]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
Doxyfile*: Set GENERATE_TODOLIST to NO.
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include "protocol.h"
28
29#define USB_VENDOR 0xa600
30#define USB_PRODUCT 0xa000
31#define USB_DESCRIPTION "ASIX SIGMA"
32#define USB_VENDOR_NAME "ASIX"
33#define USB_MODEL_NAME "SIGMA"
34
35/*
36 * The ASIX Sigma supports arbitrary integer frequency divider in
37 * the 50MHz mode. The divider is in range 1...256 , allowing for
38 * very precise sampling rate selection. This driver supports only
39 * a subset of the sampling rates.
40 */
41SR_PRIV const uint64_t samplerates[] = {
42 SR_KHZ(200), /* div=250 */
43 SR_KHZ(250), /* div=200 */
44 SR_KHZ(500), /* div=100 */
45 SR_MHZ(1), /* div=50 */
46 SR_MHZ(5), /* div=10 */
47 SR_MHZ(10), /* div=5 */
48 SR_MHZ(25), /* div=2 */
49 SR_MHZ(50), /* div=1 */
50 SR_MHZ(100), /* Special FW needed */
51 SR_MHZ(200), /* Special FW needed */
52};
53
54SR_PRIV const int SAMPLERATES_COUNT = ARRAY_SIZE(samplerates);
55
56static const char sigma_firmware_files[][24] = {
57 /* 50 MHz, supports 8 bit fractions */
58 "asix-sigma-50.fw",
59 /* 100 MHz */
60 "asix-sigma-100.fw",
61 /* 200 MHz */
62 "asix-sigma-200.fw",
63 /* Synchronous clock from pin */
64 "asix-sigma-50sync.fw",
65 /* Frequency counter */
66 "asix-sigma-phasor.fw",
67};
68
69static int sigma_read(void *buf, size_t size, struct dev_context *devc)
70{
71 int ret;
72
73 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
74 if (ret < 0) {
75 sr_err("ftdi_read_data failed: %s",
76 ftdi_get_error_string(&devc->ftdic));
77 }
78
79 return ret;
80}
81
82static int sigma_write(void *buf, size_t size, struct dev_context *devc)
83{
84 int ret;
85
86 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
87 if (ret < 0) {
88 sr_err("ftdi_write_data failed: %s",
89 ftdi_get_error_string(&devc->ftdic));
90 } else if ((size_t) ret != size) {
91 sr_err("ftdi_write_data did not complete write.");
92 }
93
94 return ret;
95}
96
97/*
98 * NOTE: We chose the buffer size to be large enough to hold any write to the
99 * device. We still print a message just in case.
100 */
101SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
102 struct dev_context *devc)
103{
104 size_t i;
105 uint8_t buf[80];
106 int idx = 0;
107
108 if ((len + 2) > sizeof(buf)) {
109 sr_err("Attempted to write %zu bytes, but buffer is too small.",
110 len + 2);
111 return SR_ERR_BUG;
112 }
113
114 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
115 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
116
117 for (i = 0; i < len; i++) {
118 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
119 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
120 }
121
122 return sigma_write(buf, idx, devc);
123}
124
125SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
126{
127 return sigma_write_register(reg, &value, 1, devc);
128}
129
130static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
131 struct dev_context *devc)
132{
133 uint8_t buf[3];
134
135 buf[0] = REG_ADDR_LOW | (reg & 0xf);
136 buf[1] = REG_ADDR_HIGH | (reg >> 4);
137 buf[2] = REG_READ_ADDR;
138
139 sigma_write(buf, sizeof(buf), devc);
140
141 return sigma_read(data, len, devc);
142}
143
144static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
145{
146 uint8_t value;
147
148 if (1 != sigma_read_register(reg, &value, 1, devc)) {
149 sr_err("sigma_get_register: 1 byte expected");
150 return 0;
151 }
152
