]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/protocol.c
asix-sigma: more trigger LUT download rephrase, think 16bit entities
[libsigrok.git] / src / hardware / asix-sigma / protocol.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 * Copyright (C) 2020 Gerhard Sittig <gerhard.sittig@gmx.net>
8 *
9 * This program is free software: you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation, either version 3 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23/*
24 * ASIX SIGMA/SIGMA2 logic analyzer driver
25 */
26
27#include <config.h>
28#include "protocol.h"
29
30/*
31 * The ASIX SIGMA hardware supports fixed 200MHz and 100MHz sample rates
32 * (by means of separate firmware images). As well as 50MHz divided by
33 * an integer divider in the 1..256 range (by the "typical" firmware).
34 * Which translates to a strict lower boundary of around 195kHz.
35 *
36 * This driver "suggests" a subset of the available rates by listing a
37 * few discrete values, while setter routines accept any user specified
38 * rate that is supported by the hardware.
39 */
40static const uint64_t samplerates[] = {
41 /* 50MHz and integer divider. 1/2/5 steps (where possible). */
42 SR_KHZ(200), SR_KHZ(500),
43 SR_MHZ(1), SR_MHZ(2), SR_MHZ(5),
44 SR_MHZ(10), SR_MHZ(25), SR_MHZ(50),
45 /* 100MHz/200MHz, fixed rates in special firmware. */
46 SR_MHZ(100), SR_MHZ(200),
47};
48
49SR_PRIV GVariant *sigma_get_samplerates_list(void)
50{
51 return std_gvar_samplerates(samplerates, ARRAY_SIZE(samplerates));
52}
53
54static const char *firmware_files[] = {
55 [SIGMA_FW_50MHZ] = "asix-sigma-50.fw", /* 50MHz, 8bit divider. */
56 [SIGMA_FW_100MHZ] = "asix-sigma-100.fw", /* 100MHz, fixed. */
57 [SIGMA_FW_200MHZ] = "asix-sigma-200.fw", /* 200MHz, fixed. */
58 [SIGMA_FW_SYNC] = "asix-sigma-50sync.fw", /* Sync from external pin. */
59 [SIGMA_FW_FREQ] = "asix-sigma-phasor.fw", /* Frequency counter. */
60};
61
62#define SIGMA_FIRMWARE_SIZE_LIMIT (256 * 1024)
63
64static int sigma_ftdi_open(const struct sr_dev_inst *sdi)
65{
66 struct dev_context *devc;
67 int vid, pid;
68 const char *serno;
69 int ret;
70
71 devc = sdi->priv;
72 if (!devc)
73 return SR_ERR_ARG;
74
75 if (devc->ftdi.is_open)
76 return SR_OK;
77
78 vid = devc->id.vid;
79 pid = devc->id.pid;
80 serno = sdi->serial_num;
81 if (!vid || !pid || !serno || !*serno)
82 return SR_ERR_ARG;
83
84 ret = ftdi_init(&devc->ftdi.ctx);
85 if (ret < 0) {
86 sr_err("Cannot initialize FTDI context (%d): %s.",
87 ret, ftdi_get_error_string(&devc->ftdi.ctx));
88 return SR_ERR_IO;
89 }
90 ret = ftdi_usb_open_desc_index(&devc->ftdi.ctx,
91 vid, pid, NULL, serno, 0);
92 if (ret < 0) {
93 sr_err("Cannot open device (%d): %s.",
94 ret, ftdi_get_error_string(&devc->ftdi.ctx));
95 return SR_ERR_IO;
96 }
97 devc->ftdi.is_open = TRUE;
98
99 return SR_OK;
100}
101
102static int sigma_ftdi_close(struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_usb_close(&devc->ftdi.ctx);
107 devc->ftdi.is_open = FALSE;
108 devc->ftdi.must_close = FALSE;
109 ftdi_deinit(&devc->ftdi.ctx);
110
111 return ret == 0 ? SR_OK : SR_ERR_IO;
112}
113
114SR_PRIV int sigma_check_open(const struct sr_dev_inst *sdi)
115{
116 struct dev_context *devc;
117 int ret;
118
119 if (!sdi)
120 return SR_ERR_ARG;
121 devc = sdi->priv;
122 if (!devc)
123 return SR_ERR_ARG;
124
125 if (devc->ftdi.is_open)
126 return SR_OK;
127
128 ret = sigma_ftdi_open(sdi);
129 if (ret != SR_OK)
130 return ret;
131 devc->ftdi.must_close = TRUE;
132
133 return ret;
134}
135
136SR_PRIV int sigma_check_close(struct dev_context *devc)
137{
138 int ret;
139
140 if (!devc)
141 return SR_ERR_ARG;
142
143 if (devc->ftdi.must_close) {
144 ret = sigma_ftdi_close(devc);
145 if (ret != SR_OK)
146 return ret;
147 devc->ftdi.must_close = FALSE;
148 }
149
150 return SR_OK;
151}
152
153SR_PRIV int sigma_force_open(const struct sr_dev_inst *sdi)
154{
155 struct dev_context *devc;
156 int ret;
157
158 if (!sdi)
159 return SR_ERR_ARG;
160 devc = sdi->priv;
161 if (!devc)
162 return SR_ERR_ARG;
163
164 ret = sigma_ftdi_open(sdi);
165 if (ret != SR_OK)
166 return ret;
167 devc->ftdi.must_close = FALSE;
168
169 return SR_OK;
170}
171
172SR_PRIV int sigma_force_close(struct dev_context *devc)
173{
174 return sigma_ftdi_close(devc);
175}
176
177/*
178 * BEWARE! Error propagation is important, as are kinds of return values.
179 *
180 * - Raw USB tranport communicates the number of sent or received bytes,
181 * or negative error codes in the external library's(!) range of codes.
182 * - Internal routines at the "sigrok driver level" communicate success
183 * or failure in terms of SR_OK et al error codes.
184 * - Main loop style receive callbacks communicate booleans which arrange
185 * for repeated calls to drive progress during acquisition.
186 *
187 * Careful consideration by maintainers is essential, because all of the
188 * above kinds of values are assignment compatbile from the compiler's
189 * point of view. Implementation errors will go unnoticed at build time.
190 */
191
192static int sigma_read_raw(struct dev_context *devc, void *buf, size_t size)
193{
194 int ret;
195
196 ret = ftdi_read_data(&devc->ftdi.ctx, (unsigned char *)buf, size);
197 if (ret < 0) {
198 sr_err("USB data read failed: %s",
199 ftdi_get_error_string(&devc->ftdi.ctx));
200 }
201
202 return ret;
203}
204
205static int sigma_write_raw(struct dev_context *devc, const void *buf, size_t size)
206{
207 int ret;
208
209 ret = ftdi_write_data(&devc->ftdi.ctx, buf, size);
210 if (ret < 0) {
211 sr_err("USB data write failed: %s",
212 ftdi_get_error_string(&devc->ftdi.ctx));
213 } else if ((size_t)ret != size) {
214 sr_err("USB data write length mismatch.");
215 }
216
217 return ret;
218}
219
220static int sigma_read_sr(struct dev_context *devc, void *buf, size_t size)
221{
222 int ret;
223
224 ret = sigma_read_raw(devc, buf, size);
225 if (ret < 0 || (size_t)ret != size)
226 return SR_ERR_IO;
227
228 return SR_OK;
229}
230
231static int sigma_write_sr(struct dev_context *devc, const void *buf, size_t size)
232{
233 int ret;
234
235 ret = sigma_write_raw(devc, buf, size);
236 if (ret < 0 || (size_t)ret != size)
237 return SR_ERR_IO;
238
239 return SR_OK;
240}
241
242/*
243 * Implementor's note: The local write buffer's size shall suffice for
244 * any know FPGA register transaction that is involved in the supported
245 * feature set of this sigrok device driver. If the length check trips,
246 * that's a programmer's error and needs adjustment in the complete call
247 * stack of the respective code path.
248 */
249#define SIGMA_MAX_REG_DEPTH 32
250
251/*
252 * Implementor's note: The FPGA command set supports register access
253 * with automatic address adjustment. This operation is documented to
254 * wrap within a 16-address range, it cannot cross boundaries where the
255 * register address' nibble overflows. An internal helper assumes that
256 * callers remain within this auto-adjustment range, and thus multi
257 * register access requests can never exceed that count.
