]> sigrok.org Git - libsigrok.git/blame_incremental - src/hardware/asix-sigma/asix-sigma.c
Java: Remove explicit constructor deletes since SWIG 2 doesn't like them
[libsigrok.git] / src / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <config.h>
27#include <glib.h>
28#include <glib/gstdio.h>
29#include <ftdi.h>
30#include <string.h>
31#include <unistd.h>
32#include <libsigrok/libsigrok.h>
33#include "libsigrok-internal.h"
34#include "asix-sigma.h"
35
36#define USB_VENDOR 0xa600
37#define USB_PRODUCT 0xa000
38#define USB_DESCRIPTION "ASIX SIGMA"
39#define USB_VENDOR_NAME "ASIX"
40#define USB_MODEL_NAME "SIGMA"
41
42SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
44
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
51static const uint64_t samplerates[] = {
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
62};
63
64/*
65 * Channel numbers seem to go from 1-16, according to this image:
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
69static const char *channel_names[] = {
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
72};
73
74static const uint32_t drvopts[] = {
75 SR_CONF_LOGIC_ANALYZER,
76};
77
78static const uint32_t devopts[] = {
79 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
80 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
81 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
82 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
83 SR_CONF_CAPTURE_RATIO | SR_CONF_GET | SR_CONF_SET,
84};
85
86static const int32_t trigger_matches[] = {
87 SR_TRIGGER_ZERO,
88 SR_TRIGGER_ONE,
89 SR_TRIGGER_RISING,
90 SR_TRIGGER_FALLING,
91};
92
93static const char sigma_firmware_files[][24] = {
94 /* 50 MHz, supports 8 bit fractions */
95 "asix-sigma-50.fw",
96 /* 100 MHz */
97 "asix-sigma-100.fw",
98 /* 200 MHz */
99 "asix-sigma-200.fw",
100 /* Synchronous clock from pin */
101 "asix-sigma-50sync.fw",
102 /* Frequency counter */
103 "asix-sigma-phasor.fw",
104};
105
106static int sigma_read(void *buf, size_t size, struct dev_context *devc)
107{
108 int ret;
109
110 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
111 if (ret < 0) {
112 sr_err("ftdi_read_data failed: %s",
113 ftdi_get_error_string(&devc->ftdic));
114 }
115
116 return ret;
117}
118
119static int sigma_write(void *buf, size_t size, struct dev_context *devc)
120{
121 int ret;
122
123 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
124 if (ret < 0) {
125 sr_err("ftdi_write_data failed: %s",
126 ftdi_get_error_string(&devc->ftdic));
127 } else if ((size_t) ret != size) {
128 sr_err("ftdi_write_data did not complete write.");
129 }
130
131 return ret;
132}
133
134/*
135 * NOTE: We chose the buffer size to be large enough to hold any write to the
136 * device. We still print a message just in case.
137 */
138static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
139 struct dev_context *devc)
140{
141 size_t i;
142 uint8_t buf[80];
143 int idx = 0;
144
145 if ((len + 2) > sizeof(buf)) {
146 sr_err("Attempted to write %zu bytes, but buffer is too small.",
147 len + 2);
148 return SR_ERR_BUG;
149 }
150
151 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
152 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
153
154 for (i = 0; i < len; ++i) {
155 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
156 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
157 }
158
159 return sigma_write(buf, idx, devc);
160}
161
162static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
163{
164 return sigma_write_register(reg, &value, 1, devc);
165}
166
167static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
168 struct dev_context *devc)
169{
170 uint8_t buf[3];
171
172 buf[0] = REG_ADDR_LOW | (reg & 0xf);
173 buf[1] = REG_ADDR_HIGH | (reg >> 4);
174 buf[2] = REG_READ_ADDR;
175
176 sigma_write(buf, sizeof(buf), devc);
177
178 return sigma_read(data, len, devc);
179}
180
181static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
182{
183 uint8_t value;
184
185 if (1 != sigma_read_register(reg, &value, 1, devc)) {
186 sr_err("sigma_get_register: 1 byte expected");
187 return 0;
188 }
189
190 return value;
191}
192
193static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
194 struct dev_context *devc)
195{
196 uint8_t buf[] = {
197 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
198
199 REG_READ_ADDR | NEXT_REG,
200 REG_READ_ADDR | NEXT_REG,
201 REG_READ_ADDR | NEXT_REG,
202 REG_READ_ADDR | NEXT_REG,
203 REG_READ_ADDR | NEXT_REG,
204 REG_READ_ADDR | NEXT_REG,
205 };
206 uint8_t result[6];
207
208 sigma_write(buf, sizeof(buf), devc);
209
210 sigma_read(result, sizeof(result), devc);
211
212 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
213 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
214
215 /* Not really sure why this must be done, but according to spec. */
216 if ((--*stoppos & 0x1ff) == 0x1ff)
217 *stoppos -= 64;
218
219 if ((*--triggerpos & 0x1ff) == 0x1ff)
220 *triggerpos -= 64;
221
222 return 1;
223}
224