153 return value;
154}
155
156static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
157 struct dev_context *devc)
158{
159 uint8_t buf[] = {
160 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
161
162 REG_READ_ADDR | NEXT_REG,
163 REG_READ_ADDR | NEXT_REG,
164 REG_READ_ADDR | NEXT_REG,
165 REG_READ_ADDR | NEXT_REG,
166 REG_READ_ADDR | NEXT_REG,
167 REG_READ_ADDR | NEXT_REG,
168 };
169 uint8_t result[6];
170
171 sigma_write(buf, sizeof(buf), devc);
172
173 sigma_read(result, sizeof(result), devc);
174
175 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
176 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
177
178 /* Not really sure why this must be done, but according to spec. */
179 if ((--*stoppos & 0x1ff) == 0x1ff)
180 *stoppos -= 64;
181
182 if ((*--triggerpos & 0x1ff) == 0x1ff)
183 *triggerpos -= 64;
184
185 return 1;
186}
187
188static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
189 uint8_t *data, struct dev_context *devc)
190{
191 size_t i;
192 uint8_t buf[4096];
193 int idx = 0;
194
195 /* Send the startchunk. Index start with 1. */
196 buf[0] = startchunk >> 8;
197 buf[1] = startchunk & 0xff;
198 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
199
200 /* Read the DRAM. */
201 buf[idx++] = REG_DRAM_BLOCK;
202 buf[idx++] = REG_DRAM_WAIT_ACK;
203
204 for (i = 0; i < numchunks; i++) {
205 /* Alternate bit to copy from DRAM to cache. */
206 if (i != (numchunks - 1))
207 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
208
209 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
210
211 if (i != (numchunks - 1))
212 buf[idx++] = REG_DRAM_WAIT_ACK;
213 }
214
215 sigma_write(buf, idx, devc);
216
217 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
218}
219
220/* Upload trigger look-up tables to Sigma. */
221SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
222{
223 int i;
224 uint8_t tmp[2];
225 uint16_t bit;
226
227 /* Transpose the table and send to Sigma. */
228 for (i = 0; i < 16; i++) {
229 bit = 1 << i;
230
231 tmp[0] = tmp[1] = 0;
232
233 if (lut->m2d[0] & bit)
234 tmp[0] |= 0x01;
235 if (lut->m2d[1] & bit)
236 tmp[0] |= 0x02;
237 if (lut->m2d[2] & bit)
238 tmp[0] |= 0x04;
239 if (lut->m2d[3] & bit)
240 tmp[0] |= 0x08;
241
242 if (lut->m3 & bit)
243 tmp[0] |= 0x10;
244 if (lut->m3s & bit)
245 tmp[0] |= 0x20;
246 if (lut->m4 & bit)
247 tmp[0] |= 0x40;
248
249 if (lut->m0d[0] & bit)
250 tmp[1] |= 0x01;
251 if (lut->m0d[1] & bit)
252 tmp[1] |= 0x02;
253 if (lut->m0d[2] & bit)
254 tmp[1] |= 0x04;
255 if (lut->m0d[3] & bit)
256 tmp[1] |= 0x08;
257
258 if (lut->m1d[0] & bit)
259 tmp[1] |= 0x10;
260 if (lut->m1d[1] & bit)
261 tmp[1] |= 0x20;
262 if (lut->m1d[2] & bit)
263 tmp[1] |= 0x40;
264 if (lut->m1d[3] & bit)
265 tmp[1] |= 0x80;
266
267 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
268 devc);
269 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
270 }
271
272 /* Send the parameters */
273 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
274 sizeof(lut->params), devc);
275
276 return SR_OK;
277}
278
279SR_PRIV void sigma_clear_helper(void *priv)
280{
281 struct dev_context *devc;
282
283 devc = priv;
284
285 ftdi_deinit(&devc->ftdic);
286}
287
288/*
289 * Configure the FPGA for bitbang mode.
290 * This sequence is documented in section 2. of the ASIX Sigma programming
291 * manual. This sequence is necessary to configure the FPGA in the Sigma
292 * into Bitbang mode, in which it can be programmed with the firmware.