258 */
259#define SIGMA_MAX_REG_COUNT 16
260
261SR_PRIV int sigma_write_register(struct dev_context *devc,
262 uint8_t reg, uint8_t *data, size_t len)
263{
264 uint8_t buf[2 + SIGMA_MAX_REG_DEPTH * 2], *wrptr;
265 size_t idx;
266
267 if (len > SIGMA_MAX_REG_DEPTH) {
268 sr_err("Short write buffer for %zu bytes to reg %u.", len, reg);
269 return SR_ERR_BUG;
270 }
271
272 wrptr = buf;
273 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
274 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
275 for (idx = 0; idx < len; idx++) {
276 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data[idx]));
277 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data[idx]));
278 }
279
280 return sigma_write_sr(devc, buf, wrptr - buf);
281}
282
283SR_PRIV int sigma_set_register(struct dev_context *devc,
284 uint8_t reg, uint8_t value)
285{
286 return sigma_write_register(devc, reg, &value, sizeof(value));
287}
288
289static int sigma_read_register(struct dev_context *devc,
290 uint8_t reg, uint8_t *data, size_t len)
291{
292 uint8_t buf[3], *wrptr;
293 int ret;
294
295 wrptr = buf;
296 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
297 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
298 write_u8_inc(&wrptr, REG_READ_ADDR);
299 ret = sigma_write_sr(devc, buf, wrptr - buf);
300 if (ret != SR_OK)
301 return ret;
302
303 return sigma_read_sr(devc, data, len);
304}
305
306static int sigma_get_register(struct dev_context *devc,
307 uint8_t reg, uint8_t *data)
308{
309 return sigma_read_register(devc, reg, data, sizeof(*data));
310}
311
312static int sigma_get_registers(struct dev_context *devc,
313 uint8_t reg, uint8_t *data, size_t count)
314{
315 uint8_t buf[2 + SIGMA_MAX_REG_COUNT], *wrptr;
316 size_t idx;
317 int ret;
318
319 if (count > SIGMA_MAX_REG_COUNT) {
320 sr_err("Short command buffer for %zu reg reads at %u.", count, reg);
321 return SR_ERR_BUG;
322 }
323
324 wrptr = buf;
325 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(reg));
326 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(reg));
327 for (idx = 0; idx < count; idx++)
328 write_u8_inc(&wrptr, REG_READ_ADDR | REG_ADDR_INC);
329 ret = sigma_write_sr(devc, buf, wrptr - buf);
330 if (ret != SR_OK)
331 return ret;
332
333 return sigma_read_sr(devc, data, count);
334}
335
336static int sigma_read_pos(struct dev_context *devc,
337 uint32_t *stoppos, uint32_t *triggerpos, uint8_t *mode)
338{
339 uint8_t result[7];
340 const uint8_t *rdptr;
341 uint32_t v32;
342 uint8_t v8;
343 int ret;
344
345 /*
346 * Read 7 registers starting at trigger position LSB.
347 * Which yields two 24bit counter values, and mode flags.
348 */
349 ret = sigma_get_registers(devc, READ_TRIGGER_POS_LOW,
350 result, sizeof(result));
351 if (ret != SR_OK)
352 return ret;
353
354 rdptr = &result[0];
355 v32 = read_u24le_inc(&rdptr);
356 if (triggerpos)
357 *triggerpos = v32;
358 v32 = read_u24le_inc(&rdptr);
359 if (stoppos)
360 *stoppos = v32;
361 v8 = read_u8_inc(&rdptr);
362 if (mode)
363 *mode = v8;
364
365 /*
366 * These positions consist of "the memory row" in the MSB fields,
367 * and "an event index" within the row in the LSB fields. Part
368 * of the memory row's content is sample data, another part is
369 * timestamps.
370 *
371 * The retrieved register values point to after the captured
372 * position. So they need to get decremented, and adjusted to
373 * cater for the timestamps when the decrement carries over to
374 * a different memory row.
375 */
376 if (stoppos && (--*stoppos & ROW_MASK) == ROW_MASK)
377 *stoppos -= CLUSTERS_PER_ROW;
378 if (triggerpos && (--*triggerpos & ROW_MASK) == ROW_MASK)
379 *triggerpos -= CLUSTERS_PER_ROW;
380
381 return SR_OK;
382}
383
384static int sigma_read_dram(struct dev_context *devc,
385 size_t startchunk, size_t numchunks, uint8_t *data)
386{
387 uint8_t buf[128], *wrptr, regval;
388 size_t chunk;
389 int sel, ret;
390 gboolean is_last;
391
392 if (2 + 3 * numchunks > ARRAY_SIZE(buf)) {
393 sr_err("Short write buffer for %zu DRAM row reads.", numchunks);
394 return SR_ERR_BUG;
395 }
396
397 /* Communicate DRAM start address (memory row, aka samples line). */
398 wrptr = buf;
399 write_u16be_inc(&wrptr, startchunk);
400 ret = sigma_write_register(devc, WRITE_MEMROW, buf, wrptr - buf);
401 if (ret != SR_OK)
402 return ret;
403
404 /*
405 * Access DRAM content. Fetch from DRAM to FPGA's internal RAM,
406 * then transfer via USB. Interleave the FPGA's DRAM access and
407 * USB transfer, use alternating buffers (0/1) in the process.
408 */
409 wrptr = buf;
410 write_u8_inc(&wrptr, REG_DRAM_BLOCK);
411 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
412 for (chunk = 0; chunk < numchunks; chunk++) {
413 sel = chunk % 2;
414 is_last = chunk == numchunks - 1;
415 if (!is_last) {
416 regval = REG_DRAM_BLOCK | REG_DRAM_SEL_BOOL(!sel);
417 write_u8_inc(&wrptr, regval);
418 }
419 regval = REG_DRAM_BLOCK_DATA | REG_DRAM_SEL_BOOL(sel);
420 write_u8_inc(&wrptr, regval);
421 if (!is_last)
422 write_u8_inc(&wrptr, REG_DRAM_WAIT_ACK);
423 }
424 ret = sigma_write_sr(devc, buf, wrptr - buf);
425 if (ret != SR_OK)
426 return ret;
427
428 return sigma_read_sr(devc, data, numchunks * ROW_LENGTH_BYTES);
429}
430
431/* Upload trigger look-up tables to Sigma. */
432SR_PRIV int sigma_write_trigger_lut(struct dev_context *devc,
433 struct triggerlut *lut)
434{
435 size_t lut_addr;
436 uint16_t bit;
437 uint8_t m3d, m2d, m1d, m0d;
438 uint8_t buf[6], *wrptr;
439 uint8_t trgsel2;
440 uint16_t lutreg, selreg;
441 int ret;
442
443 /*
444 * Translate the LUT part of the trigger configuration from the
445 * application's perspective to the hardware register's bitfield
446 * layout. Send the LUT to the device. This configures the logic
447 * which combines pin levels or edges.
448 */
449 for (lut_addr = 0; lut_addr < 16; lut_addr++) {
450 bit = BIT(lut_addr);
451
452 /* - M4 M3S M3Q */
453 m3d = 0;
454 if (lut->m4 & bit)
455 m3d |= BIT(2);
456 if (lut->m3s & bit)
457 m3d |= BIT(1);
458 if (lut->m3q & bit)
459 m3d |= BIT(0);
460
461 /* M2D3 M2D2 M2D1 M2D0 */
462 m2d = 0;
463 if (lut->m2d[3] & bit)
464 m2d |= BIT(3);
465 if (lut->m2d[2] & bit)
466 m2d |= BIT(2);
467 if (lut->m2d[1] & bit)
468 m2d |= BIT(1);
469 if (lut->m2d[0] & bit)
470 m2d |= BIT(0);
471
472 /* M1D3 M1D2 M1D1 M1D0 */
473 m1d = 0;
474 if (lut->m1d[3] & bit)
475 m1d |= BIT(3);
476 if (lut->m1d[2] & bit)
477 m1d |= BIT(2);
478 if (lut->m1d[1] & bit)
479 m1d |= BIT(1);
480 if (lut->m1d[0] & bit)
481 m1d |= BIT(0);
482
483 /* M0D3 M0D2 M0D1 M0D0 */
484 m0d = 0;
485 if (lut->m0d[3] & bit)
486 m0d |= BIT(3);
487 if (lut->m0d[2] & bit)
488 m0d |= BIT(2);
489 if (lut->m0d[1] & bit)
490 m0d |= BIT(1);
491 if (lut->m0d[0] & bit)
492 m0d |= BIT(0);
493
494 /*
495 * Send 16bits with M3D/M2D and M1D/M0D bit masks to the
496 * TriggerSelect register, then strobe the LUT write by
497 * passing A3-A0 to TriggerSelect2. Hold RESET during LUT
498 * programming.
499 */
500 wrptr = buf;
501 lutreg = 0;
502 lutreg <<= 4; lutreg |= m3d;
503 lutreg <<= 4; lutreg |= m2d;
504 lutreg <<= 4; lutreg |= m1d;
505 lutreg <<= 4; lutreg |= m0d;
506 write_u16be_inc(&wrptr, lutreg);
507 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT,
508 buf, wrptr - buf);
509 if (ret != SR_OK)
510 return ret;
511 trgsel2 = TRGSEL2_RESET | TRGSEL2_LUT_WRITE |
512 (lut_addr & TRGSEL2_LUT_ADDR_MASK);
513 ret = sigma_set_register(devc, WRITE_TRIGGER_SELECT2, trgsel2);
514 if (ret != SR_OK)
515 return ret;
516 }
517
518 /*
519 * Send the parameters. This covers counters and durations.
520 */
521 wrptr = buf;
522 selreg = 0;
523 selreg |= (lut->params.selinc & TRGSEL_SELINC_MASK) << TRGSEL_SELINC_SHIFT;
524 selreg |= (lut->params.selres & TRGSEL_SELRES_MASK) << TRGSEL_SELRES_SHIFT;
525 selreg |= (lut->params.sela & TRGSEL_SELA_MASK) << TRGSEL_SELA_SHIFT;
526 selreg |= (lut->params.selb & TRGSEL_SELB_MASK) << TRGSEL_SELB_SHIFT;
527 selreg |= (lut->params.selc & TRGSEL_SELC_MASK) << TRGSEL_SELC_SHIFT;
528 selreg |= (lut->params.selpresc & TRGSEL_SELPRESC_MASK) << TRGSEL_SELPRESC_SHIFT;
529 write_u16be_inc(&wrptr, selreg);
530 write_u16be_inc(&wrptr, lut->params.cmpb);
531 write_u16be_inc(&wrptr, lut->params.cmpa);
532 ret = sigma_write_register(devc, WRITE_TRIGGER_SELECT, buf, wrptr - buf);
533 if (ret != SR_OK)
534 return ret;
535
536 return SR_OK;
537}
538
539/*
540 * See Xilinx UG332 for Spartan-3 FPGA configuration. The SIGMA device
541 * uses FTDI bitbang mode for netlist download in slave serial mode.
