] = {
334 REG_ADDR_LOW | (READ_ID & 0xf),
335 REG_ADDR_HIGH | (READ_ID >> 4),
336 REG_READ_ADDR, /* Read ID register. */
337
338 REG_ADDR_LOW | (WRITE_TEST & 0xf),
339 REG_DATA_LOW | 0x5,
340 REG_DATA_HIGH_WRITE | 0x5,
341 REG_READ_ADDR, /* Read scratch register. */
342
343 REG_DATA_LOW | 0xa,
344 REG_DATA_HIGH_WRITE | 0xa,
345 REG_READ_ADDR, /* Read scratch register. */
346
347 REG_ADDR_LOW | (WRITE_MODE & 0xf),
348 REG_DATA_LOW | 0x0,
349 REG_DATA_HIGH_WRITE | 0x8,
350 };
351
352 uint8_t result[3];
353 int ret;
354
355 /* Initialize the logic analyzer mode. */
356 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
357
358 /* Expect a 3 byte reply since we issued three READ requests. */
359 ret = sigma_read(result, 3, devc);
360 if (ret != 3)
361 goto err;
362
363 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
364 goto err;
365
366 return SR_OK;
367err:
368 sr_err("Configuration failed. Invalid reply received.");
369 return SR_ERR;
370}
371
372/*
373 * Read the firmware from a file and transform it into a series of bitbang
374 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
375 * by the caller of this function.
376 */
377static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
378 uint8_t **bb_cmd, gsize *bb_cmd_size)
379{
380 size_t i, file_size, bb_size;
381 char *firmware;
382 uint8_t *bb_stream, *bbs;
383 uint32_t imm;
384 int bit, v;
385 int ret = SR_OK;
386
387 /* Retrieve the on-disk firmware file content. */
388 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
389 name, &file_size, 256 * 1024);
390 if (!firmware)
391 return SR_ERR;
392
393 /* Unscramble the file content (XOR with "random" sequence). */
394 imm = 0x3f6df2ab;
395 for (i = 0; i < file_size; i++) {
396 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
397 firmware[i] ^= imm & 0xff;
398 }
399
400 /*
401 * Generate a sequence of bitbang samples. With two samples per
402 * FPGA configuration bit, providing the level for the DIN signal
403 * as well as two edges for CCLK. See Xilinx UG332 for details
404 * ("slave serial" mode).
405 *
406 * Note that CCLK is inverted in hardware. That's why the
407 * respective bit is first set and then cleared in the bitbang
408 * sample sets. So that the DIN level will be stable when the
409 * data gets sampled at the rising CCLK edge, and the signals'
410 * setup time constraint will be met.
411 *
412 * The caller will put the FPGA into download mode, will send
413 * the bitbang samples, and release the allocated memory.
