]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
Add APIs to query libsigrok build information.
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include "protocol.h"
28
29#define USB_VENDOR 0xa600
30#define USB_PRODUCT 0xa000
31#define USB_DESCRIPTION "ASIX SIGMA"
32#define USB_VENDOR_NAME "ASIX"
33#define USB_MODEL_NAME "SIGMA"
34
35/*
36 * The ASIX Sigma supports arbitrary integer frequency divider in
37 * the 50MHz mode. The divider is in range 1...256 , allowing for
38 * very precise sampling rate selection. This driver supports only
39 * a subset of the sampling rates.
40 */
41SR_PRIV const uint64_t samplerates[] = {
42 SR_KHZ(200), /* div=250 */
43 SR_KHZ(250), /* div=200 */
44 SR_KHZ(500), /* div=100 */
45 SR_MHZ(1), /* div=50 */
46 SR_MHZ(5), /* div=10 */
47 SR_MHZ(10), /* div=5 */
48 SR_MHZ(25), /* div=2 */
49 SR_MHZ(50), /* div=1 */
50 SR_MHZ(100), /* Special FW needed */
51 SR_MHZ(200), /* Special FW needed */
52};
53
54SR_PRIV const size_t samplerates_count = ARRAY_SIZE(samplerates);
55
56static const char sigma_firmware_files[][24] = {
57 /* 50 MHz, supports 8 bit fractions */
58 "asix-sigma-50.fw",
59 /* 100 MHz */
60 "asix-sigma-100.fw",
61 /* 200 MHz */
62 "asix-sigma-200.fw",
63 /* Synchronous clock from pin */
64 "asix-sigma-50sync.fw",
65 /* Frequency counter */
66 "asix-sigma-phasor.fw",
67};
68
69static int sigma_read(void *buf, size_t size, struct dev_context *devc)
70{
71 int ret;
72
73 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
74 if (ret < 0) {
75 sr_err("ftdi_read_data failed: %s",
76 ftdi_get_error_string(&devc->ftdic));
77 }
78
79 return ret;
80}
81
82static int sigma_write(void *buf, size_t size, struct dev_context *devc)
83{
84 int ret;
85
86 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
87 if (ret < 0) {
88 sr_err("ftdi_write_data failed: %s",
89 ftdi_get_error_string(&devc->ftdic));
90 } else if ((size_t) ret != size) {
91 sr_err("ftdi_write_data did not complete write.");
92 }
93
94 return ret;
95}
96
97/*
98 * NOTE: We chose the buffer size to be large enough to hold any write to the
99 * device. We still print a message just in case.
100 */
101SR_PRIV int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
102 struct dev_context *devc)
103{
104 size_t i;
105 uint8_t buf[80];
106 int idx = 0;
107
108 if ((2 * len + 2) > sizeof(buf)) {
109 sr_err("Attempted to write %zu bytes, but buffer is too small.",
110 len);
111 return SR_ERR_BUG;
112 }
113
114 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
115 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
116
117 for (i = 0; i < len; i++) {
118 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
119 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
120 }
121
122 return sigma_write(buf, idx, devc);
123}
124
125SR_PRIV int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
126{
127 return sigma_write_register(reg, &value, 1, devc);
128}
129
130static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
131 struct dev_context *devc)
132{
133 uint8_t buf[3];
134
135 buf[0] = REG_ADDR_LOW | (reg & 0xf);
136 buf[1] = REG_ADDR_HIGH | (reg >> 4);
137 buf[2] = REG_READ_ADDR;
138
139 sigma_write(buf, sizeof(buf), devc);
140
141 return sigma_read(data, len, devc);
142}
143
144static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
145{
146 uint8_t value;
147
148 if (1 != sigma_read_register(reg, &value, 1, devc)) {
149 sr_err("sigma_get_register: 1 byte expected");
150 return 0;
151 }
152
153 return value;
154}
155
156static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
157 struct dev_context *devc)
158{
159 uint8_t buf[] = {
160 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
161
162 REG_READ_ADDR | NEXT_REG,
163 REG_READ_ADDR | NEXT_REG,
164 REG_READ_ADDR | NEXT_REG,
165 REG_READ_ADDR | NEXT_REG,
166 REG_READ_ADDR | NEXT_REG,
167 REG_READ_ADDR | NEXT_REG,
168 };
169 uint8_t result[6];
170
171 sigma_write(buf, sizeof(buf), devc);
172
173 sigma_read(result, sizeof(result), devc);
174
175 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