542 * (LATER: The OMEGA device's cable contains a more capable FTDI chip
543 * and uses MPSSE mode for bitbang. -- Can we also use FT232H in FT245
544 * compatible bitbang mode? For maximum code re-use and reduced libftdi
545 * dependency? See section 3.5.5 of FT232H: D0 clk, D1 data (out), D2
546 * data (in), D3 select, D4-7 GPIOL. See section 3.5.7 for MCU FIFO.)
547 *
548 * 750kbps rate (four times the speed of sigmalogan) works well for
549 * netlist download. All pins except INIT_B are output pins during
550 * configuration download.
551 *
552 * Some pins are inverted as a byproduct of level shifting circuitry.
553 * That's why high CCLK level (from the cable's point of view) is idle
554 * from the FPGA's perspective.
555 *
556 * The vendor's literature discusses a "suicide sequence" which ends
557 * regular FPGA execution and should be sent before entering bitbang
558 * mode and sending configuration data. Set D7 and toggle D2, D3, D4
559 * a few times.
560 */
561#define BB_PIN_CCLK BIT(0) /* D0, CCLK */
562#define BB_PIN_PROG BIT(1) /* D1, PROG */
563#define BB_PIN_D2 BIT(2) /* D2, (part of) SUICIDE */
564#define BB_PIN_D3 BIT(3) /* D3, (part of) SUICIDE */
565#define BB_PIN_D4 BIT(4) /* D4, (part of) SUICIDE (unused?) */
566#define BB_PIN_INIT BIT(5) /* D5, INIT, input pin */
567#define BB_PIN_DIN BIT(6) /* D6, DIN */
568#define BB_PIN_D7 BIT(7) /* D7, (part of) SUICIDE */
569
570#define BB_BITRATE (750 * 1000)
571#define BB_PINMASK (0xff & ~BB_PIN_INIT)
572
573/*
574 * Initiate slave serial mode for configuration download. Which is done
575 * by pulsing PROG_B and sensing INIT_B. Make sure CCLK is idle before
576 * initiating the configuration download.
577 *
578 * Run a "suicide sequence" first to terminate the regular FPGA operation
579 * before reconfiguration. The FTDI cable is single channel, and shares
580 * pins which are used for data communication in FIFO mode with pins that
581 * are used for FPGA configuration in bitbang mode. Hardware defaults for
582 * unconfigured hardware, and runtime conditions after FPGA configuration
583 * need to cooperate such that re-configuration of the FPGA can start.
584 */
585static int sigma_fpga_init_bitbang_once(struct dev_context *devc)
586{
587 const uint8_t suicide[] = {
588 BB_PIN_D7 | BB_PIN_D2,
589 BB_PIN_D7 | BB_PIN_D2,
590 BB_PIN_D7 | BB_PIN_D3,
591 BB_PIN_D7 | BB_PIN_D2,
592 BB_PIN_D7 | BB_PIN_D3,
593 BB_PIN_D7 | BB_PIN_D2,
594 BB_PIN_D7 | BB_PIN_D3,
595 BB_PIN_D7 | BB_PIN_D2,
596 };
597 const uint8_t init_array[] = {
598 BB_PIN_CCLK,
599 BB_PIN_CCLK | BB_PIN_PROG,
600 BB_PIN_CCLK | BB_PIN_PROG,
601 BB_PIN_CCLK,
602 BB_PIN_CCLK,
603 BB_PIN_CCLK,
604 BB_PIN_CCLK,
605 BB_PIN_CCLK,
606 BB_PIN_CCLK,
607 BB_PIN_CCLK,
608 };
609 size_t retries;
610 int ret;
611 uint8_t data;
612
613 /* Section 2. part 1), do the FPGA suicide. */
614 ret = SR_OK;
615 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
616 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
617 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
618 ret |= sigma_write_sr(devc, suicide, sizeof(suicide));
619 if (ret != SR_OK)
620 return SR_ERR_IO;
621 g_usleep(10 * 1000);
622
623 /* Section 2. part 2), pulse PROG. */
624 ret = sigma_write_sr(devc, init_array, sizeof(init_array));
625 if (ret != SR_OK)
626 return ret;
627 g_usleep(10 * 1000);
628 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
629
630 /*
631 * Wait until the FPGA asserts INIT_B. Check in a maximum number
632 * of bursts with a given delay between them. Read as many pin
633 * capture results as the combination of FTDI chip and FTID lib
634 * may provide. Cope with absence of pin capture data in a cycle.
635 * This approach shall result in fast reponse in case of success,
636 * low cost of execution during wait, reliable error handling in
637 * the transport layer, and robust response to failure or absence
638 * of result data (hardware inactivity after stimulus).
639 */
640 retries = 10;
641 while (retries--) {
642 do {
643 ret = sigma_read_raw(devc, &data, sizeof(data));
644 if (ret < 0)
645 return SR_ERR_IO;
646 if (ret == sizeof(data) && (data & BB_PIN_INIT))
647 return SR_OK;
648 } while (ret == sizeof(data));
649 if (retries)
650 g_usleep(10 * 1000);
651 }
652
653 return SR_ERR_TIMEOUT;
654}
655
656/*
657 * This is belt and braces. Re-run the bitbang initiation sequence a few
658 * times should first attempts fail. Failure is rare but can happen (was
659 * observed during driver development).
660 */
661static int sigma_fpga_init_bitbang(struct dev_context *devc)
662{
663 size_t retries;
664 int ret;
665
666 retries = 10;
667 while (retries--) {
668 ret = sigma_fpga_init_bitbang_once(devc);
669 if (ret == SR_OK)
670 return ret;
671 if (ret != SR_ERR_TIMEOUT)
672 return ret;
673 }
674 return ret;
675}
676
677/*
678 * Configure the FPGA for logic-analyzer mode.
679 */
680static int sigma_fpga_init_la(struct dev_context *devc)
681{
682 uint8_t buf[20], *wrptr;
683 uint8_t data_55, data_aa, mode;
684 uint8_t result[3];
685 const uint8_t *rdptr;
686 int ret;
687
688 wrptr = buf;
689
690 /* Read ID register. */
691 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(READ_ID));
692 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(READ_ID));
693 write_u8_inc(&wrptr, REG_READ_ADDR);
694
695 /* Write 0x55 to scratch register, read back. */
696 data_55 = 0x55;
697 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
698 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
699 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_55));
700 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_55));
701 write_u8_inc(&wrptr, REG_READ_ADDR);
702
703 /* Write 0xaa to scratch register, read back. */
704 data_aa = 0xaa;
705 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_TEST));
706 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_TEST));
707 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(data_aa));
708 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(data_aa));
709 write_u8_inc(&wrptr, REG_READ_ADDR);
710
711 /* Initiate SDRAM initialization in mode register. */
712 mode = WMR_SDRAMINIT;
713 write_u8_inc(&wrptr, REG_ADDR_LOW | LO4(WRITE_MODE));
714 write_u8_inc(&wrptr, REG_ADDR_HIGH | HI4(WRITE_MODE));
715 write_u8_inc(&wrptr, REG_DATA_LOW | LO4(mode));
716 write_u8_inc(&wrptr, REG_DATA_HIGH_WRITE | HI4(mode));
717
718 /*
719 * Send the command sequence which contains 3 READ requests.
720 * Expect to see the corresponding 3 response bytes.
721 */
722 ret = sigma_write_sr(devc, buf, wrptr - buf);
723 if (ret != SR_OK) {
724 sr_err("Could not request LA start response.");
725 return ret;
726 }
727 ret = sigma_read_sr(devc, result, ARRAY_SIZE(result));
728 if (ret != SR_OK) {
729 sr_err("Could not receive LA start response.");
730 return SR_ERR_IO;
731 }
732 rdptr = result;
733 if (read_u8_inc(&rdptr) != 0xa6) {
734 sr_err("Unexpected ID response.");
735 return SR_ERR_DATA;
736 }
737 if (read_u8_inc(&rdptr) != data_55) {
738 sr_err("Unexpected scratch read-back (55).");
739 return SR_ERR_DATA;
740 }
741 if (read_u8_inc(&rdptr) != data_aa) {
742 sr_err("Unexpected scratch read-back (aa).");
743 return SR_ERR_DATA;
744 }
745
746 return SR_OK;
747}
748
749/*
750 * Read the firmware from a file and transform it into a series of bitbang
751 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
752 * by the caller of this function.