414 */
415 bb_size = file_size * 8 * 2;
416 bb_stream = (uint8_t *)g_try_malloc(bb_size);
417 if (!bb_stream) {
418 sr_err("%s: Failed to allocate bitbang stream", __func__);
419 ret = SR_ERR_MALLOC;
420 goto exit;
421 }
422 bbs = bb_stream;
423 for (i = 0; i < file_size; i++) {
424 for (bit = 7; bit >= 0; bit--) {
425 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
426 *bbs++ = v | 0x01;
427 *bbs++ = v;
428 }
429 }
430
431 /* The transformation completed successfully, return the result. */
432 *bb_cmd = bb_stream;
433 *bb_cmd_size = bb_size;
434
435exit:
436 g_free(firmware);
437 return ret;
438}
439
440static int upload_firmware(struct sr_context *ctx,
441 int firmware_idx, struct dev_context *devc)
442{
443 int ret;
444 unsigned char *buf;
445 unsigned char pins;
446 size_t buf_size;
447 const char *firmware;
448 struct ftdi_context *ftdic;
449
450 /* Avoid downloading the same firmware multiple times. */
451 firmware = sigma_firmware_files[firmware_idx];
452 if (devc->cur_firmware == firmware_idx) {
453 sr_info("Not uploading firmware file '%s' again.", firmware);
454 return SR_OK;
455 }
456
457 /* Make sure it's an ASIX SIGMA. */
458 ftdic = &devc->ftdic;
459 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
460 USB_DESCRIPTION, NULL);
461 if (ret < 0) {
462 sr_err("ftdi_usb_open failed: %s",
463 ftdi_get_error_string(ftdic));
464 return 0;
465 }
466
467 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
468 if (ret < 0) {
469 sr_err("ftdi_set_bitmode failed: %s",
470 ftdi_get_error_string(ftdic));
471 return 0;
472 }
473
474 /* Four times the speed of sigmalogan - Works well. */
475 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
476 if (ret < 0) {
477 sr_err("ftdi_set_baudrate failed: %s",
478 ftdi_get_error_string(ftdic));
479 return 0;
480 }
481
482 /* Initialize the FPGA for firmware upload. */
483 ret = sigma_fpga_init_bitbang(devc);
484 if (ret)
485 return ret;
486
487 /* Prepare firmware. */
488 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
489 if (ret != SR_OK) {
490 sr_err("An error occurred while reading the firmware: %s",
491 firmware);
492 return ret;
493 }
494
495 /* Upload firmware. */
496 sr_info("Uploading firmware file '%s'.", firmware);
497 sigma_write(buf, buf_size, devc);
498
499 g_free(buf);
500
501 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
502 if (ret < 0) {
503 sr_err("ftdi_set_bitmode failed: %s",
504 ftdi_get_error_string(ftdic));
505 return SR_ERR;
506 }
507
508 ftdi_usb_purge_buffers(ftdic);
509
510 /* Discard garbage. */
511 while (sigma_read(&pins, 1, devc) == 1)
512 ;
513
514 /* Initialize the FPGA for logic-analyzer mode. */
515 ret = sigma_fpga_init_la(devc);
516 if (ret != SR_OK)
517 return ret;
518
519 devc->cur_firmware = firmware_idx;
520
521 sr_info("Firmware uploaded.");
522
523 return SR_OK;
524}
525
526/*
527 * Sigma doesn't support limiting the number of samples, so we have to
528 * translate the number and the samplerate to an elapsed time.
529 *
530 * In addition we need to ensure that the last data cluster has passed
531 * the hardware pipeline, and became available to the PC side. With RLE
532 * compression up to 327ms could pass before another cluster accumulates
533 * at 200kHz samplerate when input pins don't change.
534 */
535SR_PRIV uint64_t sigma_limit_samples_to_msec(const struct dev_context *devc,
536 uint64_t limit_samples)
537{
538 uint64_t limit_msec;
539 uint64_t worst_cluster_time_ms;
540
541 limit_msec = limit_samples * 1000 / devc->cur_samplerate;
542 worst_cluster_time_ms = 65536 * 1000 / devc->cur_samplerate;
543 /*
544 * One cluster time is not enough to flush pipeline when sampling
545 * grounded pins with 1 sample limit at 200kHz. Hence the 2* fix.
546 */
547 return limit_msec + 2 * worst_cluster_time_ms;
548}
549
550SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
551{
552 struct dev_context *devc;
553 struct drv_context *drvc;
554 size_t i;
555 int ret;
556
557 devc = sdi->priv;
558 drvc = sdi->driver->context;
559 ret = SR_OK;
560
561 /* Reject rates that are not in the list of supported rates. */
562 for (i = 0; i < samplerates_count; i++) {
563 if (samplerates[i] == samplerate)
564 break;
565 }
566 if (i >= samplerates_count || samplerates[i] == 0)
567 return SR_ERR_SAMPLERATE;
568
569 /*
570 * Depending on the samplerates of 200/100/50- MHz, specific
571 * firmware is required and higher rates might limit the set
572 * of available channels.