293 */
294static int sigma_fpga_init_bitbang(struct dev_context *devc)
295{
296 uint8_t suicide[] = {
297 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
298 };
299 uint8_t init_array[] = {
300 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
301 0x01, 0x01,
302 };
303 int i, ret, timeout = (10 * 1000);
304 uint8_t data;
305
306 /* Section 2. part 1), do the FPGA suicide. */
307 sigma_write(suicide, sizeof(suicide), devc);
308 sigma_write(suicide, sizeof(suicide), devc);
309 sigma_write(suicide, sizeof(suicide), devc);
310 sigma_write(suicide, sizeof(suicide), devc);
311
312 /* Section 2. part 2), do pulse on D1. */
313 sigma_write(init_array, sizeof(init_array), devc);
314 ftdi_usb_purge_buffers(&devc->ftdic);
315
316 /* Wait until the FPGA asserts D6/INIT_B. */
317 for (i = 0; i < timeout; i++) {
318 ret = sigma_read(&data, 1, devc);
319 if (ret < 0)
320 return ret;
321 /* Test if pin D6 got asserted. */
322 if (data & (1 << 5))
323 return 0;
324 /* The D6 was not asserted yet, wait a bit. */
325 g_usleep(10 * 1000);
326 }
327
328 return SR_ERR_TIMEOUT;
329}
330
331/*
332 * Configure the FPGA for logic-analyzer mode.
333 */
334static int sigma_fpga_init_la(struct dev_context *devc)
335{
336 /* Initialize the logic analyzer mode. */
337 uint8_t logic_mode_start[] = {
338 REG_ADDR_LOW | (READ_ID & 0xf),
339 REG_ADDR_HIGH | (READ_ID >> 8),
340 REG_READ_ADDR, /* Read ID register. */
341
342 REG_ADDR_LOW | (WRITE_TEST & 0xf),
343 REG_DATA_LOW | 0x5,
344 REG_DATA_HIGH_WRITE | 0x5,
345 REG_READ_ADDR, /* Read scratch register. */
346
347 REG_DATA_LOW | 0xa,
348 REG_DATA_HIGH_WRITE | 0xa,
349 REG_READ_ADDR, /* Read scratch register. */
350
351 REG_ADDR_LOW | (WRITE_MODE & 0xf),
352 REG_DATA_LOW | 0x0,
353 REG_DATA_HIGH_WRITE | 0x8,
354 };
355
356 uint8_t result[3];
357 int ret;
358
359 /* Initialize the logic analyzer mode. */
360 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
361
362 /* Expect a 3 byte reply since we issued three READ requests. */
363 ret = sigma_read(result, 3, devc);
364 if (ret != 3)
365 goto err;
366
367 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
368 goto err;
369
370 return SR_OK;
371err:
372 sr_err("Configuration failed. Invalid reply received.");
373 return SR_ERR;
374}
375
376/*
377 * Read the firmware from a file and transform it into a series of bitbang
378 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
379 * by the caller of this function.
380 */
381static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
382 uint8_t **bb_cmd, gsize *bb_cmd_size)
383{
384 size_t i, file_size, bb_size;
385 char *firmware;
386 uint8_t *bb_stream, *bbs;
387 uint32_t imm;
388 int bit, v;
389 int ret = SR_OK;
390
391 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
392 name, &file_size, 256 * 1024);
393 if (!firmware)
394 return SR_ERR;
395
396 /* Weird magic transformation below, I have no idea what it does. */
397 imm = 0x3f6df2ab;
398 for (i = 0; i < file_size; i++) {
399 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
400 firmware[i] ^= imm & 0xff;
401 }
402
403 /*
404 * Now that the firmware is "transformed", we will transcribe the
405 * firmware blob into a sequence of toggles of the Dx wires. This
406 * sequence will be fed directly into the Sigma, which must be in
407 * the FPGA bitbang programming mode.