225static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
226 uint8_t *data, struct dev_context *devc)
227{
228 size_t i;
229 uint8_t buf[4096];
230 int idx = 0;
231
232 /* Send the startchunk. Index start with 1. */
233 buf[0] = startchunk >> 8;
234 buf[1] = startchunk & 0xff;
235 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
236
237 /* Read the DRAM. */
238 buf[idx++] = REG_DRAM_BLOCK;
239 buf[idx++] = REG_DRAM_WAIT_ACK;
240
241 for (i = 0; i < numchunks; ++i) {
242 /* Alternate bit to copy from DRAM to cache. */
243 if (i != (numchunks - 1))
244 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
245
246 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
247
248 if (i != (numchunks - 1))
249 buf[idx++] = REG_DRAM_WAIT_ACK;
250 }
251
252 sigma_write(buf, idx, devc);
253
254 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
255}
256
257/* Upload trigger look-up tables to Sigma. */
258static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
259{
260 int i;
261 uint8_t tmp[2];
262 uint16_t bit;
263
264 /* Transpose the table and send to Sigma. */
265 for (i = 0; i < 16; ++i) {
266 bit = 1 << i;
267
268 tmp[0] = tmp[1] = 0;
269
270 if (lut->m2d[0] & bit)
271 tmp[0] |= 0x01;
272 if (lut->m2d[1] & bit)
273 tmp[0] |= 0x02;
274 if (lut->m2d[2] & bit)
275 tmp[0] |= 0x04;
276 if (lut->m2d[3] & bit)
277 tmp[0] |= 0x08;
278
279 if (lut->m3 & bit)
280 tmp[0] |= 0x10;
281 if (lut->m3s & bit)
282 tmp[0] |= 0x20;
283 if (lut->m4 & bit)
284 tmp[0] |= 0x40;
285
286 if (lut->m0d[0] & bit)
287 tmp[1] |= 0x01;
288 if (lut->m0d[1] & bit)
289 tmp[1] |= 0x02;
290 if (lut->m0d[2] & bit)
291 tmp[1] |= 0x04;
292 if (lut->m0d[3] & bit)
293 tmp[1] |= 0x08;
294
295 if (lut->m1d[0] & bit)
296 tmp[1] |= 0x10;
297 if (lut->m1d[1] & bit)
298 tmp[1] |= 0x20;
299 if (lut->m1d[2] & bit)
300 tmp[1] |= 0x40;
301 if (lut->m1d[3] & bit)
302 tmp[1] |= 0x80;
303
304 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
305 devc);
306 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
307 }
308
309 /* Send the parameters */
310 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
311 sizeof(lut->params), devc);
312
313 return SR_OK;
314}
315
316static void clear_helper(void *priv)
317{
318 struct dev_context *devc;
319
320 devc = priv;
321
322 ftdi_deinit(&devc->ftdic);
323}
324
325static int dev_clear(const struct sr_dev_driver *di)
326{
327 return std_dev_clear(di, clear_helper);
328}
329
330static int init(struct sr_dev_driver *di, struct sr_context *sr_ctx)
331{
332 return std_init(sr_ctx, di, LOG_PREFIX);
333}
334
335static GSList *scan(struct sr_dev_driver *di, GSList *options)
336{
337 struct sr_dev_inst *sdi;
338 struct drv_context *drvc;
339 struct dev_context *devc;
340 GSList *devices;
341 struct ftdi_device_list *devlist;
342 char serial_txt[10];
343 uint32_t serial;
344 int ret;
345 unsigned int i;
346
347 (void)options;
348
349 drvc = di->context;
350
351 devices = NULL;
352
353 devc = g_malloc0(sizeof(struct dev_context));
354
355 ftdi_init(&devc->ftdic);
356
357 /* Look for SIGMAs. */
358
359 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
360 USB_VENDOR, USB_PRODUCT)) <= 0) {
361 if (ret < 0)
362 sr_err("ftdi_usb_find_all(): %d", ret);
363 goto free;
364 }
365
366 /* Make sure it's a version 1 or 2 SIGMA. */
367 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
368 serial_txt, sizeof(serial_txt));
369 sscanf(serial_txt, "%x", &serial);
370
371 if (serial < 0xa6010000 || serial > 0xa602ffff) {
372 sr_err("Only SIGMA and SIGMA2 are supported "
373 "in this version of libsigrok.");
374 goto free;
375 }
376
377 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
378
379 devc->cur_samplerate = samplerates[0];
380 devc->period_ps = 0;
381 devc->limit_msec = 0;
382 devc->cur_firmware = -1;
383 devc->num_channels = 0;
384 devc->samples_per_event = 0;
385 devc->capture_ratio = 50;
386 devc->use_triggers = 0;
387
388 /* Register SIGMA device. */
389 sdi = g_malloc0(sizeof(struct sr_dev_inst));
390 sdi->status = SR_ST_INITIALIZING;
391 sdi->vendor = g_strdup(USB_VENDOR_NAME);
392 sdi->model = g_strdup(USB_MODEL_NAME);
393 sdi->driver = di;
394
395 for (i = 0; i < ARRAY_SIZE(channel_names); i++)
396 sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE, channel_names[i]);
397
398 devices = g_slist_append(devices, sdi);
399 drvc->instances = g_slist_append(drvc->instances, sdi);
400 sdi->priv = devc;
401
402 /* We will open the device again when we need it. */
403 ftdi_list_free(&devlist);
404
405 return devices;
406
407free:
408 ftdi_deinit(&devc->ftdic);
409 g_free(devc);
410 return NULL;
411}
412
413static GSList *dev_list(const struct sr_dev_driver *di)
414{
415 return ((struct drv_context *)(di->context))->instances;
416}
417
418/*
419 * Configure the FPGA for bitbang mode.
420 * This sequence is documented in section 2. of the ASIX Sigma programming
421 * manual. This sequence is necessary to configure the FPGA in the Sigma
422 * into Bitbang mode, in which it can be programmed with the firmware.