573 */
574 if (samplerate <= SR_MHZ(50)) {
575 ret = upload_firmware(drvc->sr_ctx, 0, devc);
576 devc->num_channels = 16;
577 } else if (samplerate == SR_MHZ(100)) {
578 ret = upload_firmware(drvc->sr_ctx, 1, devc);
579 devc->num_channels = 8;
580 } else if (samplerate == SR_MHZ(200)) {
581 ret = upload_firmware(drvc->sr_ctx, 2, devc);
582 devc->num_channels = 4;
583 }
584
585 /*
586 * Derive the sample period from the sample rate as well as the
587 * number of samples that the device will communicate within
588 * an "event" (memory organization internal to the device).
589 */
590 if (ret == SR_OK) {
591 devc->cur_samplerate = samplerate;
592 devc->period_ps = 1000000000000ULL / samplerate;
593 devc->samples_per_event = 16 / devc->num_channels;
594 devc->state.state = SIGMA_IDLE;
595 }
596
597 /*
598 * Support for "limit_samples" is implemented by stopping
599 * acquisition after a corresponding period of time.
600 * Re-calculate that period of time, in case the limit is
601 * set first and the samplerate gets (re-)configured later.
602 */
603 if (ret == SR_OK && devc->limit_samples) {
604 uint64_t msecs;
605 msecs = sigma_limit_samples_to_msec(devc, devc->limit_samples);
606 devc->limit_msec = msecs;
607 }
608
609 return ret;
610}
611
612/*
613 * In 100 and 200 MHz mode, only a single pin rising/falling can be
614 * set as trigger. In other modes, two rising/falling triggers can be set,
615 * in addition to value/mask trigger for any number of channels.
616 *
617 * The Sigma supports complex triggers using boolean expressions, but this
618 * has not been implemented yet.
619 */
620SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
621{
622 struct dev_context *devc;
623 struct sr_trigger *trigger;
624 struct sr_trigger_stage *stage;
625 struct sr_trigger_match *match;
626 const GSList *l, *m;
627 int channelbit, trigger_set;
628
629 devc = sdi->priv;
630 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
631 if (!(trigger = sr_session_trigger_get(sdi->session)))
632 return SR_OK;
633
634 trigger_set = 0;
635 for (l = trigger->stages; l; l = l->next) {
636 stage = l->data;
637 for (m = stage->matches; m; m = m->next) {
638 match = m->data;
639 if (!match->channel->enabled)
640 /* Ignore disabled channels with a trigger. */
641 continue;
642 channelbit = 1 << (match->channel->index);
643 if (devc->cur_samplerate >= SR_MHZ(100)) {
644 /* Fast trigger support. */
645 if (trigger_set) {
646 sr_err("Only a single pin trigger is "
647 "supported in 100 and 200MHz mode.");
648 return SR_ERR;
649 }
650 if (match->match == SR_TRIGGER_FALLING)
651 devc->trigger.fallingmask |= channelbit;
652 else if (match->match == SR_TRIGGER_RISING)
653 devc->trigger.risingmask |= channelbit;
654 else {
655 sr_err("Only rising/falling trigger is "
656 "supported in 100 and 200MHz mode.");
657 return SR_ERR;
658 }
659
660 trigger_set++;
661 } else {
662 /* Simple trigger support (event). */
663 if (match->match == SR_TRIGGER_ONE) {
664 devc->trigger.simplevalue |= channelbit;
665 devc->trigger.simplemask |= channelbit;
666 }
667 else if (match->match == SR_TRIGGER_ZERO) {
668 devc->trigger.simplevalue &= ~channelbit;
669 devc->trigger.simplemask |= channelbit;
670 }
671 else if (match->match == SR_TRIGGER_FALLING) {
672 devc->trigger.fallingmask |= channelbit;
673 trigger_set++;
674 }
675 else if (match->match == SR_TRIGGER_RISING) {
676 devc->trigger.risingmask |= channelbit;
677 trigger_set++;
678 }
679
680 /*
681 * Actually, Sigma supports 2 rising/falling triggers,
682 * but they are ORed and the current trigger syntax
683 * does not permit ORed triggers.