176 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
177
178 /* Not really sure why this must be done, but according to spec. */
179 if ((--*stoppos & 0x1ff) == 0x1ff)
180 *stoppos -= 64;
181
182 if ((*--triggerpos & 0x1ff) == 0x1ff)
183 *triggerpos -= 64;
184
185 return 1;
186}
187
188static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
189 uint8_t *data, struct dev_context *devc)
190{
191 size_t i;
192 uint8_t buf[4096];
193 int idx = 0;
194
195 /* Send the startchunk. Index start with 1. */
196 buf[0] = startchunk >> 8;
197 buf[1] = startchunk & 0xff;
198 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
199
200 /* Read the DRAM. */
201 buf[idx++] = REG_DRAM_BLOCK;
202 buf[idx++] = REG_DRAM_WAIT_ACK;
203
204 for (i = 0; i < numchunks; i++) {
205 /* Alternate bit to copy from DRAM to cache. */
206 if (i != (numchunks - 1))
207 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
208
209 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
210
211 if (i != (numchunks - 1))
212 buf[idx++] = REG_DRAM_WAIT_ACK;
213 }
214
215 sigma_write(buf, idx, devc);
216
217 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
218}
219
220/* Upload trigger look-up tables to Sigma. */
221SR_PRIV int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
222{
223 int i;
224 uint8_t tmp[2];
225 uint16_t bit;
226
227 /* Transpose the table and send to Sigma. */
228 for (i = 0; i < 16; i++) {
229 bit = 1 << i;
230
231 tmp[0] = tmp[1] = 0;
232
233 if (lut->m2d[0] & bit)
234 tmp[0] |= 0x01;
235 if (lut->m2d[1] & bit)
236 tmp[0] |= 0x02;
237 if (lut->m2d[2] & bit)
238 tmp[0] |= 0x04;
239 if (lut->m2d[3] & bit)
240 tmp[0] |= 0x08;
241
242 if (lut->m3 & bit)
243 tmp[0] |= 0x10;
244 if (lut->m3s & bit)
245 tmp[0] |= 0x20;
246 if (lut->m4 & bit)
247 tmp[0] |= 0x40;
248
249 if (lut->m0d[0] & bit)
250 tmp[1] |= 0x01;
251 if (lut->m0d[1] & bit)
252 tmp[1] |= 0x02;
253 if (lut->m0d[2] & bit)
254 tmp[1] |= 0x04;
255 if (lut->m0d[3] & bit)
256 tmp[1] |= 0x08;
257
258 if (lut->m1d[0] & bit)
259 tmp[1] |= 0x10;
260 if (lut->m1d[1] & bit)
261 tmp[1] |= 0x20;
262 if (lut->m1d[2] & bit)
263 tmp[1] |= 0x40;
264 if (lut->m1d[3] & bit)
265 tmp[1] |= 0x80;
266
267 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
268 devc);
269 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
270 }
271
272 /* Send the parameters */
273 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
274 sizeof(lut->params), devc);
275
276 return SR_OK;
277}
278
279SR_PRIV void sigma_clear_helper(void *priv)
280{
281 struct dev_context *devc;
282
283 devc = priv;
284
285 ftdi_deinit(&devc->ftdic);
286}
287
288/*
289 * Configure the FPGA for bitbang mode.
290 * This sequence is documented in section 2. of the ASIX Sigma programming
291 * manual. This sequence is necessary to configure the FPGA in the Sigma
292 * into Bitbang mode, in which it can be programmed with the firmware.
293 */
294static int sigma_fpga_init_bitbang(struct dev_context *devc)
295{
296 uint8_t suicide[] = {
297 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
298 };
299 uint8_t init_array[] = {
300 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
301 0x01, 0x01,
302 };
303 int i, ret, timeout = (10 * 1000);
304 uint8_t data;
305
306 /* Section 2. part 1), do the FPGA suicide. */
307 sigma_write(suicide, sizeof(suicide), devc);
308 sigma_write(suicide, sizeof(suicide), devc);
309 sigma_write(suicide, sizeof(suicide), devc);
310 sigma_write(suicide, sizeof(suicide), devc);
311
312 /* Section 2. part 2), do pulse on D1. */
313 sigma_write(init_array, sizeof(init_array), devc);
314 ftdi_usb_purge_buffers(&devc->ftdic);
315
316 /* Wait until the FPGA asserts D6/INIT_B. */
317 for (i = 0; i < timeout; i++) {
318 ret = sigma_read(&data, 1, devc);
319 if (ret < 0)
320 return ret;
321 /* Test if pin D6 got asserted. */
322 if (data & (1 << 5))
323 return 0;
324 /* The D6 was not asserted yet, wait a bit. */
325 g_usleep(10 * 1000);
326 }
327
328 return SR_ERR_TIMEOUT;
329}
330
331/*
332 * Configure the FPGA for logic-analyzer mode.