753 */
754static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
755 uint8_t **bb_cmd, size_t *bb_cmd_size)
756{
757 uint8_t *firmware;
758 size_t file_size;
759 uint8_t *p;
760 size_t l;
761 uint32_t imm;
762 size_t bb_size;
763 uint8_t *bb_stream, *bbs, byte, mask, v;
764
765 /* Retrieve the on-disk firmware file content. */
766 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE, name,
767 &file_size, SIGMA_FIRMWARE_SIZE_LIMIT);
768 if (!firmware)
769 return SR_ERR_IO;
770
771 /* Unscramble the file content (XOR with "random" sequence). */
772 p = firmware;
773 l = file_size;
774 imm = 0x3f6df2ab;
775 while (l--) {
776 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
777 *p++ ^= imm & 0xff;
778 }
779
780 /*
781 * Generate a sequence of bitbang samples. With two samples per
782 * FPGA configuration bit, providing the level for the DIN signal
783 * as well as two edges for CCLK. See Xilinx UG332 for details
784 * ("slave serial" mode).
785 *
786 * Note that CCLK is inverted in hardware. That's why the
787 * respective bit is first set and then cleared in the bitbang
788 * sample sets. So that the DIN level will be stable when the
789 * data gets sampled at the rising CCLK edge, and the signals'
790 * setup time constraint will be met.
791 *
792 * The caller will put the FPGA into download mode, will send
793 * the bitbang samples, and release the allocated memory.
794 */
795 bb_size = file_size * 8 * 2;
796 bb_stream = g_try_malloc(bb_size);
797 if (!bb_stream) {
798 sr_err("Memory allocation failed during firmware upload.");
799 g_free(firmware);
800 return SR_ERR_MALLOC;
801 }
802 bbs = bb_stream;
803 p = firmware;
804 l = file_size;
805 while (l--) {
806 byte = *p++;
807 mask = 0x80;
808 while (mask) {
809 v = (byte & mask) ? BB_PIN_DIN : 0;
810 mask >>= 1;
811 *bbs++ = v | BB_PIN_CCLK;
812 *bbs++ = v;
813 }
814 }
815 g_free(firmware);
816
817 /* The transformation completed successfully, return the result. */
818 *bb_cmd = bb_stream;
819 *bb_cmd_size = bb_size;
820
821 return SR_OK;
822}
823
824static int upload_firmware(struct sr_context *ctx, struct dev_context *devc,
825 enum sigma_firmware_idx firmware_idx)
826{
827 int ret;
828 uint8_t *buf;
829 uint8_t pins;
830 size_t buf_size;
831 const char *firmware;
832
833 /* Check for valid firmware file selection. */
834 if (firmware_idx >= ARRAY_SIZE(firmware_files))
835 return SR_ERR_ARG;
836 firmware = firmware_files[firmware_idx];
837 if (!firmware || !*firmware)
838 return SR_ERR_ARG;
839
840 /* Avoid downloading the same firmware multiple times. */
841 if (devc->firmware_idx == firmware_idx) {
842 sr_info("Not uploading firmware file '%s' again.", firmware);
843 return SR_OK;
844 }
845
846 devc->state = SIGMA_CONFIG;
847
848 /* Set the cable to bitbang mode. */
849 ret = ftdi_set_bitmode(&devc->ftdi.ctx, BB_PINMASK, BITMODE_BITBANG);
850 if (ret < 0) {
851 sr_err("Could not setup cable mode for upload: %s",
852 ftdi_get_error_string(&devc->ftdi.ctx));
853 return SR_ERR;
854 }
855 ret = ftdi_set_baudrate(&devc->ftdi.ctx, BB_BITRATE);
856 if (ret < 0) {
857 sr_err("Could not setup bitrate for upload: %s",
858 ftdi_get_error_string(&devc->ftdi.ctx));
859 return SR_ERR;
860 }
861
862 /* Initiate FPGA configuration mode. */
863 ret = sigma_fpga_init_bitbang(devc);
864 if (ret) {
865 sr_err("Could not initiate firmware upload to hardware");
866 return ret;
867 }
868
869 /* Prepare wire format of the firmware image. */
870 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
871 if (ret != SR_OK) {
872 sr_err("Could not prepare file %s for upload.", firmware);
873 return ret;
874 }
875
876 /* Write the FPGA netlist to the cable. */
877 sr_info("Uploading firmware file '%s'.", firmware);
878 ret = sigma_write_sr(devc, buf, buf_size);
879 g_free(buf);
880 if (ret != SR_OK) {
881 sr_err("Could not upload firmware file '%s'.", firmware);
882 return ret;
883 }
884
885 /* Leave bitbang mode and discard pending input data. */
886 ret = ftdi_set_bitmode(&devc->ftdi.ctx, 0, BITMODE_RESET);
887 if (ret < 0) {
888 sr_err("Could not setup cable mode after upload: %s",
889 ftdi_get_error_string(&devc->ftdi.ctx));
890 return SR_ERR;
891 }
892 ftdi_usb_purge_buffers(&devc->ftdi.ctx);
893 while (sigma_read_raw(devc, &pins, sizeof(pins)) > 0)
894 ;
895
896 /* Initialize the FPGA for logic-analyzer mode. */
897 ret = sigma_fpga_init_la(devc);
898 if (ret != SR_OK) {
899 sr_err("Hardware response after firmware upload failed.");
900 return ret;
901 }
902
903 /* Keep track of successful firmware download completion. */
904 devc->state = SIGMA_IDLE;
905 devc->firmware_idx = firmware_idx;
906 sr_info("Firmware uploaded.");
907
908 return SR_OK;
909}
910
911/*
912 * The driver supports user specified time or sample count limits. The
913 * device's hardware supports neither, and hardware compression prevents
914 * reliable detection of "fill levels" (currently reached sample counts)
915 * from register values during acquisition. That's why the driver needs
916 * to apply some heuristics:
917 *
918 * - The (optional) sample count limit and the (normalized) samplerate
919 * get mapped to an estimated duration for these samples' acquisition.
920 * - The (optional) time limit gets checked as well. The lesser of the
921 * two limits will terminate the data acquisition phase. The exact
922 * sample count limit gets enforced in session feed submission paths.
923 * - Some slack needs to be given to account for hardware pipelines as
924 * well as late storage of last chunks after compression thresholds
925 * are tripped. The resulting data set will span at least the caller
926 * specified period of time, which shall be perfectly acceptable.
927 *
928 * With RLE compression active, up to 64K sample periods can pass before
929 * a cluster accumulates. Which translates to 327ms at 200kHz. Add two
930 * times that period for good measure, one is not enough to flush the
931 * hardware pipeline (observation from an earlier experiment).
932 */
933SR_PRIV int sigma_set_acquire_timeout(struct dev_context *devc)
934{
935 int ret;
936 GVariant *data;
937 uint64_t user_count, user_msecs;
938 uint64_t worst_cluster_time_ms;
939 uint64_t count_msecs, acquire_msecs;
940
941 sr_sw_limits_init(&devc->limit.acquire);
942
943 /* Get sample count limit, convert to msecs. */
944 ret = sr_sw_limits_config_get(&devc->limit.config,
945 SR_CONF_LIMIT_SAMPLES, &data);
946 if (ret != SR_OK)
947 return ret;
948 user_count = g_variant_get_uint64(data);
949 g_variant_unref(data);
950 count_msecs = 0;
951 if (user_count)
952 count_msecs = 1000 * user_count / devc->clock.samplerate + 1;
953
954 /* Get time limit, which is in msecs. */
955 ret = sr_sw_limits_config_get(&devc->limit.config,
956 SR_CONF_LIMIT_MSEC, &data);
957 if (ret != SR_OK)
958 return ret;
959 user_msecs = g_variant_get_uint64(data);
960 g_variant_unref(data);
961
962 /* Get the lesser of them, with both being optional. */
963 acquire_msecs = ~0ull;
964 if (user_count && count_msecs < acquire_msecs)
965 acquire_msecs = count_msecs;
966 if (user_msecs && user_msecs < acquire_msecs)
967 acquire_msecs = user_msecs;
968 if (acquire_msecs == ~0ull)
969 return SR_OK;
970
971 /* Add some slack, and use that timeout for acquisition. */
972 worst_cluster_time_ms = 1000 * 65536 / devc->clock.samplerate;
973 acquire_msecs += 2 * worst_cluster_time_ms;
974 data = g_variant_new_uint64(acquire_msecs);
975 ret = sr_sw_limits_config_set(&devc->limit.acquire,
976 SR_CONF_LIMIT_MSEC, data);
977 g_variant_unref(data);
978 if (ret != SR_OK)
979 return ret;
980
981 sr_sw_limits_acquisition_start(&devc->limit.acquire);
982 return SR_OK;
983}
984
985/*
986 * Check whether a caller specified samplerate matches the device's
987 * hardware constraints (can be used for acquisition). Optionally yield
988 * a value that approximates the original spec.
989 *
990 * This routine assumes that input specs are in the 200kHz to 200MHz
991 * range of supported rates, and callers typically want to normalize a
992 * given value to the hardware capabilities. Values in the 50MHz range
993 * get rounded up by default, to avoid a more expensive check for the
994 * closest match, while higher sampling rate is always desirable during
995 * measurement. Input specs which exactly match hardware capabilities
996 * remain unaffected. Because 100/200MHz rates also limit the number of
997 * available channels, they are not suggested by this routine, instead
998 * callers need to pick them consciously.