684 */
685 if (trigger_set > 1) {
686 sr_err("Only 1 rising/falling trigger "
687 "is supported.");
688 return SR_ERR;
689 }
690 }
691 }
692 }
693
694 return SR_OK;
695}
696
697
698/* Software trigger to determine exact trigger position. */
699static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
700 struct sigma_trigger *t)
701{
702 int i;
703 uint16_t sample = 0;
704
705 for (i = 0; i < 8; i++) {
706 if (i > 0)
707 last_sample = sample;
708 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
709
710 /* Simple triggers. */
711 if ((sample & t->simplemask) != t->simplevalue)
712 continue;
713
714 /* Rising edge. */
715 if (((last_sample & t->risingmask) != 0) ||
716 ((sample & t->risingmask) != t->risingmask))
717 continue;
718
719 /* Falling edge. */
720 if ((last_sample & t->fallingmask) != t->fallingmask ||
721 (sample & t->fallingmask) != 0)
722 continue;
723
724 break;
725 }
726
727 /* If we did not match, return original trigger pos. */
728 return i & 0x7;
729}
730
731/*
732 * Return the timestamp of "DRAM cluster".
733 */
734static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
735{
736 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
737}
738
739/*
740 * Return one 16bit data entity of a DRAM cluster at the specified index.
741 */
742static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
743{
744 uint16_t sample;
745
746 sample = 0;
747 sample |= cl->samples[idx].sample_lo << 0;
748 sample |= cl->samples[idx].sample_hi << 8;
749 sample = (sample >> 8) | (sample << 8);
750 return sample;
751}
752
753/*
754 * Deinterlace sample data that was retrieved at 100MHz samplerate.
755 * One 16bit item contains two samples of 8bits each. The bits of
756 * multiple samples are interleaved.
757 */
758static uint16_t sigma_deinterlace_100mhz_data(uint16_t indata, int idx)
759{
760 uint16_t outdata;
761
762 indata >>= idx;
763 outdata = 0;
764 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
765 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
766 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
767 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
768 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
769 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
770 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
771 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
772 return outdata;
773}
774
775/*
776 * Deinterlace sample data that was retrieved at 200MHz samplerate.
777 * One 16bit item contains four samples of 4bits each. The bits of
778 * multiple samples are interleaved.
779 */
780static uint16_t sigma_deinterlace_200mhz_data(uint16_t indata, int idx)
781{
782 uint16_t outdata;
783
784 indata >>= idx;
785 outdata = 0;
786 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
787 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
788 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
789 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
790 return outdata;
791}
792
793static void store_sr_sample(uint8_t *samples, int idx, uint16_t data)
794{
795 samples[2 * idx + 0] = (data >> 0) & 0xff;
796 samples[2 * idx + 1] = (data >> 8) & 0xff;
797}
798
799/*
800 * This size translates to: event count (1K events per cluster), times
801 * the sample width (unitsize, 16bits per event), times the maximum
802 * number of samples per event.
803 */
804#define SAMPLES_BUFFER_SIZE (1024 * 2 * 4)
805
806static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
807 unsigned int events_in_cluster,
808 unsigned int triggered,
809 struct sr_dev_inst *sdi)
810{
811 struct dev_context *devc = sdi->priv;
812 struct sigma_state *ss = &devc->state;
813 struct sr_datafeed_packet packet;
814 struct sr_datafeed_logic logic;
815 uint16_t tsdiff, ts, sample, item16;
816 uint8_t samples[SAMPLES_BUFFER_SIZE];
817 uint8_t *send_ptr;
818 size_t send_count, trig_count;
819 unsigned int i;
820 int j;
821
822 ts = sigma_dram_cluster_ts(dram_cluster);
823 tsdiff = ts - ss->lastts;
824 ss->lastts = ts + EVENTS_PER_CLUSTER;
825
826 packet.type = SR_DF_LOGIC;
827 packet.payload = &logic;
828 logic.unitsize = 2;
829 logic.data = samples;
830
831 /*
832 * First of all, send Sigrok a copy of the last sample from
833 * previous cluster as many times as needed to make up for
834 * the differential characteristics of data we get from the
835 * Sigma. Sigrok needs one sample of data per period.