333 */
334static int sigma_fpga_init_la(struct dev_context *devc)
335{
336 /* Initialize the logic analyzer mode. */
337 uint8_t logic_mode_start[] = {
338 REG_ADDR_LOW | (READ_ID & 0xf),
339 REG_ADDR_HIGH | (READ_ID >> 8),
340 REG_READ_ADDR, /* Read ID register. */
341
342 REG_ADDR_LOW | (WRITE_TEST & 0xf),
343 REG_DATA_LOW | 0x5,
344 REG_DATA_HIGH_WRITE | 0x5,
345 REG_READ_ADDR, /* Read scratch register. */
346
347 REG_DATA_LOW | 0xa,
348 REG_DATA_HIGH_WRITE | 0xa,
349 REG_READ_ADDR, /* Read scratch register. */
350
351 REG_ADDR_LOW | (WRITE_MODE & 0xf),
352 REG_DATA_LOW | 0x0,
353 REG_DATA_HIGH_WRITE | 0x8,
354 };
355
356 uint8_t result[3];
357 int ret;
358
359 /* Initialize the logic analyzer mode. */
360 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
361
362 /* Expect a 3 byte reply since we issued three READ requests. */
363 ret = sigma_read(result, 3, devc);
364 if (ret != 3)
365 goto err;
366
367 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
368 goto err;
369
370 return SR_OK;
371err:
372 sr_err("Configuration failed. Invalid reply received.");
373 return SR_ERR;
374}
375
376/*
377 * Read the firmware from a file and transform it into a series of bitbang
378 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
379 * by the caller of this function.
380 */
381static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
382 uint8_t **bb_cmd, gsize *bb_cmd_size)
383{
384 size_t i, file_size, bb_size;
385 char *firmware;
386 uint8_t *bb_stream, *bbs;
387 uint32_t imm;
388 int bit, v;
389 int ret = SR_OK;
390
391 /* Retrieve the on-disk firmware file content. */
392 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
393 name, &file_size, 256 * 1024);
394 if (!firmware)
395 return SR_ERR;
396
397 /* Unscramble the file content (XOR with "random" sequence). */
398 imm = 0x3f6df2ab;
399 for (i = 0; i < file_size; i++) {
400 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
401 firmware[i] ^= imm & 0xff;
402 }
403
404 /*
405 * Generate a sequence of bitbang samples. With two samples per
406 * FPGA configuration bit, providing the level for the DIN signal
407 * as well as two edges for CCLK. See Xilinx UG332 for details
408 * ("slave serial" mode).
409 *
410 * Note that CCLK is inverted in hardware. That's why the
411 * respective bit is first set and then cleared in the bitbang
412 * sample sets. So that the DIN level will be stable when the
413 * data gets sampled at the rising CCLK edge, and the signals'
414 * setup time constraint will be met.
415 *
416 * The caller will put the FPGA into download mode, will send
417 * the bitbang samples, and release the allocated memory.