408 */
409
410 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
411 bb_size = file_size * 8 * 2;
412 bb_stream = (uint8_t *)g_try_malloc(bb_size);
413 if (!bb_stream) {
414 sr_err("%s: Failed to allocate bitbang stream", __func__);
415 ret = SR_ERR_MALLOC;
416 goto exit;
417 }
418
419 bbs = bb_stream;
420 for (i = 0; i < file_size; i++) {
421 for (bit = 7; bit >= 0; bit--) {
422 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
423 *bbs++ = v | 0x01;
424 *bbs++ = v;
425 }
426 }
427
428 /* The transformation completed successfully, return the result. */
429 *bb_cmd = bb_stream;
430 *bb_cmd_size = bb_size;
431
432exit:
433 g_free(firmware);
434 return ret;
435}
436
437static int upload_firmware(struct sr_context *ctx,
438 int firmware_idx, struct dev_context *devc)
439{
440 int ret;
441 unsigned char *buf;
442 unsigned char pins;
443 size_t buf_size;
444 const char *firmware = sigma_firmware_files[firmware_idx];
445 struct ftdi_context *ftdic = &devc->ftdic;
446
447 /* Make sure it's an ASIX SIGMA. */
448 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
449 USB_DESCRIPTION, NULL);
450 if (ret < 0) {
451 sr_err("ftdi_usb_open failed: %s",
452 ftdi_get_error_string(ftdic));
453 return 0;
454 }
455
456 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
457 if (ret < 0) {
458 sr_err("ftdi_set_bitmode failed: %s",
459 ftdi_get_error_string(ftdic));
460 return 0;
461 }
462
463 /* Four times the speed of sigmalogan - Works well. */
464 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
465 if (ret < 0) {
466 sr_err("ftdi_set_baudrate failed: %s",
467 ftdi_get_error_string(ftdic));
468 return 0;
469 }
470
471 /* Initialize the FPGA for firmware upload. */
472 ret = sigma_fpga_init_bitbang(devc);
473 if (ret)
474 return ret;
475
476 /* Prepare firmware. */
477 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
478 if (ret != SR_OK) {
479 sr_err("An error occurred while reading the firmware: %s",
480 firmware);
481 return ret;
482 }
483
484 /* Upload firmware. */
485 sr_info("Uploading firmware file '%s'.", firmware);
486 sigma_write(buf, buf_size, devc);
487
488 g_free(buf);
489
490 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
491 if (ret < 0) {
492 sr_err("ftdi_set_bitmode failed: %s",
493 ftdi_get_error_string(ftdic));
494 return SR_ERR;
495 }
496
497 ftdi_usb_purge_buffers(ftdic);
498
499 /* Discard garbage. */
500 while (sigma_read(&pins, 1, devc) == 1)
501 ;
502
503 /* Initialize the FPGA for logic-analyzer mode. */
504 ret = sigma_fpga_init_la(devc);
505 if (ret != SR_OK)
506 return ret;
507
508 devc->cur_firmware = firmware_idx;
509
510 sr_info("Firmware uploaded.");
511
512 return SR_OK;
513}
514
515SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
516{
517 struct dev_context *devc;
518 struct drv_context *drvc;
519 unsigned int i;
520 int ret;
521
522 devc = sdi->priv;
523 drvc = sdi->driver->context;
524 ret = SR_OK;
525
526 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
527 if (samplerates[i] == samplerate)
528 break;
529 }
530 if (samplerates[i] == 0)
531 return SR_ERR_SAMPLERATE;
532
533 if (samplerate <= SR_MHZ(50)) {
534 ret = upload_firmware(drvc->sr_ctx, 0, devc);
535 devc->num_channels = 16;
536 } else if (samplerate == SR_MHZ(100)) {
537 ret = upload_firmware(drvc->sr_ctx, 1, devc);
538 devc->num_channels = 8;
539 } else if (samplerate == SR_MHZ(200)) {
540 ret = upload_firmware(drvc->sr_ctx, 2, devc);
541 devc->num_channels = 4;
542 }
543
544 if (ret == SR_OK) {
545 devc->cur_samplerate = samplerate;
546 devc->period_ps = 1000000000000ULL / samplerate;
547 devc->samples_per_event = 16 / devc->num_channels;
548 devc->state.state = SIGMA_IDLE;
549 }
550
551 return ret;
552}
553
554/*
555 * In 100 and 200 MHz mode, only a single pin rising/falling can be
556 * set as trigger. In other modes, two rising/falling triggers can be set,
557 * in addition to value/mask trigger for any number of channels.
558 *
559 * The Sigma supports complex triggers using boolean expressions, but this
560 * has not been implemented yet.