836 *
837 * One DRAM cluster contains a timestamp and seven samples,
838 * the units of timestamp are "devc->period_ps" , the first
839 * sample in the cluster happens at the time of the timestamp
840 * and the remaining samples happen at timestamp +1...+6 .
841 */
842 for (ts = 0; ts < tsdiff; ts++) {
843 i = ts % 1024;
844 store_sr_sample(samples, i, ss->lastsample);
845
846 /*
847 * If we have 1024 samples ready or we're at the
848 * end of submitting the padding samples, submit
849 * the packet to Sigrok. Since constant data is
850 * sent, duplication of data for rates above 50MHz
851 * is simple.
852 */
853 if ((i == 1023) || (ts == tsdiff - 1)) {
854 logic.length = (i + 1) * logic.unitsize;
855 for (j = 0; j < devc->samples_per_event; j++)
856 sr_session_send(sdi, &packet);
857 }
858 }
859
860 /*
861 * Parse the samples in current cluster and prepare them
862 * to be submitted to Sigrok. Cope with memory layouts that
863 * vary with the samplerate.
864 */
865 send_ptr = &samples[0];
866 send_count = 0;
867 sample = 0;
868 for (i = 0; i < events_in_cluster; i++) {
869 item16 = sigma_dram_cluster_data(dram_cluster, i);
870 if (devc->cur_samplerate == SR_MHZ(200)) {
871 sample = sigma_deinterlace_200mhz_data(item16, 0);
872 store_sr_sample(samples, send_count++, sample);
873 sample = sigma_deinterlace_200mhz_data(item16, 1);
874 store_sr_sample(samples, send_count++, sample);
875 sample = sigma_deinterlace_200mhz_data(item16, 2);
876 store_sr_sample(samples, send_count++, sample);
877 sample = sigma_deinterlace_200mhz_data(item16, 3);
878 store_sr_sample(samples, send_count++, sample);
879 } else if (devc->cur_samplerate == SR_MHZ(100)) {
880 sample = sigma_deinterlace_100mhz_data(item16, 0);
881 store_sr_sample(samples, send_count++, sample);
882 sample = sigma_deinterlace_100mhz_data(item16, 1);
883 store_sr_sample(samples, send_count++, sample);
884 } else {
885 sample = item16;
886 store_sr_sample(samples, send_count++, sample);
887 }
888 }
889
890 /*
891 * If a trigger position applies, then provide the datafeed with
892 * the first part of data up to that position, then send the
893 * trigger marker.
894 */
895 int trigger_offset = 0;
896 if (triggered) {
897 /*
898 * Trigger is not always accurate to sample because of
899 * pipeline delay. However, it always triggers before
900 * the actual event. We therefore look at the next
901 * samples to pinpoint the exact position of the trigger.
902 */
903 trigger_offset = get_trigger_offset(samples,
904 ss->lastsample, &devc->trigger);
905
906 if (trigger_offset > 0) {
907 trig_count = trigger_offset * devc->samples_per_event;
908 packet.type = SR_DF_LOGIC;
909 logic.length = trig_count * logic.unitsize;
910 sr_session_send(sdi, &packet);
911 send_ptr += trig_count * logic.unitsize;
912 send_count -= trig_count;
913 }
914
915 /* Only send trigger if explicitly enabled. */
916 if (devc->use_triggers) {
917 packet.type = SR_DF_TRIGGER;
918 sr_session_send(sdi, &packet);
919 }
920 }
921
922 /*
923 * Send the data after the trigger, or all of the received data
924 * if no trigger position applies.