418 */
419 bb_size = file_size * 8 * 2;
420 bb_stream = (uint8_t *)g_try_malloc(bb_size);
421 if (!bb_stream) {
422 sr_err("%s: Failed to allocate bitbang stream", __func__);
423 ret = SR_ERR_MALLOC;
424 goto exit;
425 }
426 bbs = bb_stream;
427 for (i = 0; i < file_size; i++) {
428 for (bit = 7; bit >= 0; bit--) {
429 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
430 *bbs++ = v | 0x01;
431 *bbs++ = v;
432 }
433 }
434
435 /* The transformation completed successfully, return the result. */
436 *bb_cmd = bb_stream;
437 *bb_cmd_size = bb_size;
438
439exit:
440 g_free(firmware);
441 return ret;
442}
443
444static int upload_firmware(struct sr_context *ctx,
445 int firmware_idx, struct dev_context *devc)
446{
447 int ret;
448 unsigned char *buf;
449 unsigned char pins;
450 size_t buf_size;
451 const char *firmware = sigma_firmware_files[firmware_idx];
452 struct ftdi_context *ftdic = &devc->ftdic;
453
454 /* Make sure it's an ASIX SIGMA. */
455 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
456 USB_DESCRIPTION, NULL);
457 if (ret < 0) {
458 sr_err("ftdi_usb_open failed: %s",
459 ftdi_get_error_string(ftdic));
460 return 0;
461 }
462
463 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
464 if (ret < 0) {
465 sr_err("ftdi_set_bitmode failed: %s",
466 ftdi_get_error_string(ftdic));
467 return 0;
468 }
469
470 /* Four times the speed of sigmalogan - Works well. */
471 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
472 if (ret < 0) {
473 sr_err("ftdi_set_baudrate failed: %s",
474 ftdi_get_error_string(ftdic));
475 return 0;
476 }
477
478 /* Initialize the FPGA for firmware upload. */
479 ret = sigma_fpga_init_bitbang(devc);
480 if (ret)
481 return ret;
482
483 /* Prepare firmware. */
484 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
485 if (ret != SR_OK) {
486 sr_err("An error occurred while reading the firmware: %s",
487 firmware);
488 return ret;
489 }
490
491 /* Upload firmware. */
492 sr_info("Uploading firmware file '%s'.", firmware);
493 sigma_write(buf, buf_size, devc);
494
495 g_free(buf);
496
497 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
498 if (ret < 0) {
499 sr_err("ftdi_set_bitmode failed: %s",
500 ftdi_get_error_string(ftdic));
501 return SR_ERR;
502 }
503
504 ftdi_usb_purge_buffers(ftdic);
505
506 /* Discard garbage. */
507 while (sigma_read(&pins, 1, devc) == 1)
508 ;
509
510 /* Initialize the FPGA for logic-analyzer mode. */
511 ret = sigma_fpga_init_la(devc);
512 if (ret != SR_OK)
513 return ret;
514
515 devc->cur_firmware = firmware_idx;
516
517 sr_info("Firmware uploaded.");
518
519 return SR_OK;
520}
521
522SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
523{
524 struct dev_context *devc;
525 struct drv_context *drvc;
526 size_t i;
527 int ret;
528
529 devc = sdi->priv;
530 drvc = sdi->driver->context;
531 ret = SR_OK;
532
533 /* Reject rates that are not in the list of supported rates. */
534 for (i = 0; i < samplerates_count; i++) {
535 if (samplerates[i] == samplerate)
536 break;
537 }
538 if (i >= samplerates_count || samplerates[i] == 0)
539 return SR_ERR_SAMPLERATE;
540
541 /*
542 * Depending on the samplerates of 200/100/50- MHz, specific
543 * firmware is required and higher rates might limit the set
544 * of available channels.
545 */
546 if (samplerate <= SR_MHZ(50)) {
547 ret = upload_firmware(drvc->sr_ctx, 0, devc);
548 devc->num_channels = 16;
549 } else if (samplerate == SR_MHZ(100)) {
550 ret = upload_firmware(drvc->sr_ctx, 1, devc);
551 devc->num_channels = 8;
552 } else if (samplerate == SR_MHZ(200)) {
553 ret = upload_firmware(drvc->sr_ctx, 2, devc);
554 devc->num_channels = 4;
555 }
556
557 /*
558 * Derive the sample period from the sample rate as well as the
559 * number of samples that the device will communicate within
560 * an "event" (memory organization internal to the device).
561 */
562 if (ret == SR_OK) {
563 devc->cur_samplerate = samplerate;
564 devc->period_ps = 1000000000000ULL / samplerate;
565 devc->samples_per_event = 16 / devc->num_channels;
566 devc->state.state = SIGMA_IDLE;
567 }
568
569 /*
570 * Support for "limit_samples" is implemented by stopping
571 * acquisition after a corresponding period of time.
572 * Re-calculate that period of time, in case the limit is
573 * set first and the samplerate gets (re-)configured later.
574 */
575 if (ret == SR_OK && devc->limit_samples) {
576 uint64_t msecs;
577 msecs = devc->limit_samples * 1000 / devc->cur_samplerate;
578 devc->limit_msec = msecs;
579 }
580
581 return ret;
582}
583
584/*
585 * In 100 and 200 MHz mode, only a single pin rising/falling can be
586 * set as trigger. In other modes, two rising/falling triggers can be set,
587 * in addition to value/mask trigger for any number of channels.