423 */
424static int sigma_fpga_init_bitbang(struct dev_context *devc)
425{
426 uint8_t suicide[] = {
427 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
428 };
429 uint8_t init_array[] = {
430 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
431 0x01, 0x01,
432 };
433 int i, ret, timeout = (10 * 1000);
434 uint8_t data;
435
436 /* Section 2. part 1), do the FPGA suicide. */
437 sigma_write(suicide, sizeof(suicide), devc);
438 sigma_write(suicide, sizeof(suicide), devc);
439 sigma_write(suicide, sizeof(suicide), devc);
440 sigma_write(suicide, sizeof(suicide), devc);
441
442 /* Section 2. part 2), do pulse on D1. */
443 sigma_write(init_array, sizeof(init_array), devc);
444 ftdi_usb_purge_buffers(&devc->ftdic);
445
446 /* Wait until the FPGA asserts D6/INIT_B. */
447 for (i = 0; i < timeout; i++) {
448 ret = sigma_read(&data, 1, devc);
449 if (ret < 0)
450 return ret;
451 /* Test if pin D6 got asserted. */
452 if (data & (1 << 5))
453 return 0;
454 /* The D6 was not asserted yet, wait a bit. */
455 g_usleep(10 * 1000);
456 }
457
458 return SR_ERR_TIMEOUT;
459}
460
461/*
462 * Configure the FPGA for logic-analyzer mode.
463 */
464static int sigma_fpga_init_la(struct dev_context *devc)
465{
466 /* Initialize the logic analyzer mode. */
467 uint8_t logic_mode_start[] = {
468 REG_ADDR_LOW | (READ_ID & 0xf),
469 REG_ADDR_HIGH | (READ_ID >> 8),
470 REG_READ_ADDR, /* Read ID register. */
471
472 REG_ADDR_LOW | (WRITE_TEST & 0xf),
473 REG_DATA_LOW | 0x5,
474 REG_DATA_HIGH_WRITE | 0x5,
475 REG_READ_ADDR, /* Read scratch register. */
476
477 REG_DATA_LOW | 0xa,
478 REG_DATA_HIGH_WRITE | 0xa,
479 REG_READ_ADDR, /* Read scratch register. */
480
481 REG_ADDR_LOW | (WRITE_MODE & 0xf),
482 REG_DATA_LOW | 0x0,
483 REG_DATA_HIGH_WRITE | 0x8,
484 };
485
486 uint8_t result[3];
487 int ret;
488
489 /* Initialize the logic analyzer mode. */
490 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
491
492 /* Expect a 3 byte reply since we issued three READ requests. */
493 ret = sigma_read(result, 3, devc);
494 if (ret != 3)
495 goto err;
496
497 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
498 goto err;
499
500 return SR_OK;
501err:
502 sr_err("Configuration failed. Invalid reply received.");
503 return SR_ERR;
504}
505
506/*
507 * Read the firmware from a file and transform it into a series of bitbang
508 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
509 * by the caller of this function.
510 */
511static int sigma_fw_2_bitbang(struct sr_context *ctx, const char *name,
512 uint8_t **bb_cmd, gsize *bb_cmd_size)
513{
514 size_t i, file_size, bb_size;
515 char *firmware;
516 uint8_t *bb_stream, *bbs;
517 uint32_t imm;
518 int bit, v;
519 int ret = SR_OK;
520
521 firmware = sr_resource_load(ctx, SR_RESOURCE_FIRMWARE,
522 name, &file_size, 256 * 1024);
523 if (!firmware)
524 return SR_ERR;
525
526 /* Weird magic transformation below, I have no idea what it does. */
527 imm = 0x3f6df2ab;
528 for (i = 0; i < file_size; i++) {
529 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
530 firmware[i] ^= imm & 0xff;
531 }
532
533 /*
534 * Now that the firmware is "transformed", we will transcribe the
535 * firmware blob into a sequence of toggles of the Dx wires. This
536 * sequence will be fed directly into the Sigma, which must be in
537 * the FPGA bitbang programming mode.
538 */
539
540 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
541 bb_size = file_size * 8 * 2;
542 bb_stream = (uint8_t *)g_try_malloc(bb_size);
543 if (!bb_stream) {
544 sr_err("%s: Failed to allocate bitbang stream", __func__);
545 ret = SR_ERR_MALLOC;
546 goto exit;
547 }
548
549 bbs = bb_stream;
550 for (i = 0; i < file_size; i++) {
551 for (bit = 7; bit >= 0; bit--) {
552 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
553 *bbs++ = v | 0x01;
554 *bbs++ = v;
555 }
556 }
557
558 /* The transformation completed successfully, return the result. */
559 *bb_cmd = bb_stream;
560 *bb_cmd_size = bb_size;
561
562exit:
563 g_free(firmware);
564 return ret;
565}
566
567static int upload_firmware(struct sr_context *ctx,
568 int firmware_idx, struct dev_context *devc)
569{
570 int ret;
571 unsigned char *buf;
572 unsigned char pins;
573 size_t buf_size;
574 const char *firmware = sigma_firmware_files[firmware_idx];
575 struct ftdi_context *ftdic = &devc->ftdic;
576
577 /* Make sure it's an ASIX SIGMA. */
578 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
579 USB_DESCRIPTION, NULL);
580 if (ret < 0) {
581 sr_err("ftdi_usb_open failed: %s",
582 ftdi_get_error_string(ftdic));
583 return 0;
584 }
585
586 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
587 if (ret < 0) {
588 sr_err("ftdi_set_bitmode failed: %s",
589 ftdi_get_error_string(ftdic));
590 return 0;
591 }
592
593 /* Four times the speed of sigmalogan - Works well. */
594 ret = ftdi_set_baudrate(ftdic, 750 * 1000);
595 if (ret < 0) {
596 sr_err("ftdi_set_baudrate failed: %s",