925 */
926 if (send_count) {
927 packet.type = SR_DF_LOGIC;
928 logic.length = send_count * logic.unitsize;
929 logic.data = send_ptr;
930 sr_session_send(sdi, &packet);
931 }
932
933 ss->lastsample = sample;
934}
935
936/*
937 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
938 * Each event is 20ns apart, and can contain multiple samples.
939 *
940 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
941 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
942 * For 50 MHz and below, events contain one sample for each channel,
943 * spread 20 ns apart.
944 */
945static int decode_chunk_ts(struct sigma_dram_line *dram_line,
946 uint16_t events_in_line,
947 uint32_t trigger_event,
948 struct sr_dev_inst *sdi)
949{
950 struct sigma_dram_cluster *dram_cluster;
951 struct dev_context *devc;
952 unsigned int clusters_in_line;
953 unsigned int events_in_cluster;
954 unsigned int i;
955 uint32_t trigger_cluster, triggered;
956
957 devc = sdi->priv;
958 clusters_in_line = events_in_line;
959 clusters_in_line += EVENTS_PER_CLUSTER - 1;
960 clusters_in_line /= EVENTS_PER_CLUSTER;
961 trigger_cluster = ~0;
962 triggered = 0;
963
964 /* Check if trigger is in this chunk. */
965 if (trigger_event < (64 * 7)) {
966 if (devc->cur_samplerate <= SR_MHZ(50)) {
967 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
968 trigger_event);
969 }
970
971 /* Find in which cluster the trigger occurred. */
972 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
973 }
974
975 /* For each full DRAM cluster. */
976 for (i = 0; i < clusters_in_line; i++) {
977 dram_cluster = &dram_line->cluster[i];
978
979 /* The last cluster might not be full. */
980 if ((i == clusters_in_line - 1) &&
981 (events_in_line % EVENTS_PER_CLUSTER)) {
982 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
983 } else {
984 events_in_cluster = EVENTS_PER_CLUSTER;
985 }
986
987 triggered = (i == trigger_cluster);
988 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
989 triggered, sdi);
990 }
991
992 return SR_OK;
993}
994
995static int download_capture(struct sr_dev_inst *sdi)
996{
997 const uint32_t chunks_per_read = 32;
998
999 struct dev_context *devc;
1000 struct sigma_dram_line *dram_line;
1001 int bufsz;
1002 uint32_t stoppos, triggerpos;
1003 uint8_t modestatus;
1004 uint32_t i;
1005 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
1006 uint32_t dl_events_in_line;
1007 uint32_t trg_line, trg_event;
1008
1009 devc = sdi->priv;
1010 dl_events_in_line = 64 * 7;
1011 trg_line = ~0;
1012 trg_event = ~0;
1013
1014 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1015 if (!dram_line)
1016 return FALSE;
1017
1018 sr_info("Downloading sample data.");
1019
1020 /* Stop acquisition. */
1021 sigma_set_register(WRITE_MODE, 0x11, devc);
1022
1023 /* Set SDRAM Read Enable. */
1024 sigma_set_register(WRITE_MODE, 0x02, devc);
1025
1026 /* Get the current position. */
1027 sigma_read_pos(&stoppos, &triggerpos, devc);
1028
1029 /* Check if trigger has fired. */
1030 modestatus = sigma_get_register(READ_MODE, devc);
1031 if (modestatus & 0x20) {
1032 trg_line = triggerpos >> 9;
1033 trg_event = triggerpos & 0x1ff;
1034 }
1035
1036 /*
1037 * Determine how many 1024b "DRAM lines" do we need to read from the
1038 * Sigma so we have a complete set of samples. Note that the last
1039 * line can be only partial, containing less than 64 clusters.