588 *
589 * The Sigma supports complex triggers using boolean expressions, but this
590 * has not been implemented yet.
591 */
592SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
593{
594 struct dev_context *devc;
595 struct sr_trigger *trigger;
596 struct sr_trigger_stage *stage;
597 struct sr_trigger_match *match;
598 const GSList *l, *m;
599 int channelbit, trigger_set;
600
601 devc = sdi->priv;
602 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
603 if (!(trigger = sr_session_trigger_get(sdi->session)))
604 return SR_OK;
605
606 trigger_set = 0;
607 for (l = trigger->stages; l; l = l->next) {
608 stage = l->data;
609 for (m = stage->matches; m; m = m->next) {
610 match = m->data;
611 if (!match->channel->enabled)
612 /* Ignore disabled channels with a trigger. */
613 continue;
614 channelbit = 1 << (match->channel->index);
615 if (devc->cur_samplerate >= SR_MHZ(100)) {
616 /* Fast trigger support. */
617 if (trigger_set) {
618 sr_err("Only a single pin trigger is "
619 "supported in 100 and 200MHz mode.");
620 return SR_ERR;
621 }
622 if (match->match == SR_TRIGGER_FALLING)
623 devc->trigger.fallingmask |= channelbit;
624 else if (match->match == SR_TRIGGER_RISING)
625 devc->trigger.risingmask |= channelbit;
626 else {
627 sr_err("Only rising/falling trigger is "
628 "supported in 100 and 200MHz mode.");
629 return SR_ERR;
630 }
631
632 trigger_set++;
633 } else {
634 /* Simple trigger support (event). */
635 if (match->match == SR_TRIGGER_ONE) {
636 devc->trigger.simplevalue |= channelbit;
637 devc->trigger.simplemask |= channelbit;
638 }
639 else if (match->match == SR_TRIGGER_ZERO) {
640 devc->trigger.simplevalue &= ~channelbit;
641 devc->trigger.simplemask |= channelbit;
642 }
643 else if (match->match == SR_TRIGGER_FALLING) {
644 devc->trigger.fallingmask |= channelbit;
645 trigger_set++;
646 }
647 else if (match->match == SR_TRIGGER_RISING) {
648 devc->trigger.risingmask |= channelbit;
649 trigger_set++;
650 }
651
652 /*
653 * Actually, Sigma supports 2 rising/falling triggers,
654 * but they are ORed and the current trigger syntax
655 * does not permit ORed triggers.
656 */
657 if (trigger_set > 1) {
658 sr_err("Only 1 rising/falling trigger "
659 "is supported.");
660 return SR_ERR;
661 }
662 }
663 }
664 }
665
666 return SR_OK;
667}
668
669
670/* Software trigger to determine exact trigger position. */
671static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
672 struct sigma_trigger *t)
673{
674 int i;
675 uint16_t sample = 0;
676
677 for (i = 0; i < 8; i++) {
678 if (i > 0)
679 last_sample = sample;
680 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
681
682 /* Simple triggers. */
683 if ((sample & t->simplemask) != t->simplevalue)
684 continue;
685
686 /* Rising edge. */
687 if (((last_sample & t->risingmask) != 0) ||
688 ((sample & t->risingmask) != t->risingmask))
689 continue;
690
691 /* Falling edge. */
692 if ((last_sample & t->fallingmask) != t->fallingmask ||
693 (sample & t->fallingmask) != 0)
694 continue;
695
696 break;
697 }
698
699 /* If we did not match, return original trigger pos. */
700 return i & 0x7;
701}
702
703/*
704 * Return the timestamp of "DRAM cluster".
705 */
706static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
707{
708 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
709}
710
711static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
712 unsigned int events_in_cluster,
713 unsigned int triggered,
714 struct sr_dev_inst *sdi)
715{
716 struct dev_context *devc = sdi->priv;
717 struct sigma_state *ss = &devc->state;
718 struct sr_datafeed_packet packet;
719 struct sr_datafeed_logic logic;
720 uint16_t tsdiff, ts;
721 uint8_t samples[2048];
722 unsigned int i;
723
724 ts = sigma_dram_cluster_ts(dram_cluster);
725 tsdiff = ts - ss->lastts;
726 ss->lastts = ts;
727
728 packet.type = SR_DF_LOGIC;
729 packet.payload = &logic;
730 logic.unitsize = 2;
731 logic.data = samples;
732
733 /*
734 * First of all, send Sigrok a copy of the last sample from
735 * previous cluster as many times as needed to make up for
736 * the differential characteristics of data we get from the
737 * Sigma. Sigrok needs one sample of data per period.