999 */
1000SR_PRIV int sigma_normalize_samplerate(uint64_t want_rate, uint64_t *have_rate)
1001{
1002 uint64_t div, rate;
1003
1004 /* Accept exact matches for 100/200MHz. */
1005 if (want_rate == SR_MHZ(200) || want_rate == SR_MHZ(100)) {
1006 if (have_rate)
1007 *have_rate = want_rate;
1008 return SR_OK;
1009 }
1010
1011 /* Accept 200kHz to 50MHz range, and map to near value. */
1012 if (want_rate >= SR_KHZ(200) && want_rate <= SR_MHZ(50)) {
1013 div = SR_MHZ(50) / want_rate;
1014 rate = SR_MHZ(50) / div;
1015 if (have_rate)
1016 *have_rate = rate;
1017 return SR_OK;
1018 }
1019
1020 return SR_ERR_ARG;
1021}
1022
1023/* Gets called at probe time. Can seed software settings from hardware state. */
1024SR_PRIV int sigma_fetch_hw_config(const struct sr_dev_inst *sdi)
1025{
1026 struct dev_context *devc;
1027 int ret;
1028 uint8_t regaddr, regval;
1029
1030 devc = sdi->priv;
1031 if (!devc)
1032 return SR_ERR_ARG;
1033
1034 /* Seed configuration values from defaults. */
1035 devc->firmware_idx = SIGMA_FW_NONE;
1036 devc->clock.samplerate = samplerates[0];
1037
1038 /* TODO
1039 * Ideally the device driver could retrieve recently stored
1040 * details from hardware registers, thus re-use user specified
1041 * configuration values across sigrok sessions. Which could
1042 * avoid repeated expensive though unnecessary firmware uploads,
1043 * improve performance and usability. Unfortunately it appears
1044 * that the registers range which is documented as available for
1045 * application use keeps providing 0xff data content. At least
1046 * with the netlist version which ships with sigrok. The same
1047 * was observed with unused registers in the first page.
1048 */
1049 return SR_ERR_NA;
1050
1051 /* This is for research, currently does not work yet. */
1052 ret = sigma_check_open(sdi);
1053 regaddr = 16;
1054 regaddr = 14;
1055 ret = sigma_set_register(devc, regaddr, 'F');
1056 ret = sigma_get_register(devc, regaddr, &regval);
1057 sr_warn("%s() reg[%u] val[%u] rc[%d]", __func__, regaddr, regval, ret);
1058 ret = sigma_check_close(devc);
1059 return ret;
1060}
1061
1062/* Gets called after successful (volatile) hardware configuration. */
1063SR_PRIV int sigma_store_hw_config(const struct sr_dev_inst *sdi)
1064{
1065 /* TODO See above, registers seem to not hold written data. */
1066 (void)sdi;
1067 return SR_ERR_NA;
1068}
1069
1070SR_PRIV int sigma_set_samplerate(const struct sr_dev_inst *sdi)
1071{
1072 struct dev_context *devc;
1073 struct drv_context *drvc;
1074 uint64_t samplerate;
1075 int ret;
1076 size_t num_channels;
1077
1078 devc = sdi->priv;
1079 drvc = sdi->driver->context;
1080
1081 /* Accept any caller specified rate which the hardware supports. */
1082 ret = sigma_normalize_samplerate(devc->clock.samplerate, &samplerate);
1083 if (ret != SR_OK)
1084 return ret;
1085
1086 /*
1087 * Depending on the samplerates of 200/100/50- MHz, specific
1088 * firmware is required and higher rates might limit the set
1089 * of available channels.
1090 */
1091 num_channels = devc->interp.num_channels;
1092 if (samplerate <= SR_MHZ(50)) {
1093 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_50MHZ);
1094 num_channels = 16;
1095 } else if (samplerate == SR_MHZ(100)) {
1096 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_100MHZ);
1097 num_channels = 8;
1098 } else if (samplerate == SR_MHZ(200)) {
1099 ret = upload_firmware(drvc->sr_ctx, devc, SIGMA_FW_200MHZ);
1100 num_channels = 4;
1101 }
1102
1103 /*
1104 * The samplerate affects the number of available logic channels
1105 * as well as a sample memory layout detail (the number of samples
1106 * which the device will communicate within an "event").
1107 */
1108 if (ret == SR_OK) {
1109 devc->interp.num_channels = num_channels;
1110 devc->interp.samples_per_event = 16 / devc->interp.num_channels;
1111 }
1112
1113 /*
1114 * Store the firmware type and most recently configured samplerate
1115 * in hardware, such that subsequent sessions can start from there.
1116 * This is a "best effort" approach. Failure is non-fatal.
1117 */
1118 if (ret == SR_OK)
1119 (void)sigma_store_hw_config(sdi);
1120
1121 return ret;
1122}
1123
1124/*
1125 * Arrange for a session feed submit buffer. A queue where a number of
1126 * samples gets accumulated to reduce the number of send calls. Which
1127 * also enforces an optional sample count limit for data acquisition.
1128 *
1129 * The buffer holds up to CHUNK_SIZE bytes. The unit size is fixed (the
1130 * driver provides a fixed channel layout regardless of samplerate).
1131 */
1132
1133#define CHUNK_SIZE (4 * 1024 * 1024)
1134
1135struct submit_buffer {
1136 size_t unit_size;
1137 size_t max_samples, curr_samples;
1138 uint8_t *sample_data;
1139 uint8_t *write_pointer;
1140 struct sr_dev_inst *sdi;
1141 struct sr_datafeed_packet packet;
1142 struct sr_datafeed_logic logic;
1143};
1144
1145static int alloc_submit_buffer(struct sr_dev_inst *sdi)
1146{
1147 struct dev_context *devc;
1148 struct submit_buffer *buffer;
1149 size_t size;
1150
1151 devc = sdi->priv;
1152
1153 buffer = g_malloc0(sizeof(*buffer));
1154 devc->buffer = buffer;
1155
1156 buffer->unit_size = sizeof(uint16_t);
1157 size = CHUNK_SIZE;
1158 size /= buffer->unit_size;
1159 buffer->max_samples = size;
1160 size *= buffer->unit_size;
1161 buffer->sample_data = g_try_malloc0(size);
1162 if (!buffer->sample_data)
1163 return SR_ERR_MALLOC;
1164 buffer->write_pointer = buffer->sample_data;
1165 sr_sw_limits_init(&devc->limit.submit);
1166
1167 buffer->sdi = sdi;
1168 memset(&buffer->logic, 0, sizeof(buffer->logic));
1169 buffer->logic.unitsize = buffer->unit_size;
1170 buffer->logic.data = buffer->sample_data;
1171 memset(&buffer->packet, 0, sizeof(buffer->packet));
1172 buffer->packet.type = SR_DF_LOGIC;
1173 buffer->packet.payload = &buffer->logic;
1174
1175 return SR_OK;
1176}
1177
1178static int setup_submit_limit(struct dev_context *devc)
1179{
1180 struct sr_sw_limits *limits;
1181 int ret;
1182 GVariant *data;
1183 uint64_t total;
1184
1185 limits = &devc->limit.submit;
1186
1187 ret = sr_sw_limits_config_get(&devc->limit.config,
1188 SR_CONF_LIMIT_SAMPLES, &data);
1189 if (ret != SR_OK)
1190 return ret;
1191 total = g_variant_get_uint64(data);
1192 g_variant_unref(data);
1193
1194 sr_sw_limits_init(limits);
1195 if (total) {
1196 data = g_variant_new_uint64(total);
1197 ret = sr_sw_limits_config_set(limits,
1198 SR_CONF_LIMIT_SAMPLES, data);
1199 g_variant_unref(data);
1200 if (ret != SR_OK)
1201 return ret;
1202 }
1203
1204 sr_sw_limits_acquisition_start(limits);
1205
1206 return SR_OK;
1207}
1208
1209static void free_submit_buffer(struct dev_context *devc)
1210{
1211 struct submit_buffer *buffer;
1212
1213 if (!devc)
1214 return;
1215
1216 buffer = devc->buffer;
1217 if (!buffer)
1218 return;
1219 devc->buffer = NULL;
1220
1221 g_free(buffer->sample_data);
1222 g_free(buffer);
1223}
1224
1225static int flush_submit_buffer(struct dev_context *devc)
1226{
1227 struct submit_buffer *buffer;
1228 int ret;
1229
1230 buffer = devc->buffer;
1231
1232 /* Is queued sample data available? */
1233 if (!buffer->curr_samples)
1234 return SR_OK;
1235
1236 /* Submit to the session feed. */
1237 buffer->logic.length = buffer->curr_samples * buffer->unit_size;
1238 ret = sr_session_send(buffer->sdi, &buffer->packet);
1239 if (ret != SR_OK)
1240 return ret;
1241
1242 /* Rewind queue position. */
1243 buffer->curr_samples = 0;
1244 buffer->write_pointer = buffer->sample_data;
1245
1246 return SR_OK;
1247}
1248
1249static int addto_submit_buffer(struct dev_context *devc,
1250 uint16_t sample, size_t count)
1251{
1252 struct submit_buffer *buffer;
1253 struct sr_sw_limits *limits;
1254 int ret;
1255
1256 buffer = devc->buffer;
1257 limits = &devc->limit.submit;
1258 if (sr_sw_limits_check(limits))
1259 count = 0;
1260
1261 /*
1262 * Individually accumulate and check each sample, such that
1263 * accumulation between flushes won't exceed local storage, and
1264 * enforcement of user specified limits is exact.