1040 */
1041 dl_lines_total = (stoppos >> 9) + 1;
1042
1043 dl_lines_done = 0;
1044
1045 while (dl_lines_total > dl_lines_done) {
1046 /* We can download only up-to 32 DRAM lines in one go! */
1047 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
1048
1049 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
1050 (uint8_t *)dram_line, devc);
1051 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1052 (void)bufsz;
1053
1054 /* This is the first DRAM line, so find the initial timestamp. */
1055 if (dl_lines_done == 0) {
1056 devc->state.lastts =
1057 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
1058 devc->state.lastsample = 0;
1059 }
1060
1061 for (i = 0; i < dl_lines_curr; i++) {
1062 uint32_t trigger_event = ~0;
1063 /* The last "DRAM line" can be only partially full. */
1064 if (dl_lines_done + i == dl_lines_total - 1)
1065 dl_events_in_line = stoppos & 0x1ff;
1066
1067 /* Test if the trigger happened on this line. */
1068 if (dl_lines_done + i == trg_line)
1069 trigger_event = trg_event;
1070
1071 decode_chunk_ts(dram_line + i, dl_events_in_line,
1072 trigger_event, sdi);
1073 }
1074
1075 dl_lines_done += dl_lines_curr;
1076 }
1077
1078 std_session_send_df_end(sdi);
1079
1080 sdi->driver->dev_acquisition_stop(sdi);
1081
1082 g_free(dram_line);
1083
1084 return TRUE;
1085}
1086
1087/*
1088 * Handle the Sigma when in CAPTURE mode. This function checks:
1089 * - Sampling time ended
1090 * - DRAM capacity overflow
1091 * This function triggers download of the samples from Sigma
1092 * in case either of the above conditions is true.
1093 */
1094static int sigma_capture_mode(struct sr_dev_inst *sdi)
1095{
1096 struct dev_context *devc;
1097 uint64_t running_msec;
1098 struct timeval tv;
1099 uint32_t stoppos, triggerpos;
1100
1101 devc = sdi->priv;
1102
1103 /* Check if the selected sampling duration passed. */
1104 gettimeofday(&tv, 0);
1105 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1106 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1107 if (running_msec >= devc->limit_msec)
1108 return download_capture(sdi);
1109
1110 /* Get the position in DRAM to which the FPGA is writing now. */
1111 sigma_read_pos(&stoppos, &triggerpos, devc);
1112 /* Test if DRAM is full and if so, download the data. */
1113 if ((stoppos >> 9) == 32767)
1114 return download_capture(sdi);
1115
1116 return TRUE;
1117}
1118
1119SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
1120{
1121 struct sr_dev_inst *sdi;
1122 struct dev_context *devc;
1123
1124 (void)fd;
1125 (void)revents;
1126
1127 sdi = cb_data;
1128 devc = sdi->priv;
1129
1130 if (devc->state.state == SIGMA_IDLE)
1131 return TRUE;
1132
1133 if (devc->state.state == SIGMA_CAPTURE)
1134 return sigma_capture_mode(sdi);
1135
1136 return TRUE;
1137}
1138
1139/* Build a LUT entry used by the trigger functions. */
1140static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1141{
1142 int i, j, k, bit;
1143
1144 /* For each quad channel. */
1145 for (i = 0; i < 4; i++) {
1146 entry[i] = 0xffff;
1147
1148 /* For each bit in LUT. */
1149 for (j = 0; j < 16; j++)
1150
1151 /* For each channel in quad. */
1152 for (k = 0; k < 4; k++) {
1153 bit = 1 << (i * 4 + k);
1154
1155 /* Set bit in entry */
1156 if ((mask & bit) && ((!(value & bit)) !=
1157 (!(j & (1 << k)))))
1158 entry[i] &= ~(1 << j);