597 ftdi_get_error_string(ftdic));
598 return 0;
599 }
600
601 /* Initialize the FPGA for firmware upload. */
602 ret = sigma_fpga_init_bitbang(devc);
603 if (ret)
604 return ret;
605
606 /* Prepare firmware. */
607 ret = sigma_fw_2_bitbang(ctx, firmware, &buf, &buf_size);
608 if (ret != SR_OK) {
609 sr_err("An error occurred while reading the firmware: %s",
610 firmware);
611 return ret;
612 }
613
614 /* Upload firmware. */
615 sr_info("Uploading firmware file '%s'.", firmware);
616 sigma_write(buf, buf_size, devc);
617
618 g_free(buf);
619
620 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
621 if (ret < 0) {
622 sr_err("ftdi_set_bitmode failed: %s",
623 ftdi_get_error_string(ftdic));
624 return SR_ERR;
625 }
626
627 ftdi_usb_purge_buffers(ftdic);
628
629 /* Discard garbage. */
630 while (sigma_read(&pins, 1, devc) == 1)
631 ;
632
633 /* Initialize the FPGA for logic-analyzer mode. */
634 ret = sigma_fpga_init_la(devc);
635 if (ret != SR_OK)
636 return ret;
637
638 devc->cur_firmware = firmware_idx;
639
640 sr_info("Firmware uploaded.");
641
642 return SR_OK;
643}
644
645static int dev_open(struct sr_dev_inst *sdi)
646{
647 struct dev_context *devc;
648 int ret;
649
650 devc = sdi->priv;
651
652 /* Make sure it's an ASIX SIGMA. */
653 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
654 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
655
656 sr_err("ftdi_usb_open failed: %s",
657 ftdi_get_error_string(&devc->ftdic));
658
659 return 0;
660 }
661
662 sdi->status = SR_ST_ACTIVE;
663
664 return SR_OK;
665}
666
667static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
668{
669 struct dev_context *devc;
670 struct drv_context *drvc;
671 unsigned int i;
672 int ret;
673
674 devc = sdi->priv;
675 drvc = sdi->driver->context;
676 ret = SR_OK;
677
678 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
679 if (samplerates[i] == samplerate)
680 break;
681 }
682 if (samplerates[i] == 0)
683 return SR_ERR_SAMPLERATE;
684
685 if (samplerate <= SR_MHZ(50)) {
686 ret = upload_firmware(drvc->sr_ctx, 0, devc);
687 devc->num_channels = 16;
688 } else if (samplerate == SR_MHZ(100)) {
689 ret = upload_firmware(drvc->sr_ctx, 1, devc);
690 devc->num_channels = 8;
691 } else if (samplerate == SR_MHZ(200)) {
692 ret = upload_firmware(drvc->sr_ctx, 2, devc);
693 devc->num_channels = 4;
694 }
695
696 if (ret == SR_OK) {
697 devc->cur_samplerate = samplerate;
698 devc->period_ps = 1000000000000ULL / samplerate;
699 devc->samples_per_event = 16 / devc->num_channels;
700 devc->state.state = SIGMA_IDLE;
701 }
702
703 return ret;
704}
705
706/*
707 * In 100 and 200 MHz mode, only a single pin rising/falling can be
708 * set as trigger. In other modes, two rising/falling triggers can be set,
709 * in addition to value/mask trigger for any number of channels.
710 *
711 * The Sigma supports complex triggers using boolean expressions, but this
712 * has not been implemented yet.
713 */
714static int convert_trigger(const struct sr_dev_inst *sdi)
715{
716 struct dev_context *devc;
717 struct sr_trigger *trigger;
718 struct sr_trigger_stage *stage;
719 struct sr_trigger_match *match;
720 const GSList *l, *m;
721 int channelbit, trigger_set;
722
723 devc = sdi->priv;
724 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
725 if (!(trigger = sr_session_trigger_get(sdi->session)))
726 return SR_OK;
727
728 trigger_set = 0;
729 for (l = trigger->stages; l; l = l->next) {
730 stage = l->data;
731 for (m = stage->matches; m; m = m->next) {
732 match = m->data;
733 if (!match->channel->enabled)
734 /* Ignore disabled channels with a trigger. */
735 continue;
736 channelbit = 1 << (match->channel->index);
737 if (devc->cur_samplerate >= SR_MHZ(100)) {
738 /* Fast trigger support. */
739 if (trigger_set) {
740 sr_err("Only a single pin trigger is "
741 "supported in 100 and 200MHz mode.");
742 return SR_ERR;
743 }
744 if (match->match == SR_TRIGGER_FALLING)
745 devc->trigger.fallingmask |= channelbit;
746 else if (match->match == SR_TRIGGER_RISING)
747 devc->trigger.risingmask |= channelbit;
748 else {
749 sr_err("Only rising/falling trigger is "
750 "supported in 100 and 200MHz mode.");
751 return SR_ERR;
752 }
753
754 ++trigger_set;
755 } else {
756 /* Simple trigger support (event). */
757 if (match->match == SR_TRIGGER_ONE) {
758 devc->trigger.simplevalue |= channelbit;
759 devc->trigger.simplemask |= channelbit;
760 }
761 else if (match->match == SR_TRIGGER_ZERO) {
762 devc->trigger.simplevalue &= ~channelbit;
763 devc->trigger.simplemask |= channelbit;
764 }
765 else if (match->match == SR_TRIGGER_FALLING) {
766 devc->trigger.fallingmask |= channelbit;
767 ++trigger_set;
768 }
769 else if (match->match == SR_TRIGGER_RISING) {
770 devc->trigger.risingmask |= channelbit;
771 ++trigger_set;
772 }
773
774 /*
775 * Actually, Sigma supports 2 rising/falling triggers,
776 * but they are ORed and the current trigger syntax
777 * does not permit ORed triggers.