1265 */
1266 while (count--) {
1267 write_u16le_inc(&buffer->write_pointer, sample);
1268 buffer->curr_samples++;
1269 if (buffer->curr_samples == buffer->max_samples) {
1270 ret = flush_submit_buffer(devc);
1271 if (ret != SR_OK)
1272 return ret;
1273 }
1274 sr_sw_limits_update_samples_read(limits, 1);
1275 if (sr_sw_limits_check(limits))
1276 break;
1277 }
1278
1279 return SR_OK;
1280}
1281
1282static int alloc_sample_buffer(struct dev_context *devc)
1283{
1284 size_t alloc_size;
1285
1286 devc->interp.fetch.lines_per_read = 32;
1287 alloc_size = sizeof(devc->interp.fetch.rcvd_lines[0]);
1288 alloc_size *= devc->interp.fetch.lines_per_read;
1289 devc->interp.fetch.rcvd_lines = g_try_malloc0(alloc_size);
1290 if (!devc->interp.fetch.rcvd_lines)
1291 return SR_ERR_MALLOC;
1292
1293 return SR_OK;
1294}
1295
1296static void free_sample_buffer(struct dev_context *devc)
1297{
1298 g_free(devc->interp.fetch.rcvd_lines);
1299 devc->interp.fetch.rcvd_lines = NULL;
1300}
1301
1302/*
1303 * In 100 and 200 MHz mode, only a single pin rising/falling can be
1304 * set as trigger. In other modes, two rising/falling triggers can be set,
1305 * in addition to value/mask trigger for any number of channels.
1306 *
1307 * The Sigma supports complex triggers using boolean expressions, but this
1308 * has not been implemented yet.
1309 */
1310SR_PRIV int sigma_convert_trigger(const struct sr_dev_inst *sdi)
1311{
1312 struct dev_context *devc;
1313 struct sr_trigger *trigger;
1314 struct sr_trigger_stage *stage;
1315 struct sr_trigger_match *match;
1316 const GSList *l, *m;
1317 uint16_t channelbit;
1318 size_t trigger_set;
1319
1320 devc = sdi->priv;
1321 memset(&devc->trigger, 0, sizeof(devc->trigger));
1322 devc->use_triggers = FALSE;
1323 trigger = sr_session_trigger_get(sdi->session);
1324 if (!trigger)
1325 return SR_OK;
1326
1327 if (!ASIX_SIGMA_WITH_TRIGGER) {
1328 sr_warn("Trigger support is not implemented. Ignoring the spec.");
1329 return SR_OK;
1330 }
1331
1332 trigger_set = 0;
1333 for (l = trigger->stages; l; l = l->next) {
1334 stage = l->data;
1335 for (m = stage->matches; m; m = m->next) {
1336 match = m->data;
1337 /* Ignore disabled channels with a trigger. */
1338 if (!match->channel->enabled)
1339 continue;
1340 channelbit = BIT(match->channel->index);
1341 if (devc->clock.samplerate >= SR_MHZ(100)) {
1342 /* Fast trigger support. */
1343 if (trigger_set) {
1344 sr_err("100/200MHz modes limited to single trigger pin.");
1345 return SR_ERR;
1346 }
1347 if (match->match == SR_TRIGGER_FALLING) {
1348 devc->trigger.fallingmask |= channelbit;
1349 } else if (match->match == SR_TRIGGER_RISING) {
1350 devc->trigger.risingmask |= channelbit;
1351 } else {
1352 sr_err("100/200MHz modes limited to edge trigger.");
1353 return SR_ERR;
1354 }
1355
1356 trigger_set++;
1357 } else {
1358 /* Simple trigger support (event). */
1359 if (match->match == SR_TRIGGER_ONE) {
1360 devc->trigger.simplevalue |= channelbit;
1361 devc->trigger.simplemask |= channelbit;
1362 } else if (match->match == SR_TRIGGER_ZERO) {
1363 devc->trigger.simplevalue &= ~channelbit;
1364 devc->trigger.simplemask |= channelbit;
1365 } else if (match->match == SR_TRIGGER_FALLING) {
1366 devc->trigger.fallingmask |= channelbit;
1367 trigger_set++;
1368 } else if (match->match == SR_TRIGGER_RISING) {
1369 devc->trigger.risingmask |= channelbit;
1370 trigger_set++;
1371 }
1372
1373 /*
1374 * Actually, Sigma supports 2 rising/falling triggers,
1375 * but they are ORed and the current trigger syntax
1376 * does not permit ORed triggers.
1377 */
1378 if (trigger_set > 1) {
1379 sr_err("Limited to 1 edge trigger.");
1380 return SR_ERR;
1381 }
1382 }
1383 }
1384 }
1385
1386 /* Keep track whether triggers are involved during acquisition. */
1387 devc->use_triggers = TRUE;
1388
1389 return SR_OK;
1390}
1391
1392/* Software trigger to determine exact trigger position. */
1393static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
1394 struct sigma_trigger *t)
1395{
1396 const uint8_t *rdptr;
1397 size_t i;
1398 uint16_t sample;
1399
1400 rdptr = samples;
1401 sample = 0;
1402 for (i = 0; i < 8; i++) {
1403 if (i > 0)
1404 last_sample = sample;
1405 sample = read_u16le_inc(&rdptr);
1406
1407 /* Simple triggers. */
1408 if ((sample & t->simplemask) != t->simplevalue)
1409 continue;
1410
1411 /* Rising edge. */
1412 if (((last_sample & t->risingmask) != 0) ||
1413 ((sample & t->risingmask) != t->risingmask))
1414 continue;
1415
1416 /* Falling edge. */
1417 if ((last_sample & t->fallingmask) != t->fallingmask ||
1418 (sample & t->fallingmask) != 0)
1419 continue;
1420
1421 break;
1422 }
1423
1424 /* If we did not match, return original trigger pos. */
1425 return i & 0x7;
1426}
1427
1428static gboolean sample_matches_trigger(struct dev_context *devc, uint16_t sample)
1429{
1430 /* TODO
1431 * Check whether the combination of this very sample and the
1432 * previous state match the configured trigger condition. This
1433 * improves the resolution of the trigger marker's position.
1434 * The hardware provided position is coarse, and may point to
1435 * a position before the actual match.
1436 *
1437 * See the previous get_trigger_offset() implementation. This
1438 * code needs to get re-used here.
1439 */
1440 if (!devc->use_triggers)
1441 return FALSE;
1442
1443 (void)sample;
1444 (void)get_trigger_offset;
1445
1446 return FALSE;
1447}
1448
1449static int check_and_submit_sample(struct dev_context *devc,
1450 uint16_t sample, size_t count, gboolean check_trigger)
1451{
1452 gboolean triggered;
1453 int ret;
1454
1455 triggered = check_trigger && sample_matches_trigger(devc, sample);
1456 if (triggered) {
1457 ret = flush_submit_buffer(devc);
1458 if (ret != SR_OK)
1459 return ret;
1460 ret = std_session_send_df_trigger(devc->buffer->sdi);
1461 if (ret != SR_OK)
1462 return ret;
1463 }
1464
1465 ret = addto_submit_buffer(devc, sample, count);
1466 if (ret != SR_OK)
1467 return ret;
1468
1469 return SR_OK;
1470}
1471
1472/*
1473 * Return the timestamp of "DRAM cluster".
1474 */
1475static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
1476{
1477 return read_u16le((const uint8_t *)&cluster->timestamp);
1478}
1479
1480/*
1481 * Return one 16bit data entity of a DRAM cluster at the specified index.
1482 */
1483static uint16_t sigma_dram_cluster_data(struct sigma_dram_cluster *cl, int idx)
1484{
1485 return read_u16le((const uint8_t *)&cl->samples[idx]);
1486}
1487
1488/*
1489 * Deinterlace sample data that was retrieved at 100MHz samplerate.
1490 * One 16bit item contains two samples of 8bits each. The bits of
1491 * multiple samples are interleaved.
1492 */
1493static uint16_t sigma_deinterlace_data_2x8(uint16_t indata, int idx)
1494{
1495 uint16_t outdata;
1496
1497 indata >>= idx;
1498 outdata = 0;
1499 outdata |= (indata >> (0 * 2 - 0)) & (1 << 0);
1500 outdata |= (indata >> (1 * 2 - 1)) & (1 << 1);
1501 outdata |= (indata >> (2 * 2 - 2)) & (1 << 2);
1502 outdata |= (indata >> (3 * 2 - 3)) & (1 << 3);
1503 outdata |= (indata >> (4 * 2 - 4)) & (1 << 4);
1504 outdata |= (indata >> (5 * 2 - 5)) & (1 << 5);
1505 outdata |= (indata >> (6 * 2 - 6)) & (1 << 6);
1506 outdata |= (indata >> (7 * 2 - 7)) & (1 << 7);
1507 return outdata;
1508}
1509
1510/*
1511 * Deinterlace sample data that was retrieved at 200MHz samplerate.
1512 * One 16bit item contains four samples of 4bits each. The bits of
1513 * multiple samples are interleaved.
1514 */
1515static uint16_t sigma_deinterlace_data_4x4(uint16_t indata, int idx)
1516{
1517 uint16_t outdata;
1518
1519 indata >>= idx;
1520 outdata = 0;
1521 outdata |= (indata >> (0 * 4 - 0)) & (1 << 0);
1522 outdata |= (indata >> (1 * 4 - 1)) & (1 << 1);
1523 outdata |= (indata >> (2 * 4 - 2)) & (1 << 2);
1524 outdata |= (indata >> (3 * 4 - 3)) & (1 << 3);
1525 return outdata;
1526}
1527
1528static void sigma_decode_dram_cluster(struct dev_context *devc,
1529 struct sigma_dram_cluster *dram_cluster,
1530 size_t events_in_cluster, gboolean triggered)
1531{
1532 uint16_t tsdiff, ts, sample, item16;
1533 size_t count;
1534 size_t evt;
1535
1536 if (!devc->use_triggers || !ASIX_SIGMA_WITH_TRIGGER)
1537 triggered = FALSE;
1538
1539 /*
1540 * If this cluster is not adjacent to the previously received
1541 * cluster, then send the appropriate number of samples with the
1542 * previous values to the sigrok session. This "decodes RLE".