738 *
739 * One DRAM cluster contains a timestamp and seven samples,
740 * the units of timestamp are "devc->period_ps" , the first
741 * sample in the cluster happens at the time of the timestamp
742 * and the remaining samples happen at timestamp +1...+6 .
743 */
744 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
745 i = ts % 1024;
746 samples[2 * i + 0] = ss->lastsample & 0xff;
747 samples[2 * i + 1] = ss->lastsample >> 8;
748
749 /*
750 * If we have 1024 samples ready or we're at the
751 * end of submitting the padding samples, submit
752 * the packet to Sigrok.
753 */
754 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
755 logic.length = (i + 1) * logic.unitsize;
756 sr_session_send(sdi, &packet);
757 }
758 }
759
760 /*
761 * Parse the samples in current cluster and prepare them
762 * to be submitted to Sigrok.
763 */
764 for (i = 0; i < events_in_cluster; i++) {
765 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
766 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
767 }
768
769 /* Send data up to trigger point (if triggered). */
770 int trigger_offset = 0;
771 if (triggered) {
772 /*
773 * Trigger is not always accurate to sample because of
774 * pipeline delay. However, it always triggers before
775 * the actual event. We therefore look at the next
776 * samples to pinpoint the exact position of the trigger.
777 */
778 trigger_offset = get_trigger_offset(samples,
779 ss->lastsample, &devc->trigger);
780
781 if (trigger_offset > 0) {
782 packet.type = SR_DF_LOGIC;
783 logic.length = trigger_offset * logic.unitsize;
784 sr_session_send(sdi, &packet);
785 events_in_cluster -= trigger_offset;
786 }
787
788 /* Only send trigger if explicitly enabled. */
789 if (devc->use_triggers) {
790 packet.type = SR_DF_TRIGGER;
791 sr_session_send(sdi, &packet);
792 }
793 }
794
795 if (events_in_cluster > 0) {
796 packet.type = SR_DF_LOGIC;
797 logic.length = events_in_cluster * logic.unitsize;
798 logic.data = samples + (trigger_offset * logic.unitsize);
799 sr_session_send(sdi, &packet);
800 }
801
802 ss->lastsample =
803 samples[2 * (events_in_cluster - 1) + 0] |
804 (samples[2 * (events_in_cluster - 1) + 1] << 8);
805
806}
807
808/*
809 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
810 * Each event is 20ns apart, and can contain multiple samples.
811 *
812 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
813 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
814 * For 50 MHz and below, events contain one sample for each channel,
815 * spread 20 ns apart.
816 */
817static int decode_chunk_ts(struct sigma_dram_line *dram_line,
818 uint16_t events_in_line,
819 uint32_t trigger_event,
820 struct sr_dev_inst *sdi)
821{
822 struct sigma_dram_cluster *dram_cluster;
823 struct dev_context *devc = sdi->priv;
824 unsigned int clusters_in_line =
825 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
826 unsigned int events_in_cluster;
827 unsigned int i;
828 uint32_t trigger_cluster = ~0, triggered = 0;
829
830 /* Check if trigger is in this chunk. */
831 if (trigger_event < (64 * 7)) {
832 if (devc->cur_samplerate <= SR_MHZ(50)) {
833 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
834 trigger_event);
835 }
836
837 /* Find in which cluster the trigger occurred. */
838 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
839 }
840
841 /* For each full DRAM cluster. */
842 for (i = 0; i < clusters_in_line; i++) {
843 dram_cluster = &dram_line->cluster[i];
844
845 /* The last cluster might not be full. */
846 if ((i == clusters_in_line - 1) &&
847 (events_in_line % EVENTS_PER_CLUSTER)) {
848 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
849 } else {
850 events_in_cluster = EVENTS_PER_CLUSTER;
851 }
852
853 triggered = (i == trigger_cluster);
854 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
855 triggered, sdi);
856 }
857
858 return SR_OK;
859}
860
861static int download_capture(struct sr_dev_inst *sdi)
862{
863 struct dev_context *devc = sdi->priv;
864 const uint32_t chunks_per_read = 32;
865 struct sigma_dram_line *dram_line;
866 int bufsz;
867 uint32_t stoppos, triggerpos;
868 uint8_t modestatus;
869
870 uint32_t i;
871 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
872 uint32_t dl_events_in_line = 64 * 7;
873 uint32_t trg_line = ~0, trg_event = ~0;
874
875 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
876 if (!dram_line)
877 return FALSE;
878
879 sr_info("Downloading sample data.");
880
881 /* Stop acquisition. */
882 sigma_set_register(WRITE_MODE, 0x11, devc);
883
884 /* Set SDRAM Read Enable. */
885 sigma_set_register(WRITE_MODE, 0x02, devc);
886
887 /* Get the current position. */
888 sigma_read_pos(&stoppos, &triggerpos, devc);
889
890 /* Check if trigger has fired. */
891 modestatus = sigma_get_register(READ_MODE, devc);
892 if (modestatus & 0x20) {
893 trg_line = triggerpos >> 9;
894 trg_event = triggerpos & 0x1ff;
895 }
896
897 /*
898 * Determine how many 1024b "DRAM lines" do we need to read from the
899 * Sigma so we have a complete set of samples. Note that the last
900 * line can be only partial, containing less than 64 clusters.