561 */
562SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
563{
564 struct dev_context *devc;
565 struct sr_trigger *trigger;
566 struct sr_trigger_stage *stage;
567 struct sr_trigger_match *match;
568 const GSList *l, *m;
569 int channelbit, trigger_set;
570
571 devc = sdi->priv;
572 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
573 if (!(trigger = sr_session_trigger_get(sdi->session)))
574 return SR_OK;
575
576 trigger_set = 0;
577 for (l = trigger->stages; l; l = l->next) {
578 stage = l->data;
579 for (m = stage->matches; m; m = m->next) {
580 match = m->data;
581 if (!match->channel->enabled)
582 /* Ignore disabled channels with a trigger. */
583 continue;
584 channelbit = 1 << (match->channel->index);
585 if (devc->cur_samplerate >= SR_MHZ(100)) {
586 /* Fast trigger support. */
587 if (trigger_set) {
588 sr_err("Only a single pin trigger is "
589 "supported in 100 and 200MHz mode.");
590 return SR_ERR;
591 }
592 if (match->match == SR_TRIGGER_FALLING)
593 devc->trigger.fallingmask |= channelbit;
594 else if (match->match == SR_TRIGGER_RISING)
595 devc->trigger.risingmask |= channelbit;
596 else {
597 sr_err("Only rising/falling trigger is "
598 "supported in 100 and 200MHz mode.");
599 return SR_ERR;
600 }
601
602 trigger_set++;
603 } else {
604 /* Simple trigger support (event). */
605 if (match->match == SR_TRIGGER_ONE) {
606 devc->trigger.simplevalue |= channelbit;
607 devc->trigger.simplemask |= channelbit;
608 }
609 else if (match->match == SR_TRIGGER_ZERO) {
610 devc->trigger.simplevalue &= ~channelbit;
611 devc->trigger.simplemask |= channelbit;
612 }
613 else if (match->match == SR_TRIGGER_FALLING) {
614 devc->trigger.fallingmask |= channelbit;
615 trigger_set++;
616 }
617 else if (match->match == SR_TRIGGER_RISING) {
618 devc->trigger.risingmask |= channelbit;
619 trigger_set++;
620 }
621
622 /*
623 * Actually, Sigma supports 2 rising/falling triggers,
624 * but they are ORed and the current trigger syntax
625 * does not permit ORed triggers.
626 */
627 if (trigger_set > 1) {
628 sr_err("Only 1 rising/falling trigger "
629 "is supported.");
630 return SR_ERR;
631 }
632 }
633 }
634 }
635
636 return SR_OK;
637}
638
639
640/* Software trigger to determine exact trigger position. */
641static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
642 struct sigma_trigger *t)
643{
644 int i;
645 uint16_t sample = 0;
646
647 for (i = 0; i < 8; i++) {
648 if (i > 0)
649 last_sample = sample;
650 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
651
652 /* Simple triggers. */
653 if ((sample & t->simplemask) != t->simplevalue)
654 continue;
655
656 /* Rising edge. */
657 if (((last_sample & t->risingmask) != 0) ||
658 ((sample & t->risingmask) != t->risingmask))
659 continue;
660
661 /* Falling edge. */
662 if ((last_sample & t->fallingmask) != t->fallingmask ||
663 (sample & t->fallingmask) != 0)
664 continue;
665
666 break;
667 }
668
669 /* If we did not match, return original trigger pos. */
670 return i & 0x7;
671}
672
673/*
674 * Return the timestamp of "DRAM cluster".
675 */
676static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
677{
678 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
679}
680
681static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
682 unsigned int events_in_cluster,
683 unsigned int triggered,
684 struct sr_dev_inst *sdi)
685{
686 struct dev_context *devc = sdi->priv;
687 struct sigma_state *ss = &devc->state;
688 struct sr_datafeed_packet packet;
689 struct sr_datafeed_logic logic;
690 uint16_t tsdiff, ts;
691 uint8_t samples[2048];
692 unsigned int i;
693
694 ts = sigma_dram_cluster_ts(dram_cluster);
695 tsdiff = ts - ss->lastts;
696 ss->lastts = ts;
697
698 packet.type = SR_DF_LOGIC;
699 packet.payload = &logic;
700 logic.unitsize = 2;
701 logic.data = samples;
702
703 /*
704 * First of all, send Sigrok a copy of the last sample from
705 * previous cluster as many times as needed to make up for
706 * the differential characteristics of data we get from the
707 * Sigma. Sigrok needs one sample of data per period.
708 *
709 * One DRAM cluster contains a timestamp and seven samples,
710 * the units of timestamp are "devc->period_ps" , the first
711 * sample in the cluster happens at the time of the timestamp
712 * and the remaining samples happen at timestamp +1...+6 .