1543 *
1544 * These samples cannot match the trigger since they just repeat
1545 * the previously submitted data pattern. (This assumption holds
1546 * for simple level and edge triggers. It would not for timed or
1547 * counted conditions, which currently are not supported.)
1548 */
1549 ts = sigma_dram_cluster_ts(dram_cluster);
1550 tsdiff = ts - devc->interp.last.ts;
1551 if (tsdiff > 0) {
1552 sample = devc->interp.last.sample;
1553 count = tsdiff * devc->interp.samples_per_event;
1554 (void)check_and_submit_sample(devc, sample, count, FALSE);
1555 }
1556 devc->interp.last.ts = ts + EVENTS_PER_CLUSTER;
1557
1558 /*
1559 * Grab sample data from the current cluster and prepare their
1560 * submission to the session feed. Handle samplerate dependent
1561 * memory layout of sample data. Accumulation of data chunks
1562 * before submission is transparent to this code path, specific
1563 * buffer depth is neither assumed nor required here.
1564 */
1565 sample = 0;
1566 for (evt = 0; evt < events_in_cluster; evt++) {
1567 item16 = sigma_dram_cluster_data(dram_cluster, evt);
1568 if (devc->interp.samples_per_event == 4) {
1569 sample = sigma_deinterlace_data_4x4(item16, 0);
1570 check_and_submit_sample(devc, sample, 1, triggered);
1571 sample = sigma_deinterlace_data_4x4(item16, 1);
1572 check_and_submit_sample(devc, sample, 1, triggered);
1573 sample = sigma_deinterlace_data_4x4(item16, 2);
1574 check_and_submit_sample(devc, sample, 1, triggered);
1575 sample = sigma_deinterlace_data_4x4(item16, 3);
1576 check_and_submit_sample(devc, sample, 1, triggered);
1577 } else if (devc->interp.samples_per_event == 2) {
1578 sample = sigma_deinterlace_data_2x8(item16, 0);
1579 check_and_submit_sample(devc, sample, 1, triggered);
1580 sample = sigma_deinterlace_data_2x8(item16, 1);
1581 check_and_submit_sample(devc, sample, 1, triggered);
1582 } else {
1583 sample = item16;
1584 check_and_submit_sample(devc, sample, 1, triggered);
1585 }
1586 }
1587 devc->interp.last.sample = sample;
1588}
1589
1590/*
1591 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1592 * Each event is 20ns apart, and can contain multiple samples.
1593 *
1594 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1595 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1596 * For 50 MHz and below, events contain one sample for each channel,
1597 * spread 20 ns apart.
1598 */
1599static int decode_chunk_ts(struct dev_context *devc,
1600 struct sigma_dram_line *dram_line,
1601 size_t events_in_line, size_t trigger_event)
1602{
1603 struct sigma_dram_cluster *dram_cluster;
1604 size_t clusters_in_line;
1605 size_t events_in_cluster;
1606 size_t cluster;
1607 size_t trigger_cluster;
1608
1609 clusters_in_line = events_in_line;
1610 clusters_in_line += EVENTS_PER_CLUSTER - 1;
1611 clusters_in_line /= EVENTS_PER_CLUSTER;
1612
1613 /* Check if trigger is in this chunk. */
1614 trigger_cluster = ~0UL;
1615 if (trigger_event < EVENTS_PER_ROW) {
1616 if (devc->clock.samplerate <= SR_MHZ(50)) {
1617 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1618 trigger_event);
1619 }
1620
1621 /* Find in which cluster the trigger occurred. */
1622 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
1623 }
1624
1625 /* For each full DRAM cluster. */
1626 for (cluster = 0; cluster < clusters_in_line; cluster++) {
1627 dram_cluster = &dram_line->cluster[cluster];
1628
1629 /* The last cluster might not be full. */
1630 if ((cluster == clusters_in_line - 1) &&
1631 (events_in_line % EVENTS_PER_CLUSTER)) {
1632 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
1633 } else {
1634 events_in_cluster = EVENTS_PER_CLUSTER;
1635 }
1636
1637 sigma_decode_dram_cluster(devc, dram_cluster,
1638 events_in_cluster, cluster == trigger_cluster);
1639 }
1640
1641 return SR_OK;
1642}
1643
1644static int download_capture(struct sr_dev_inst *sdi)
1645{
1646 struct dev_context *devc;
1647 struct sigma_sample_interp *interp;
1648 uint32_t stoppos, triggerpos;
1649 uint8_t modestatus;
1650 size_t line_idx;
1651 size_t dl_lines_total, dl_lines_curr, dl_lines_done;
1652 size_t dl_first_line, dl_line;
1653 size_t dl_events_in_line, trigger_event;
1654 size_t trg_line, trg_event;
1655 int ret;
1656
1657 devc = sdi->priv;
1658 interp = &devc->interp;
1659
1660 sr_info("Downloading sample data.");
1661 devc->state = SIGMA_DOWNLOAD;
1662
1663 /*
1664 * Ask the hardware to stop data acquisition. Reception of the
1665 * FORCESTOP request makes the hardware "disable RLE" (store
1666 * clusters to DRAM regardless of whether pin state changes) and
1667 * raise the POSTTRIGGERED flag.
1668 */
1669 modestatus = WMR_FORCESTOP | WMR_SDRAMWRITEEN;
1670 ret = sigma_set_register(devc, WRITE_MODE, modestatus);
1671 if (ret != SR_OK)
1672 return ret;
1673 do {
1674 ret = sigma_get_register(devc, READ_MODE, &modestatus);
1675 if (ret != SR_OK) {
1676 sr_err("Could not poll for post-trigger state.");
1677 return FALSE;
1678 }
1679 } while (!(modestatus & RMR_POSTTRIGGERED));
1680
1681 /* Set SDRAM Read Enable. */
1682 ret = sigma_set_register(devc, WRITE_MODE, WMR_SDRAMREADEN);
1683 if (ret != SR_OK)
1684 return ret;
1685
1686 /* Get the current position. Check if trigger has fired. */
1687 ret = sigma_read_pos(devc, &stoppos, &triggerpos, &modestatus);
1688 if (ret != SR_OK) {
1689 sr_err("Could not query capture positions/state.");
1690 return FALSE;
1691 }
1692 if (!devc->use_triggers)
1693 triggerpos = ~0;
1694 trg_line = ~0UL;
1695 trg_event = ~0UL;
1696 if (modestatus & RMR_TRIGGERED) {
1697 trg_line = triggerpos >> ROW_SHIFT;
1698 trg_event = triggerpos & ROW_MASK;
1699 }
1700
1701 /*
1702 * Determine how many "DRAM lines" of 1024 bytes each we need to
1703 * retrieve from the Sigma hardware, so that we have a complete
1704 * set of samples. Note that the last line need not contain 64
1705 * clusters, it might be partially filled only.
1706 *
1707 * When RMR_ROUND is set, the circular buffer in DRAM has wrapped
1708 * around. Since the status of the very next line is uncertain in
1709 * that case, we skip it and start reading from the next line.
1710 */
1711 dl_first_line = 0;
1712 dl_lines_total = (stoppos >> ROW_SHIFT) + 1;
1713 if (modestatus & RMR_ROUND) {
1714 dl_first_line = dl_lines_total + 1;
1715 dl_lines_total = ROW_COUNT - 2;
1716 }
1717 ret = alloc_sample_buffer(devc);
1718 if (ret != SR_OK)
1719 return FALSE;
1720 ret = alloc_submit_buffer(sdi);
1721 if (ret != SR_OK)
1722 return FALSE;
1723 ret = setup_submit_limit(devc);
1724 if (ret != SR_OK)
1725 return FALSE;
1726 dl_lines_done = 0;
1727 while (dl_lines_total > dl_lines_done) {
1728
1729 /* Get another set of DRAM lines in one read. */
1730 dl_lines_curr = dl_lines_total - dl_lines_done;
1731 if (dl_lines_curr > interp->fetch.lines_per_read)
1732 dl_lines_curr = interp->fetch.lines_per_read;
1733 dl_line = dl_first_line + dl_lines_done;
1734 dl_line %= ROW_COUNT;
1735 ret = sigma_read_dram(devc, dl_line, dl_lines_curr,
1736 (uint8_t *)interp->fetch.rcvd_lines);
1737 if (ret != SR_OK)
1738 return FALSE;
1739 interp->fetch.curr_line = &interp->fetch.rcvd_lines[0];
1740
1741 /* Seed initial timestamp from the first DRAM line. */
1742 if (dl_lines_done == 0) {
1743 interp->last.ts =
1744 sigma_dram_cluster_ts(&interp->fetch.curr_line->cluster[0]);
1745 interp->last.sample = 0;
1746 }
1747
1748 for (line_idx = 0; line_idx < dl_lines_curr; line_idx++) {
1749 /* The last "DRAM line" need not span its full length. */
1750 dl_events_in_line = EVENTS_PER_ROW;
1751 if (dl_lines_done + line_idx == dl_lines_total - 1)
1752 dl_events_in_line = stoppos & ROW_MASK;
1753
1754 /* Test if the trigger happened on this line. */
1755 trigger_event = ~0UL;
1756 if (dl_lines_done + line_idx == trg_line)
1757 trigger_event = trg_event;
1758
1759 decode_chunk_ts(devc, interp->fetch.curr_line,
1760 dl_events_in_line, trigger_event);
1761 interp->fetch.curr_line++;
1762 }
1763
1764 dl_lines_done += dl_lines_curr;
1765 }
1766 flush_submit_buffer(devc);
1767 free_submit_buffer(devc);
1768 free_sample_buffer(devc);
1769
1770 std_session_send_df_end(sdi);
1771
1772 devc->state = SIGMA_IDLE;
1773 sr_dev_acquisition_stop(sdi);
1774
1775 return TRUE;
1776}
1777
1778/*
1779 * Periodically check the Sigma status when in CAPTURE mode. This routine
1780 * checks whether the configured sample count or sample time have passed,
1781 * and will stop acquisition and download the acquired samples.