778 */
779 if (trigger_set > 1) {
780 sr_err("Only 1 rising/falling trigger "
781 "is supported.");
782 return SR_ERR;
783 }
784 }
785 }
786 }
787
788 return SR_OK;
789}
790
791static int dev_close(struct sr_dev_inst *sdi)
792{
793 struct dev_context *devc;
794
795 devc = sdi->priv;
796
797 /* TODO */
798 if (sdi->status == SR_ST_ACTIVE)
799 ftdi_usb_close(&devc->ftdic);
800
801 sdi->status = SR_ST_INACTIVE;
802
803 return SR_OK;
804}
805
806static int cleanup(const struct sr_dev_driver *di)
807{
808 return dev_clear(di);
809}
810
811static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
812 const struct sr_channel_group *cg)
813{
814 struct dev_context *devc;
815
816 (void)cg;
817
818 if (!sdi)
819 return SR_ERR;
820 devc = sdi->priv;
821
822 switch (key) {
823 case SR_CONF_SAMPLERATE:
824 *data = g_variant_new_uint64(devc->cur_samplerate);
825 break;
826 case SR_CONF_LIMIT_MSEC:
827 *data = g_variant_new_uint64(devc->limit_msec);
828 break;
829 case SR_CONF_CAPTURE_RATIO:
830 *data = g_variant_new_uint64(devc->capture_ratio);
831 break;
832 default:
833 return SR_ERR_NA;
834 }
835
836 return SR_OK;
837}
838
839static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
840 const struct sr_channel_group *cg)
841{
842 struct dev_context *devc;
843 uint64_t tmp;
844 int ret;
845
846 (void)cg;
847
848 if (sdi->status != SR_ST_ACTIVE)
849 return SR_ERR_DEV_CLOSED;
850
851 devc = sdi->priv;
852
853 ret = SR_OK;
854 switch (key) {
855 case SR_CONF_SAMPLERATE:
856 ret = set_samplerate(sdi, g_variant_get_uint64(data));
857 break;
858 case SR_CONF_LIMIT_MSEC:
859 tmp = g_variant_get_uint64(data);
860 if (tmp > 0)
861 devc->limit_msec = g_variant_get_uint64(data);
862 else
863 ret = SR_ERR;
864 break;
865 case SR_CONF_LIMIT_SAMPLES:
866 tmp = g_variant_get_uint64(data);
867 devc->limit_msec = tmp * 1000 / devc->cur_samplerate;
868 break;
869 case SR_CONF_CAPTURE_RATIO:
870 tmp = g_variant_get_uint64(data);
871 if (tmp <= 100)
872 devc->capture_ratio = tmp;
873 else
874 ret = SR_ERR;
875 break;
876 default:
877 ret = SR_ERR_NA;
878 }
879
880 return ret;
881}
882
883static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
884 const struct sr_channel_group *cg)
885{
886 GVariant *gvar;
887 GVariantBuilder gvb;
888
889 (void)cg;
890
891 switch (key) {
892 case SR_CONF_DEVICE_OPTIONS:
893 if (!sdi)
894 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
895 drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
896 else
897 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
898 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
899 break;
900 case SR_CONF_SAMPLERATE:
901 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
902 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
903 ARRAY_SIZE(samplerates), sizeof(uint64_t));
904 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
905 *data = g_variant_builder_end(&gvb);
906 break;
907 case SR_CONF_TRIGGER_MATCH:
908 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
909 trigger_matches, ARRAY_SIZE(trigger_matches),
910 sizeof(int32_t));
911 break;
912 default:
913 return SR_ERR_NA;
914 }
915
916 return SR_OK;
917}
918
919/* Software trigger to determine exact trigger position. */
920static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
921 struct sigma_trigger *t)
922{
923 int i;
924 uint16_t sample = 0;
925
926 for (i = 0; i < 8; ++i) {
927 if (i > 0)
928 last_sample = sample;
929 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
930
931 /* Simple triggers. */
932 if ((sample & t->simplemask) != t->simplevalue)
933 continue;
934
935 /* Rising edge. */
936 if (((last_sample & t->risingmask) != 0) ||
937 ((sample & t->risingmask) != t->risingmask))
938 continue;
939
940 /* Falling edge. */
941 if ((last_sample & t->fallingmask) != t->fallingmask ||
942 (sample & t->fallingmask) != 0)
943 continue;
944
945 break;
946 }
947
948 /* If we did not match, return original trigger pos. */
949 return i & 0x7;
950}
951
952/*
953 * Return the timestamp of "DRAM cluster".
954 */
955static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
956{
957 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
958}
959
960static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
961 unsigned int events_in_cluster,
962 unsigned int triggered,
963 struct sr_dev_inst *sdi)
964{
965 struct dev_context *devc = sdi->priv;
966 struct sigma_state *ss = &devc->state;
967 struct sr_datafeed_packet packet;
968 struct sr_datafeed_logic logic;
969 uint16_t tsdiff, ts;
970 uint8_t samples[2048];
971 unsigned int i;
972
973 ts = sigma_dram_cluster_ts(dram_cluster);
974 tsdiff = ts - ss->lastts;
975 ss->lastts = ts;
976
977 packet.type = SR_DF_LOGIC;
978 packet.payload = &logic;
979 logic.unitsize = 2;
980 logic.data = samples;
981
982 /*
983 * First of all, send Sigrok a copy of the last sample from
984 * previous cluster as many times as needed to make up for
985 * the differential characteristics of data we get from the
986 * Sigma. Sigrok needs one sample of data per period.
987 *
988 * One DRAM cluster contains a timestamp and seven samples,
989 * the units of timestamp are "devc->period_ps" , the first
990 * sample in the cluster happens at the time of the timestamp
991 * and the remaining samples happen at timestamp +1...+6 .
992 */
993 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
994 i = ts % 1024;
995 samples[2 * i + 0] = ss->lastsample & 0xff;
996 samples[2 * i + 1] = ss->lastsample >> 8;
997
998 /*
999 * If we have 1024 samples ready or we're at the
1000 * end of submitting the padding samples, submit
1001 * the packet to Sigrok.
1002 */
1003 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
1004 logic.length = (i + 1) * logic.unitsize;
1005 sr_session_send(sdi, &packet);
1006 }
1007 }
1008
1009 /*
1010 * Parse the samples in current cluster and prepare them
1011 * to be submitted to Sigrok.