713 */
714 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
715 i = ts % 1024;
716 samples[2 * i + 0] = ss->lastsample & 0xff;
717 samples[2 * i + 1] = ss->lastsample >> 8;
718
719 /*
720 * If we have 1024 samples ready or we're at the
721 * end of submitting the padding samples, submit
722 * the packet to Sigrok.
723 */
724 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
725 logic.length = (i + 1) * logic.unitsize;
726 sr_session_send(sdi, &packet);
727 }
728 }
729
730 /*
731 * Parse the samples in current cluster and prepare them
732 * to be submitted to Sigrok.
733 */
734 for (i = 0; i < events_in_cluster; i++) {
735 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
736 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
737 }
738
739 /* Send data up to trigger point (if triggered). */
740 int trigger_offset = 0;
741 if (triggered) {
742 /*
743 * Trigger is not always accurate to sample because of
744 * pipeline delay. However, it always triggers before
745 * the actual event. We therefore look at the next
746 * samples to pinpoint the exact position of the trigger.
747 */
748 trigger_offset = get_trigger_offset(samples,
749 ss->lastsample, &devc->trigger);
750
751 if (trigger_offset > 0) {
752 packet.type = SR_DF_LOGIC;
753 logic.length = trigger_offset * logic.unitsize;
754 sr_session_send(sdi, &packet);
755 events_in_cluster -= trigger_offset;
756 }
757
758 /* Only send trigger if explicitly enabled. */
759 if (devc->use_triggers) {
760 packet.type = SR_DF_TRIGGER;
761 sr_session_send(sdi, &packet);
762 }
763 }
764
765 if (events_in_cluster > 0) {
766 packet.type = SR_DF_LOGIC;
767 logic.length = events_in_cluster * logic.unitsize;
768 logic.data = samples + (trigger_offset * logic.unitsize);
769 sr_session_send(sdi, &packet);
770 }
771
772 ss->lastsample =
773 samples[2 * (events_in_cluster - 1) + 0] |
774 (samples[2 * (events_in_cluster - 1) + 1] << 8);
775
776}
777
778/*
779 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
780 * Each event is 20ns apart, and can contain multiple samples.
781 *
782 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
783 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
784 * For 50 MHz and below, events contain one sample for each channel,
785 * spread 20 ns apart.
786 */
787static int decode_chunk_ts(struct sigma_dram_line *dram_line,
788 uint16_t events_in_line,
789 uint32_t trigger_event,
790 struct sr_dev_inst *sdi)
791{
792 struct sigma_dram_cluster *dram_cluster;
793 struct dev_context *devc = sdi->priv;
794 unsigned int clusters_in_line =
795 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
796 unsigned int events_in_cluster;
797 unsigned int i;
798 uint32_t trigger_cluster = ~0, triggered = 0;
799
800 /* Check if trigger is in this chunk. */
801 if (trigger_event < (64 * 7)) {
802 if (devc->cur_samplerate <= SR_MHZ(50)) {
803 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
804 trigger_event);
805 }
806
807 /* Find in which cluster the trigger occurred. */
808 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
809 }
810
811 /* For each full DRAM cluster. */
812 for (i = 0; i < clusters_in_line; i++) {
813 dram_cluster = &dram_line->cluster[i];
814
815 /* The last cluster might not be full. */
816 if ((i == clusters_in_line - 1) &&
817 (events_in_line % EVENTS_PER_CLUSTER)) {
818 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
819 } else {
820 events_in_cluster = EVENTS_PER_CLUSTER;
821 }
822
823 triggered = (i == trigger_cluster);
824 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
825 triggered, sdi);
826 }
827
828 return SR_OK;
829}
830
831static int download_capture(struct sr_dev_inst *sdi)
832{
833 struct dev_context *devc = sdi->priv;
834 const uint32_t chunks_per_read = 32;
835 struct sigma_dram_line *dram_line;
836 int bufsz;
837 uint32_t stoppos, triggerpos;
838 uint8_t modestatus;
839
840 uint32_t i;
841 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
842 uint32_t dl_events_in_line = 64 * 7;
843 uint32_t trg_line = ~0, trg_event = ~0;
844
845 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
846 if (!dram_line)
847 return FALSE;
848
849 sr_info("Downloading sample data.");
850
851 /* Stop acquisition. */
852 sigma_set_register(WRITE_MODE, 0x11, devc);
853
854 /* Set SDRAM Read Enable. */
855 sigma_set_register(WRITE_MODE, 0x02, devc);
856
857 /* Get the current position. */
858 sigma_read_pos(&stoppos, &triggerpos, devc);
859
860 /* Check if trigger has fired. */
861 modestatus = sigma_get_register(READ_MODE, devc);
862 if (modestatus & 0x20) {
863 trg_line = triggerpos >> 9;
864 trg_event = triggerpos & 0x1ff;
865 }
866
867 /*
868 * Determine how many 1024b "DRAM lines" do we need to read from the
869 * Sigma so we have a complete set of samples. Note that the last
870 * line can be only partial, containing less than 64 clusters.