1782 */
1783static int sigma_capture_mode(struct sr_dev_inst *sdi)
1784{
1785 struct dev_context *devc;
1786
1787 devc = sdi->priv;
1788 if (sr_sw_limits_check(&devc->limit.acquire))
1789 return download_capture(sdi);
1790
1791 return TRUE;
1792}
1793
1794SR_PRIV int sigma_receive_data(int fd, int revents, void *cb_data)
1795{
1796 struct sr_dev_inst *sdi;
1797 struct dev_context *devc;
1798
1799 (void)fd;
1800 (void)revents;
1801
1802 sdi = cb_data;
1803 devc = sdi->priv;
1804
1805 if (devc->state == SIGMA_IDLE)
1806 return TRUE;
1807
1808 /*
1809 * When the application has requested to stop the acquisition,
1810 * then immediately start downloading sample data. Otherwise
1811 * keep checking configured limits which will terminate the
1812 * acquisition and initiate download.
1813 */
1814 if (devc->state == SIGMA_STOPPING)
1815 return download_capture(sdi);
1816 if (devc->state == SIGMA_CAPTURE)
1817 return sigma_capture_mode(sdi);
1818
1819 return TRUE;
1820}
1821
1822/* Build a LUT entry used by the trigger functions. */
1823static void build_lut_entry(uint16_t *lut_entry,
1824 uint16_t spec_value, uint16_t spec_mask)
1825{
1826 size_t quad, bitidx, ch;
1827 uint16_t quadmask, bitmask;
1828 gboolean spec_value_low, bit_idx_low;
1829
1830 /*
1831 * For each quad-channel-group, for each bit in the LUT (each
1832 * bit pattern of the channel signals, aka LUT address), for
1833 * each channel in the quad, setup the bit in the LUT entry.
1834 *
1835 * Start from all-ones in the LUT (true, always matches), then
1836 * "pessimize the truthness" for specified conditions.
1837 */
1838 for (quad = 0; quad < 4; quad++) {
1839 lut_entry[quad] = ~0;
1840 for (bitidx = 0; bitidx < 16; bitidx++) {
1841 for (ch = 0; ch < 4; ch++) {
1842 quadmask = BIT(ch);
1843 bitmask = quadmask << (quad * 4);
1844 if (!(spec_mask & bitmask))
1845 continue;
1846 /*
1847 * This bit is part of the spec. The
1848 * condition which gets checked here
1849 * (got checked in all implementations
1850 * so far) is uncertain. A bit position
1851 * in the current index' number(!) is
1852 * checked?
1853 */
1854 spec_value_low = !(spec_value & bitmask);
1855 bit_idx_low = !(bitidx & quadmask);
1856 if (spec_value_low == bit_idx_low)
1857 continue;
1858 lut_entry[quad] &= ~BIT(bitidx);
1859 }
1860 }
1861 }
1862}
1863
1864/* Add a logical function to LUT mask. */
1865static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1866 size_t index, gboolean neg, uint16_t *mask)
1867{
1868 int x[2][2], a, b, aset, bset, rset;
1869 size_t bitidx;
1870
1871 /*
1872 * Beware! The x, a, b, aset, bset, rset variables strictly
1873 * require the limited 0..1 range. They are not interpreted
1874 * as logically true, instead bit arith is done on them.
1875 */
1876
1877 /* Construct a pattern which detects the condition. */
1878 memset(x, 0, sizeof(x));
1879 switch (oper) {
1880 case OP_LEVEL:
1881 x[0][1] = 1;
1882 x[1][1] = 1;
1883 break;
1884 case OP_NOT:
1885 x[0][0] = 1;
1886 x[1][0] = 1;
1887 break;
1888 case OP_RISE:
1889 x[0][1] = 1;
1890 break;
1891 case OP_FALL:
1892 x[1][0] = 1;
1893 break;
1894 case OP_RISEFALL:
1895 x[0][1] = 1;
1896 x[1][0] = 1;
1897 break;
1898 case OP_NOTRISE:
1899 x[1][1] = 1;
1900 x[0][0] = 1;
1901 x[1][0] = 1;
1902 break;
1903 case OP_NOTFALL:
1904 x[1][1] = 1;
1905 x[0][0] = 1;
1906 x[0][1] = 1;
1907 break;
1908 case OP_NOTRISEFALL:
1909 x[1][1] = 1;
1910 x[0][0] = 1;
1911 break;
1912 }
1913
1914 /* Transpose the pattern if the condition is negated. */
1915 if (neg) {
1916 size_t i, j;
1917 int tmp;
1918
1919 for (i = 0; i < 2; i++) {
1920 for (j = 0; j < 2; j++) {
1921 tmp = x[i][j];
1922 x[i][j] = x[1 - i][1 - j];
1923 x[1 - i][1 - j] = tmp;
1924 }
1925 }
1926 }
1927
1928 /* Update the LUT mask with the function's condition. */
1929 for (bitidx = 0; bitidx < 16; bitidx++) {
1930 a = (bitidx & BIT(2 * index + 0)) ? 1 : 0;
1931 b = (bitidx & BIT(2 * index + 1)) ? 1 : 0;
1932
1933 aset = (*mask & BIT(bitidx)) ? 1 : 0;
1934 bset = x[b][a];
1935
1936 if (func == FUNC_AND || func == FUNC_NAND)
1937 rset = aset & bset;
1938 else if (func == FUNC_OR || func == FUNC_NOR)
1939 rset = aset | bset;
1940 else if (func == FUNC_XOR || func == FUNC_NXOR)
1941 rset = aset ^ bset;
1942 else
1943 rset = 0;
1944
1945 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1946 rset = 1 - rset;
1947
1948 if (rset)
1949 *mask |= BIT(bitidx);
1950 else
1951 *mask &= ~BIT(bitidx);
1952 }
1953}
1954
1955/*
1956 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1957 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1958 * set at any time, but a full mask and value can be set (0/1).
1959 */
1960SR_PRIV int sigma_build_basic_trigger(struct dev_context *devc,
1961 struct triggerlut *lut)
1962{
1963 uint16_t masks[2];
1964 size_t bitidx, condidx;
1965 uint16_t value, mask;
1966
1967 /* Setup something that "won't match" in the absence of a spec. */
1968 memset(lut, 0, sizeof(*lut));
1969 if (!devc->use_triggers)
1970 return SR_OK;
1971
1972 /* Start assuming simple triggers. Edges are handled below. */
1973 lut->m4 = 0xa000;
1974 lut->m3q = 0xffff;
1975
1976 /* Process value/mask triggers. */
1977 value = devc->trigger.simplevalue;
1978 mask = devc->trigger.simplemask;
1979 build_lut_entry(lut->m2d, value, mask);
1980
1981 /* Scan for and process rise/fall triggers. */
1982 memset(&masks, 0, sizeof(masks));
1983 condidx = 0;
1984 for (bitidx = 0; bitidx < 16; bitidx++) {
1985 mask = BIT(bitidx);
1986 value = devc->trigger.risingmask | devc->trigger.fallingmask;
1987 if (!(value & mask))
1988 continue;
1989 if (condidx == 0)
1990 build_lut_entry(lut->m0d, mask, mask);
1991 if (condidx == 1)
1992 build_lut_entry(lut->m1d, mask, mask);
1993 masks[condidx++] = mask;
1994 if (condidx == ARRAY_SIZE(masks))
1995 break;
1996 }
1997
1998 /* Add glue logic for rise/fall triggers. */
1999 if (masks[0] || masks[1]) {
2000 lut->m3q = 0;
2001 if (masks[0] & devc->trigger.risingmask)
2002 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3q);
2003 if (masks[0] & devc->trigger.fallingmask)
2004 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3q);
2005 if (masks[1] & devc->trigger.risingmask)
2006 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3q);
2007 if (masks[1] & devc->trigger.fallingmask)
2008 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3q);
2009 }
2010
2011 /* Triggertype: event. */
2012 lut->params.selres = TRGSEL_SELCODE_NEVER;
2013 lut->params.selinc = TRGSEL_SELCODE_LEVEL;
2014 lut->params.sela = 0; /* Counter >= CMPA && LEVEL */
2015 lut->params.cmpa = 0; /* Count 0 -> 1 already triggers. */
2016
2017 return SR_OK;
2018}