1012 */
1013 for (i = 0; i < events_in_cluster; i++) {
1014 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
1015 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
1016 }
1017
1018 /* Send data up to trigger point (if triggered). */
1019 int trigger_offset = 0;
1020 if (triggered) {
1021 /*
1022 * Trigger is not always accurate to sample because of
1023 * pipeline delay. However, it always triggers before
1024 * the actual event. We therefore look at the next
1025 * samples to pinpoint the exact position of the trigger.
1026 */
1027 trigger_offset = get_trigger_offset(samples,
1028 ss->lastsample, &devc->trigger);
1029
1030 if (trigger_offset > 0) {
1031 packet.type = SR_DF_LOGIC;
1032 logic.length = trigger_offset * logic.unitsize;
1033 sr_session_send(sdi, &packet);
1034 events_in_cluster -= trigger_offset;
1035 }
1036
1037 /* Only send trigger if explicitly enabled. */
1038 if (devc->use_triggers) {
1039 packet.type = SR_DF_TRIGGER;
1040 sr_session_send(sdi, &packet);
1041 }
1042 }
1043
1044 if (events_in_cluster > 0) {
1045 packet.type = SR_DF_LOGIC;
1046 logic.length = events_in_cluster * logic.unitsize;
1047 logic.data = samples + (trigger_offset * logic.unitsize);
1048 sr_session_send(sdi, &packet);
1049 }
1050
1051 ss->lastsample =
1052 samples[2 * (events_in_cluster - 1) + 0] |
1053 (samples[2 * (events_in_cluster - 1) + 1] << 8);
1054
1055}
1056
1057/*
1058 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1059 * Each event is 20ns apart, and can contain multiple samples.
1060 *
1061 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1062 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1063 * For 50 MHz and below, events contain one sample for each channel,
1064 * spread 20 ns apart.
1065 */
1066static int decode_chunk_ts(struct sigma_dram_line *dram_line,
1067 uint16_t events_in_line,
1068 uint32_t trigger_event,
1069 struct sr_dev_inst *sdi)
1070{
1071 struct sigma_dram_cluster *dram_cluster;
1072 struct dev_context *devc = sdi->priv;
1073 unsigned int clusters_in_line =
1074 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
1075 unsigned int events_in_cluster;
1076 unsigned int i;
1077 uint32_t trigger_cluster = ~0, triggered = 0;
1078
1079 /* Check if trigger is in this chunk. */
1080 if (trigger_event < (64 * 7)) {
1081 if (devc->cur_samplerate <= SR_MHZ(50)) {
1082 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1083 trigger_event);
1084 }
1085
1086 /* Find in which cluster the trigger occurred. */
1087 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
1088 }
1089
1090 /* For each full DRAM cluster. */
1091 for (i = 0; i < clusters_in_line; i++) {
1092 dram_cluster = &dram_line->cluster[i];
1093
1094 /* The last cluster might not be full. */
1095 if ((i == clusters_in_line - 1) &&
1096 (events_in_line % EVENTS_PER_CLUSTER)) {
1097 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
1098 } else {
1099 events_in_cluster = EVENTS_PER_CLUSTER;
1100 }
1101
1102 triggered = (i == trigger_cluster);
1103 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1104 triggered, sdi);
1105 }
1106
1107 return SR_OK;
1108}
1109
1110static int download_capture(struct sr_dev_inst *sdi)
1111{
1112 struct dev_context *devc = sdi->priv;
1113 const uint32_t chunks_per_read = 32;
1114 struct sigma_dram_line *dram_line;
1115 int bufsz;
1116 uint32_t stoppos, triggerpos;
1117 struct sr_datafeed_packet packet;
1118 uint8_t modestatus;
1119
1120 uint32_t i;
1121 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
1122 uint32_t dl_events_in_line = 64 * 7;
1123 uint32_t trg_line = ~0, trg_event = ~0;
1124
1125 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1126 if (!dram_line)
1127 return FALSE;
1128
1129 sr_info("Downloading sample data.");
1130
1131 /* Stop acquisition. */
1132 sigma_set_register(WRITE_MODE, 0x11, devc);
1133
1134 /* Set SDRAM Read Enable. */
1135 sigma_set_register(WRITE_MODE, 0x02, devc);
1136
1137 /* Get the current position. */
1138 sigma_read_pos(&stoppos, &triggerpos, devc);
1139
1140 /* Check if trigger has fired. */
1141 modestatus = sigma_get_register(READ_MODE, devc);
1142 if (modestatus & 0x20) {
1143 trg_line = triggerpos >> 9;
1144 trg_event = triggerpos & 0x1ff;
1145 }
1146
1147 /*
1148 * Determine how many 1024b "DRAM lines" do we need to read from the
1149 * Sigma so we have a complete set of samples. Note that the last
1150 * line can be only partial, containing less than 64 clusters.