871 */
872 dl_lines_total = (stoppos >> 9) + 1;
873
874 dl_lines_done = 0;
875
876 while (dl_lines_total > dl_lines_done) {
877 /* We can download only up-to 32 DRAM lines in one go! */
878 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
879
880 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
881 (uint8_t *)dram_line, devc);
882 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
883 (void)bufsz;
884
885 /* This is the first DRAM line, so find the initial timestamp. */
886 if (dl_lines_done == 0) {
887 devc->state.lastts =
888 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
889 devc->state.lastsample = 0;
890 }
891
892 for (i = 0; i < dl_lines_curr; i++) {
893 uint32_t trigger_event = ~0;
894 /* The last "DRAM line" can be only partially full. */
895 if (dl_lines_done + i == dl_lines_total - 1)
896 dl_events_in_line = stoppos & 0x1ff;
897
898 /* Test if the trigger happened on this line. */
899 if (dl_lines_done + i == trg_line)
900 trigger_event = trg_event;
901
902 decode_chunk_ts(dram_line + i, dl_events_in_line,
903 trigger_event, sdi);
904 }
905
906 dl_lines_done += dl_lines_curr;
907 }
908
909 std_session_send_df_end(sdi);
910
911 sdi->driver->dev_acquisition_stop(sdi);
912
913 g_free(dram_line);
914
915 return TRUE;
916}
917
918/*
919 * Handle the Sigma when in CAPTURE mode. This function checks:
920 * - Sampling time ended
921 * - DRAM capacity overflow
922 * This function triggers download of the samples from Sigma
923 * in case either of the above conditions is true.
924 */
925static int sigma_capture_mode(struct sr_dev_inst *sdi)
926{
927 struct dev_context *devc = sdi->priv;
928
929 uint64_t running_msec;
930 struct timeval tv;
931
932 uint32_t stoppos, triggerpos;
933
934 /* Check if the selected sampling duration passed. */
935 gettimeofday(&tv, 0);
936 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
937 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
938 if (running_msec >= devc->limit_msec)
939 return download_capture(sdi);
940
941 /* Get the position in DRAM to which the FPGA is writing now. */
942 sigma_read_pos(&stoppos, &triggerpos, devc);
943 /* Test if DRAM is full and if so, download the data. */
944 if ((stoppos >> 9) == 32767)
945 return download_capture(sdi);
946
947 return TRUE;
948}
949
950SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
951{
952 struct sr_dev_inst *sdi;
953 struct dev_context *devc;
954
955 (void)fd;
956 (void)revents;
957
958 sdi = cb_data;
959 devc = sdi->priv;
960
961 if (devc->state.state == SIGMA_IDLE)
962 return TRUE;
963
964 if (devc->state.state == SIGMA_CAPTURE)
965 return sigma_capture_mode(sdi);
966
967 return TRUE;
968}
969
970/* Build a LUT entry used by the trigger functions. */
971static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
972{
973 int i, j, k, bit;
974
975 /* For each quad channel. */
976 for (i = 0; i < 4; i++) {
977 entry[i] = 0xffff;
978
979 /* For each bit in LUT. */
980 for (j = 0; j < 16; j++)
981
982 /* For each channel in quad. */
983 for (k = 0; k < 4; k++) {
984 bit = 1 << (i * 4 + k);
985
986 /* Set bit in entry */
987 if ((mask & bit) && ((!(value & bit)) !=
988 (!(j & (1 << k)))))
989 entry[i] &= ~(1 << j);
990 }
991 }
992}
993
994/* Add a logical function to LUT mask. */
