]> sigrok.org Git - libsigrok.git/blame_incremental - src/analog.c
libsigrok.h: Add Joule, Coulomb, and Ah units.
[libsigrok.git] / src / analog.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdio.h>
22#include <stdint.h>
23#include <string.h>
24#include <ctype.h>
25#include <math.h>
26#include <libsigrok/libsigrok.h>
27#include "libsigrok-internal.h"
28
29/** @cond PRIVATE */
30#define LOG_PREFIX "analog"
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Handling and converting analog data.
37 */
38
39/**
40 * @defgroup grp_analog Analog data handling
41 *
42 * Handling and converting analog data.
43 *
44 * @{
45 */
46
47struct unit_mq_string {
48 uint64_t value;
49 const char *str;
50};
51
52/* Please use the same order as in enum sr_unit (libsigrok.h). */
53static struct unit_mq_string unit_strings[] = {
54 { SR_UNIT_VOLT, "V" },
55 { SR_UNIT_AMPERE, "A" },
56 { SR_UNIT_OHM, "\xe2\x84\xa6" },
57 { SR_UNIT_FARAD, "F" },
58 { SR_UNIT_KELVIN, "K" },
59 { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
60 { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
61 { SR_UNIT_HERTZ, "Hz" },
62 { SR_UNIT_PERCENTAGE, "%" },
63 { SR_UNIT_BOOLEAN, "" },
64 { SR_UNIT_SECOND, "s" },
65 { SR_UNIT_SIEMENS, "S" },
66 { SR_UNIT_DECIBEL_MW, "dBm" },
67 { SR_UNIT_DECIBEL_VOLT, "dBV" },
68 { SR_UNIT_UNITLESS, "" },
69 { SR_UNIT_DECIBEL_SPL, "dB" },
70 { SR_UNIT_CONCENTRATION, "ppm" },
71 { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
72 { SR_UNIT_VOLT_AMPERE, "VA" },
73 { SR_UNIT_WATT, "W" },
74 { SR_UNIT_WATT_HOUR, "Wh" },
75 { SR_UNIT_METER_SECOND, "m/s" },
76 { SR_UNIT_HECTOPASCAL, "hPa" },
77 { SR_UNIT_HUMIDITY_293K, "%rF" },
78 { SR_UNIT_DEGREE, "\xc2\xb0" },
79 { SR_UNIT_HENRY, "H" },
80 { SR_UNIT_GRAM, "g" },
81 { SR_UNIT_CARAT, "ct" },
82 { SR_UNIT_OUNCE, "oz" },
83 { SR_UNIT_TROY_OUNCE, "oz t" },
84 { SR_UNIT_POUND, "lb" },
85 { SR_UNIT_PENNYWEIGHT, "dwt" },
86 { SR_UNIT_GRAIN, "gr" },
87 { SR_UNIT_TAEL, "tael" },
88 { SR_UNIT_MOMME, "momme" },
89 { SR_UNIT_TOLA, "tola" },
90 { SR_UNIT_PIECE, "pcs" },
91 { SR_UNIT_JOULE, "J" },
92 { SR_UNIT_COULOMB, "C" },
93 { SR_UNIT_AMPERE_HOUR, "Ah" },
94 ALL_ZERO
95};
96
97/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
98static struct unit_mq_string mq_strings[] = {
99 { SR_MQFLAG_AC, " AC" },
100 { SR_MQFLAG_DC, " DC" },
101 { SR_MQFLAG_RMS, " RMS" },
102 { SR_MQFLAG_DIODE, " DIODE" },
103 { SR_MQFLAG_HOLD, " HOLD" },
104 { SR_MQFLAG_MAX, " MAX" },
105 { SR_MQFLAG_MIN, " MIN" },
106 { SR_MQFLAG_AUTORANGE, " AUTO" },
107 { SR_MQFLAG_RELATIVE, " REL" },
108 { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
109 { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
110 { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
111 { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
112 { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
113 { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
114 { SR_MQFLAG_SPL_LAT, " LAT" },
115 /* Not a standard function for SLMs, so this is a made-up notation. */
116 { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
117 { SR_MQFLAG_DURATION, " DURATION" },
118 { SR_MQFLAG_AVG, " AVG" },
119 { SR_MQFLAG_REFERENCE, " REF" },
120 { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
121 { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
122 ALL_ZERO
123};
124
125/** @private */
126SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
127 struct sr_analog_encoding *encoding,
128 struct sr_analog_meaning *meaning,
129 struct sr_analog_spec *spec,
130 int digits)
131{
132 memset(analog, 0, sizeof(*analog));
133 memset(encoding, 0, sizeof(*encoding));
134 memset(meaning, 0, sizeof(*meaning));
135 memset(spec, 0, sizeof(*spec));
136
137 analog->encoding = encoding;
138 analog->meaning = meaning;
139 analog->spec = spec;
140
141 encoding->unitsize = sizeof(float);
142 encoding->is_float = TRUE;
143#ifdef WORDS_BIGENDIAN
144 encoding->is_bigendian = TRUE;
145#else
146 encoding->is_bigendian = FALSE;
147#endif
148 encoding->digits = digits;
149 encoding->is_digits_decimal = TRUE;
150 encoding->scale.p = 1;
151 encoding->scale.q = 1;
152 encoding->offset.p = 0;
153 encoding->offset.q = 1;
154
155 spec->spec_digits = digits;
156
157 return SR_OK;
158}
159
160/**
161 * Convert an analog datafeed payload to an array of floats.