1151 */
1152 dl_lines_total = (stoppos >> 9) + 1;
1153
1154 dl_lines_done = 0;
1155
1156 while (dl_lines_total > dl_lines_done) {
1157 /* We can download only up-to 32 DRAM lines in one go! */
1158 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
1159
1160 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
1161 (uint8_t *)dram_line, devc);
1162 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1163 (void)bufsz;
1164
1165 /* This is the first DRAM line, so find the initial timestamp. */
1166 if (dl_lines_done == 0) {
1167 devc->state.lastts =
1168 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
1169 devc->state.lastsample = 0;
1170 }
1171
1172 for (i = 0; i < dl_lines_curr; i++) {
1173 uint32_t trigger_event = ~0;
1174 /* The last "DRAM line" can be only partially full. */
1175 if (dl_lines_done + i == dl_lines_total - 1)
1176 dl_events_in_line = stoppos & 0x1ff;
1177
1178 /* Test if the trigger happened on this line. */
1179 if (dl_lines_done + i == trg_line)
1180 trigger_event = trg_event;
1181
1182 decode_chunk_ts(dram_line + i, dl_events_in_line,
1183 trigger_event, sdi);
1184 }
1185
1186 dl_lines_done += dl_lines_curr;
1187 }
1188
1189 /* All done. */
1190 packet.type = SR_DF_END;
1191 sr_session_send(sdi, &packet);
1192
1193 dev_acquisition_stop(sdi, sdi);
1194
1195 g_free(dram_line);
1196
1197 return TRUE;
1198}
1199
1200/*
1201 * Handle the Sigma when in CAPTURE mode. This function checks:
1202 * - Sampling time ended
1203 * - DRAM capacity overflow
1204 * This function triggers download of the samples from Sigma
1205 * in case either of the above conditions is true.
1206 */
1207static int sigma_capture_mode(struct sr_dev_inst *sdi)
1208{
1209 struct dev_context *devc = sdi->priv;
1210
1211 uint64_t running_msec;
1212 struct timeval tv;
1213
1214 uint32_t stoppos, triggerpos;
1215
1216 /* Check if the selected sampling duration passed. */
1217 gettimeofday(&tv, 0);
1218 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1219 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1220 if (running_msec >= devc->limit_msec)
1221 return download_capture(sdi);
1222
1223 /* Get the position in DRAM to which the FPGA is writing now. */
1224 sigma_read_pos(&stoppos, &triggerpos, devc);
1225 /* Test if DRAM is full and if so, download the data. */
1226 if ((stoppos >> 9) == 32767)
1227 return download_capture(sdi);
1228
1229 return TRUE;
1230}
1231
1232static int receive_data(int fd, int revents, void *cb_data)
1233{
1234 struct sr_dev_inst *sdi;
1235 struct dev_context *devc;
1236
1237 (void)fd;
1238 (void)revents;
1239
1240 sdi = cb_data;
1241 devc = sdi->priv;
1242
1243 if (devc->state.state == SIGMA_IDLE)
1244 return TRUE;
1245
1246 if (devc->state.state == SIGMA_CAPTURE)
1247 return sigma_capture_mode(sdi);
1248
1249 return TRUE;
1250}
1251
1252/* Build a LUT entry used by the trigger functions. */
1253static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1254{
1255 int i, j, k, bit;
1256
1257 /* For each quad channel. */
1258 for (i = 0; i < 4; ++i) {
1259 entry[i] = 0xffff;
1260
1261 /* For each bit in LUT. */
1262 for (j = 0; j < 16; ++j)
1263
1264 /* For each channel in quad. */
1265 for (k = 0; k < 4; ++k) {
1266 bit = 1 << (i * 4 + k);
1267
1268 /* Set bit in entry */
1269 if ((mask & bit) &&
1270 ((!(value & bit)) !=
1271 (!(j & (1 << k)))))
1272 entry[i] &= ~(1 << j);
1273 }
1274 }
1275}
1276
1277/* Add a logical function to LUT mask. */
1278static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1279 int index, int neg, uint16_t *mask)
1280{
1281 int i, j;
1282 int x[2][2], tmp, a, b, aset, bset, rset;
1283
1284 memset(x, 0, 4 * sizeof(int));
1285
1286 /* Trigger detect condition. */
1287 switch (oper) {
1288 case OP_LEVEL:
1289 x[0][1] = 1;
1290 x[1][1] = 1;
1291 break;
1292 case OP_NOT:
1293 x[0][0] = 1;
1294 x[1][0] = 1;
1295 break;
1296 case OP_RISE:
1297 x[0][1] = 1;
1298 break;
1299 case OP_FALL:
1300 x[1][0] = 1;
1301 break;
1302 case OP_RISEFALL:
1303 x[0][1] = 1;
1304 x[1][0] = 1;
1305 break;
1306 case OP_NOTRISE:
1307 x[1][1] = 1;
1308 x[0][0] = 1;
1309 x[1][0] = 1;
1310 break;
1311 case OP_NOTFALL:
1312 x[1][1] = 1;
1313 x[0][0] = 1;
1314 x[0][1] = 1;
1315 break;
1316 case OP_NOTRISEFALL:
1317 x[1][1] = 1;
1318 x[0][0] = 1;
1319 break;
1320 }
1321
1322 /* Transpose if neg is set. */
1323 if (neg) {
1324 for (i = 0; i < 2; ++i) {
1325 for (j = 0; j < 2; ++j) {
1326 tmp = x[i][j];
1327 x[i][j] = x[1-i][1-j];
1328 x[1-i][1-j] = tmp;
1329 }
1330 }
1331 }
1332
1333 /* Update mask with function. */
1334 for (i = 0; i < 16; ++i) {
1335 a = (i >> (2 * index + 0)) & 1;
1336 b = (i >> (2 * index + 1)) & 1;
1337
1338 aset = (*mask >> i) & 1;
1339 bset = x[b][a];
1340
1341 rset = 0;
1342 if (func == FUNC_AND || func == FUNC_NAND)
1343 rset = aset & bset;
1344 else if (func == FUNC_OR || func == FUNC_NOR)
1345 rset = aset | bset;
1346 else if (func == FUNC_XOR || func == FUNC_NXOR)
1347 rset = aset ^ bset;
1348
1349 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1350 rset = !rset;
1351
1352 *mask &= ~(1 << i);
1353
1354 if (rset)
1355 *mask |= 1 << i;
1356 }
1357}
1358
1359/*
1360 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1361 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1362 * set at any time, but a full mask and value can be set (0/1).