995static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
996 int index, int neg, uint16_t *mask)
997{
998 int i, j;
999 int x[2][2], tmp, a, b, aset, bset, rset;
1000
1001 memset(x, 0, 4 * sizeof(int));
1002
1003 /* Trigger detect condition. */
1004 switch (oper) {
1005 case OP_LEVEL:
1006 x[0][1] = 1;
1007 x[1][1] = 1;
1008 break;
1009 case OP_NOT:
1010 x[0][0] = 1;
1011 x[1][0] = 1;
1012 break;
1013 case OP_RISE:
1014 x[0][1] = 1;
1015 break;
1016 case OP_FALL:
1017 x[1][0] = 1;
1018 break;
1019 case OP_RISEFALL:
1020 x[0][1] = 1;
1021 x[1][0] = 1;
1022 break;
1023 case OP_NOTRISE:
1024 x[1][1] = 1;
1025 x[0][0] = 1;
1026 x[1][0] = 1;
1027 break;
1028 case OP_NOTFALL:
1029 x[1][1] = 1;
1030 x[0][0] = 1;
1031 x[0][1] = 1;
1032 break;
1033 case OP_NOTRISEFALL:
1034 x[1][1] = 1;
1035 x[0][0] = 1;
1036 break;
1037 }
1038
1039 /* Transpose if neg is set. */
1040 if (neg) {
1041 for (i = 0; i < 2; i++) {
1042 for (j = 0; j < 2; j++) {
1043 tmp = x[i][j];
1044 x[i][j] = x[1 - i][1 - j];
1045 x[1 - i][1 - j] = tmp;
1046 }
1047 }
1048 }
1049
1050 /* Update mask with function. */
1051 for (i = 0; i < 16; i++) {
1052 a = (i >> (2 * index + 0)) & 1;
1053 b = (i >> (2 * index + 1)) & 1;
1054
1055 aset = (*mask >> i) & 1;
1056 bset = x[b][a];
1057
1058 rset = 0;
1059 if (func == FUNC_AND || func == FUNC_NAND)
1060 rset = aset & bset;
1061 else if (func == FUNC_OR || func == FUNC_NOR)
1062 rset = aset | bset;
1063 else if (func == FUNC_XOR || func == FUNC_NXOR)
1064 rset = aset ^ bset;
1065
1066 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1067 rset = !rset;
1068
1069 *mask &= ~(1 << i);
1070
1071 if (rset)
1072 *mask |= 1 << i;
1073 }
1074}
1075
1076/*
1077 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1078 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1079 * set at any time, but a full mask and value can be set (0/1).
1080 */
1081SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1082{
1083 int i,j;
1084 uint16_t masks[2] = { 0, 0 };
1085
1086 memset(lut, 0, sizeof(struct triggerlut));
1087
1088 /* Constant for simple triggers. */
1089 lut->m4 = 0xa000;
1090
1091 /* Value/mask trigger support. */
1092 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1093 lut->m2d);
1094
1095 /* Rise/fall trigger support. */
1096 for (i = 0, j = 0; i < 16; i++) {
1097 if (devc->trigger.risingmask & (1 << i) ||
1098 devc->trigger.fallingmask & (1 << i))
1099 masks[j++] = 1 << i;
1100 }
1101
1102 build_lut_entry(masks[0], masks[0], lut->m0d);
1103 build_lut_entry(masks[1], masks[1], lut->m1d);
1104
1105 /* Add glue logic */
1106 if (masks[0] || masks[1]) {
1107 /* Transition trigger. */
1108 if (masks[0] & devc->trigger.risingmask)
1109 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1110 if (masks[0] & devc->trigger.fallingmask)
1111 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1112 if (masks[1] & devc->trigger.risingmask)
1113 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1114 if (masks[1] & devc->trigger.fallingmask)
1115 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1116 } else {
1117 /* Only value/mask trigger. */
1118 lut->m3 = 0xffff;
1119 }
1120
1121 /* Triggertype: event. */
1122 lut->params.selres = 3;
1123
1124 return SR_OK;
1125}