901 */
902 dl_lines_total = (stoppos >> 9) + 1;
903
904 dl_lines_done = 0;
905
906 while (dl_lines_total > dl_lines_done) {
907 /* We can download only up-to 32 DRAM lines in one go! */
908 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
909
910 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
911 (uint8_t *)dram_line, devc);
912 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
913 (void)bufsz;
914
915 /* This is the first DRAM line, so find the initial timestamp. */
916 if (dl_lines_done == 0) {
917 devc->state.lastts =
918 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
919 devc->state.lastsample = 0;
920 }
921
922 for (i = 0; i < dl_lines_curr; i++) {
923 uint32_t trigger_event = ~0;
924 /* The last "DRAM line" can be only partially full. */
925 if (dl_lines_done + i == dl_lines_total - 1)
926 dl_events_in_line = stoppos & 0x1ff;
927
928 /* Test if the trigger happened on this line. */
929 if (dl_lines_done + i == trg_line)
930 trigger_event = trg_event;
931
932 decode_chunk_ts(dram_line + i, dl_events_in_line,
933 trigger_event, sdi);
934 }
935
936 dl_lines_done += dl_lines_curr;
937 }
938
939 std_session_send_df_end(sdi);
940
941 sdi->driver->dev_acquisition_stop(sdi);
942
943 g_free(dram_line);
944
945 return TRUE;
946}
947
948/*
949 * Handle the Sigma when in CAPTURE mode. This function checks:
950 * - Sampling time ended
951 * - DRAM capacity overflow
952 * This function triggers download of the samples from Sigma
953 * in case either of the above conditions is true.
954 */
955static int sigma_capture_mode(struct sr_dev_inst *sdi)
956{
957 struct dev_context *devc = sdi->priv;
958
959 uint64_t running_msec;
960 struct timeval tv;
961
962 uint32_t stoppos, triggerpos;
963
964 /* Check if the selected sampling duration passed. */
965 gettimeofday(&tv, 0);
966 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
967 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
968 if (running_msec >= devc->limit_msec)
969 return download_capture(sdi);
970
971 /* Get the position in DRAM to which the FPGA is writing now. */
972 sigma_read_pos(&stoppos, &triggerpos, devc);
973 /* Test if DRAM is full and if so, download the data. */
974 if ((stoppos >> 9) == 32767)
975 return download_capture(sdi);
976
977 return TRUE;
978}
979
980SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
981{
982 struct sr_dev_inst *sdi;
983 struct dev_context *devc;
984
985 (void)fd;
986 (void)revents;
987
988 sdi = cb_data;
989 devc = sdi->priv;
990
991 if (devc->state.state == SIGMA_IDLE)
992 return TRUE;
993
994 if (devc->state.state == SIGMA_CAPTURE)
995 return sigma_capture_mode(sdi);
996
997 return TRUE;
998}
999
1000/* Build a LUT entry used by the trigger functions. */
1001static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1002{
1003 int i, j, k, bit;
1004
1005 /* For each quad channel. */
1006 for (i = 0; i < 4; i++) {
1007 entry[i] = 0xffff;
1008
1009 /* For each bit in LUT. */
1010 for (j = 0; j < 16; j++)
1011
1012 /* For each channel in quad. */
1013 for (k = 0; k < 4; k++) {
1014 bit = 1 << (i * 4 + k);
1015
1016 /* Set bit in entry */
1017 if ((mask & bit) && ((!(value & bit)) !=
1018 (!(j & (1 << k)))))
1019 entry[i] &= ~(1 << j);
1020 }
1021 }
1022}
1023
1024/* Add a logical function to LUT mask. */