1363 */
1364static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1365{
1366 int i,j;
1367 uint16_t masks[2] = { 0, 0 };
1368
1369 memset(lut, 0, sizeof(struct triggerlut));
1370
1371 /* Constant for simple triggers. */
1372 lut->m4 = 0xa000;
1373
1374 /* Value/mask trigger support. */
1375 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1376 lut->m2d);
1377
1378 /* Rise/fall trigger support. */
1379 for (i = 0, j = 0; i < 16; ++i) {
1380 if (devc->trigger.risingmask & (1 << i) ||
1381 devc->trigger.fallingmask & (1 << i))
1382 masks[j++] = 1 << i;
1383 }
1384
1385 build_lut_entry(masks[0], masks[0], lut->m0d);
1386 build_lut_entry(masks[1], masks[1], lut->m1d);
1387
1388 /* Add glue logic */
1389 if (masks[0] || masks[1]) {
1390 /* Transition trigger. */
1391 if (masks[0] & devc->trigger.risingmask)
1392 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1393 if (masks[0] & devc->trigger.fallingmask)
1394 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1395 if (masks[1] & devc->trigger.risingmask)
1396 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1397 if (masks[1] & devc->trigger.fallingmask)
1398 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1399 } else {
1400 /* Only value/mask trigger. */
1401 lut->m3 = 0xffff;
1402 }
1403
1404 /* Triggertype: event. */
1405 lut->params.selres = 3;
1406
1407 return SR_OK;
1408}
1409
1410static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1411{
1412 struct dev_context *devc;
1413 struct clockselect_50 clockselect;
1414 int frac, triggerpin, ret;
1415 uint8_t triggerselect = 0;
1416 struct triggerinout triggerinout_conf;
1417 struct triggerlut lut;
1418
1419 if (sdi->status != SR_ST_ACTIVE)
1420 return SR_ERR_DEV_CLOSED;
1421
1422 devc = sdi->priv;
1423
1424 if (convert_trigger(sdi) != SR_OK) {
1425 sr_err("Failed to configure triggers.");
1426 return SR_ERR;
1427 }
1428
1429 /* If the samplerate has not been set, default to 200 kHz. */
1430 if (devc->cur_firmware == -1) {
1431 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1432 return ret;
1433 }
1434
1435 /* Enter trigger programming mode. */
1436 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1437
1438 /* 100 and 200 MHz mode. */
1439 if (devc->cur_samplerate >= SR_MHZ(100)) {
1440 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1441
1442 /* Find which pin to trigger on from mask. */
1443 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1444 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1445 (1 << triggerpin))
1446 break;
1447
1448 /* Set trigger pin and light LED on trigger. */
1449 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1450
1451 /* Default rising edge. */
1452 if (devc->trigger.fallingmask)
1453 triggerselect |= 1 << 3;
1454
1455 /* All other modes. */
1456 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1457 build_basic_trigger(&lut, devc);
1458
1459 sigma_write_trigger_lut(&lut, devc);
1460
1461 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1462 }
1463
1464 /* Setup trigger in and out pins to default values. */
1465 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1466 triggerinout_conf.trgout_bytrigger = 1;
1467 triggerinout_conf.trgout_enable = 1;
1468
1469 sigma_write_register(WRITE_TRIGGER_OPTION,
1470 (uint8_t *) &triggerinout_conf,
1471 sizeof(struct triggerinout), devc);
1472
1473 /* Go back to normal mode. */
1474 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1475
1476 /* Set clock select register. */
1477 if (devc->cur_samplerate == SR_MHZ(200))
1478 /* Enable 4 channels. */
1479 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1480 else if (devc->cur_samplerate == SR_MHZ(100))
1481 /* Enable 8 channels. */
1482 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1483 else {
1484 /*
1485 * 50 MHz mode (or fraction thereof). Any fraction down to
1486 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1487 */
1488 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1489
1490 clockselect.async = 0;
1491 clockselect.fraction = frac;
1492 clockselect.disabled_channels = 0;
1493
1494 sigma_write_register(WRITE_CLOCK_SELECT,
1495 (uint8_t *) &clockselect,
1496 sizeof(clockselect), devc);
1497 }
1498
1499 /* Setup maximum post trigger time. */
1500 sigma_set_register(WRITE_POST_TRIGGER,
1501 (devc->capture_ratio * 255) / 100, devc);
1502
1503 /* Start acqusition. */
1504 gettimeofday(&devc->start_tv, 0);
1505 sigma_set_register(WRITE_MODE, 0x0d, devc);
1506
1507 devc->cb_data = cb_data;
1508
1509 /* Send header packet to the session bus. */
1510 std_session_send_df_header(sdi, LOG_PREFIX);
1511
1512 /* Add capture source. */
1513 sr_session_source_add(sdi->session, -1, 0, 10, receive_data, (void *)sdi);
1514
1515 devc->state.state = SIGMA_CAPTURE;
1516
1517 return SR_OK;
1518}
1519
1520static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1521{
1522 struct dev_context *devc;
1523
1524 (void)cb_data;
1525
1526 devc = sdi->priv;
1527 devc->state.state = SIGMA_IDLE;
1528
1529 sr_session_source_remove(sdi->session, -1);
1530
1531 return SR_OK;
1532}
1533
1534SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1535 .name = "asix-sigma",
1536 .longname = "ASIX SIGMA/SIGMA2",
1537 .api_version = 1,
1538 .init = init,
1539 .cleanup = cleanup,
1540 .scan = scan,
1541 .dev_list = dev_list,
1542 .dev_clear = dev_clear,
1543 .config_get = config_get,
1544 .config_set = config_set,
1545 .config_list = config_list,
1546 .dev_open = dev_open,
1547 .dev_close = dev_close,
1548 .dev_acquisition_start = dev_acquisition_start,
1549 .dev_acquisition_stop = dev_acquisition_stop,
1550 .context = NULL,
1551};