1159 }
1160 }
1161}
1162
1163/* Add a logical function to LUT mask. */
1164static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1165 int index, int neg, uint16_t *mask)
1166{
1167 int i, j;
1168 int x[2][2], tmp, a, b, aset, bset, rset;
1169
1170 memset(x, 0, 4 * sizeof(int));
1171
1172 /* Trigger detect condition. */
1173 switch (oper) {
1174 case OP_LEVEL:
1175 x[0][1] = 1;
1176 x[1][1] = 1;
1177 break;
1178 case OP_NOT:
1179 x[0][0] = 1;
1180 x[1][0] = 1;
1181 break;
1182 case OP_RISE:
1183 x[0][1] = 1;
1184 break;
1185 case OP_FALL:
1186 x[1][0] = 1;
1187 break;
1188 case OP_RISEFALL:
1189 x[0][1] = 1;
1190 x[1][0] = 1;
1191 break;
1192 case OP_NOTRISE:
1193 x[1][1] = 1;
1194 x[0][0] = 1;
1195 x[1][0] = 1;
1196 break;
1197 case OP_NOTFALL:
1198 x[1][1] = 1;
1199 x[0][0] = 1;
1200 x[0][1] = 1;
1201 break;
1202 case OP_NOTRISEFALL:
1203 x[1][1] = 1;
1204 x[0][0] = 1;
1205 break;
1206 }
1207
1208 /* Transpose if neg is set. */
1209 if (neg) {
1210 for (i = 0; i < 2; i++) {
1211 for (j = 0; j < 2; j++) {
1212 tmp = x[i][j];
1213 x[i][j] = x[1 - i][1 - j];
1214 x[1 - i][1 - j] = tmp;
1215 }
1216 }
1217 }
1218
1219 /* Update mask with function. */
1220 for (i = 0; i < 16; i++) {
1221 a = (i >> (2 * index + 0)) & 1;
1222 b = (i >> (2 * index + 1)) & 1;
1223
1224 aset = (*mask >> i) & 1;
1225 bset = x[b][a];
1226
1227 rset = 0;
1228 if (func == FUNC_AND || func == FUNC_NAND)
1229 rset = aset & bset;
1230 else if (func == FUNC_OR || func == FUNC_NOR)
1231 rset = aset | bset;
1232 else if (func == FUNC_XOR || func == FUNC_NXOR)
1233 rset = aset ^ bset;
1234
1235 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1236 rset = !rset;
1237
1238 *mask &= ~(1 << i);
1239
1240 if (rset)
1241 *mask |= 1 << i;
1242 }
1243}
1244
1245/*
1246 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1247 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1248 * set at any time, but a full mask and value can be set (0/1).
1249 */
1250SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1251{
1252 int i,j;
1253 uint16_t masks[2] = { 0, 0 };
1254
1255 memset(lut, 0, sizeof(struct triggerlut));
1256
1257 /* Constant for simple triggers. */
1258 lut->m4 = 0xa000;
1259
1260 /* Value/mask trigger support. */
1261 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1262 lut->m2d);
1263
1264 /* Rise/fall trigger support. */
1265 for (i = 0, j = 0; i < 16; i++) {
1266 if (devc->trigger.risingmask & (1 << i) ||
1267 devc->trigger.fallingmask & (1 << i))
1268 masks[j++] = 1 << i;
1269 }
1270
1271 build_lut_entry(masks[0], masks[0], lut->m0d);
1272 build_lut_entry(masks[1], masks[1], lut->m1d);
1273
1274 /* Add glue logic */
1275 if (masks[0] || masks[1]) {
1276 /* Transition trigger. */
1277 if (masks[0] & devc->trigger.risingmask)
1278 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1279 if (masks[0] & devc->trigger.fallingmask)
1280 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1281 if (masks[1] & devc->trigger.risingmask)
1282 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1283 if (masks[1] & devc->trigger.fallingmask)
1284 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1285 } else {
1286 /* Only value/mask trigger. */
1287 lut->m3 = 0xffff;
1288 }
1289
1290 /* Triggertype: event. */
1291 lut->params.selres = 3;
1292
1293 return SR_OK;
1294}