1025static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1026 int index, int neg, uint16_t *mask)
1027{
1028 int i, j;
1029 int x[2][2], tmp, a, b, aset, bset, rset;
1030
1031 memset(x, 0, 4 * sizeof(int));
1032
1033 /* Trigger detect condition. */
1034 switch (oper) {
1035 case OP_LEVEL:
1036 x[0][1] = 1;
1037 x[1][1] = 1;
1038 break;
1039 case OP_NOT:
1040 x[0][0] = 1;
1041 x[1][0] = 1;
1042 break;
1043 case OP_RISE:
1044 x[0][1] = 1;
1045 break;
1046 case OP_FALL:
1047 x[1][0] = 1;
1048 break;
1049 case OP_RISEFALL:
1050 x[0][1] = 1;
1051 x[1][0] = 1;
1052 break;
1053 case OP_NOTRISE:
1054 x[1][1] = 1;
1055 x[0][0] = 1;
1056 x[1][0] = 1;
1057 break;
1058 case OP_NOTFALL:
1059 x[1][1] = 1;
1060 x[0][0] = 1;
1061 x[0][1] = 1;
1062 break;
1063 case OP_NOTRISEFALL:
1064 x[1][1] = 1;
1065 x[0][0] = 1;
1066 break;
1067 }
1068
1069 /* Transpose if neg is set. */
1070 if (neg) {
1071 for (i = 0; i < 2; i++) {
1072 for (j = 0; j < 2; j++) {
1073 tmp = x[i][j];
1074 x[i][j] = x[1 - i][1 - j];
1075 x[1 - i][1 - j] = tmp;
1076 }
1077 }
1078 }
1079
1080 /* Update mask with function. */
1081 for (i = 0; i < 16; i++) {
1082 a = (i >> (2 * index + 0)) & 1;
1083 b = (i >> (2 * index + 1)) & 1;
1084
1085 aset = (*mask >> i) & 1;
1086 bset = x[b][a];
1087
1088 rset = 0;
1089 if (func == FUNC_AND || func == FUNC_NAND)
1090 rset = aset & bset;
1091 else if (func == FUNC_OR || func == FUNC_NOR)
1092 rset = aset | bset;
1093 else if (func == FUNC_XOR || func == FUNC_NXOR)
1094 rset = aset ^ bset;
1095
1096 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1097 rset = !rset;
1098
1099 *mask &= ~(1 << i);
1100
1101 if (rset)
1102 *mask |= 1 << i;
1103 }
1104}
1105
1106/*
1107 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1108 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1109 * set at any time, but a full mask and value can be set (0/1).
1110 */
1111SR_PRIV int sigma_build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1112{
1113 int i,j;
1114 uint16_t masks[2] = { 0, 0 };
1115
1116 memset(lut, 0, sizeof(struct triggerlut));
1117
1118 /* Constant for simple triggers. */
1119 lut->m4 = 0xa000;
1120
1121 /* Value/mask trigger support. */
1122 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1123 lut->m2d);
1124
1125 /* Rise/fall trigger support. */
1126 for (i = 0, j = 0; i < 16; i++) {
1127 if (devc->trigger.risingmask & (1 << i) ||
1128 devc->trigger.fallingmask & (1 << i))
1129 masks[j++] = 1 << i;
1130 }
1131
1132 build_lut_entry(masks[0], masks[0], lut->m0d);
1133 build_lut_entry(masks[1], masks[1], lut->m1d);
1134
1135 /* Add glue logic */
1136 if (masks[0] || masks[1]) {
1137 /* Transition trigger. */
1138 if (masks[0] & devc->trigger.risingmask)
1139 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1140 if (masks[0] & devc->trigger.fallingmask)
1141 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1142 if (masks[1] & devc->trigger.risingmask)
1143 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1144 if (masks[1] & devc->trigger.fallingmask)
1145 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1146 } else {
1147 /* Only value/mask trigger. */
1148 lut->m3 = 0xffff;
1149 }
1150
1151 /* Triggertype: event. */
1152 lut->params.selres = 3;
1153
1154 return SR_OK;
1155}