162 *
163 * Sufficient memory for outbuf must have been pre-allocated by the caller,
164 * who is also responsible for freeing it when no longer needed.
165 *
166 * @param[in] analog The analog payload to convert. Must not be NULL.
167 * analog->data, analog->meaning, and analog->encoding
168 * must not be NULL.
169 * @param[out] outbuf Memory where to store the result. Must not be NULL.
170 *
171 * @retval SR_OK Success.
172 * @retval SR_ERR Unsupported encoding.
173 * @retval SR_ERR_ARG Invalid argument.
174 *
175 * @since 0.4.0
176 */
177SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
178 float *outbuf)
179{
180 unsigned int b, count;
181 gboolean bigendian;
182
183 if (!analog || !(analog->data) || !(analog->meaning)
184 || !(analog->encoding) || !outbuf)
185 return SR_ERR_ARG;
186
187 count = analog->num_samples * g_slist_length(analog->meaning->channels);
188
189#ifdef WORDS_BIGENDIAN
190 bigendian = TRUE;
191#else
192 bigendian = FALSE;
193#endif
194
195 if (!analog->encoding->is_float) {
196 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
197 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
198 gboolean is_signed = analog->encoding->is_signed;
199 gboolean is_bigendian = analog->encoding->is_bigendian;
200 int8_t *data8 = (int8_t *)(analog->data);
201 int16_t *data16 = (int16_t *)(analog->data);
202 int32_t *data32 = (int32_t *)(analog->data);
203
204 switch (analog->encoding->unitsize) {
205 case 1:
206 if (is_signed) {
207 for (unsigned int i = 0; i < count; i++) {
208 outbuf[i] = scale * data8[i];
209 outbuf[i] += offset;
210 }
211 } else {
212 for (unsigned int i = 0; i < count; i++) {
213 outbuf[i] = scale * R8(data8 + i);
214 outbuf[i] += offset;
215 }
216 }
217 break;
218 case 2:
219 if (is_signed && is_bigendian) {
220 for (unsigned int i = 0; i < count; i++) {
221 outbuf[i] = scale * RB16S(&data16[i]);
222 outbuf[i] += offset;
223 }
224 } else if (is_bigendian) {
225 for (unsigned int i = 0; i < count; i++) {
226 outbuf[i] = scale * RB16(&data16[i]);
227 outbuf[i] += offset;
228 }
229 } else if (is_signed) {
230 for (unsigned int i = 0; i < count; i++) {
231 outbuf[i] = scale * RL16S(&data16[i]);
232 outbuf[i] += offset;
233 }
234 } else {
235 for (unsigned int i = 0; i < count; i++) {
236 outbuf[i] = scale * RL16(&data16[i]);
237 outbuf[i] += offset;
238 }
239 }
240 break;
241 case 4:
242 if (is_signed && is_bigendian) {
243 for (unsigned int i = 0; i < count; i++) {
244 outbuf[i] = scale * RB32S(&data32[i]);
245 outbuf[i] += offset;
246 }
247 } else if (is_bigendian) {
248 for (unsigned int i = 0; i < count; i++) {
249 outbuf[i] = scale * RB32(&data32[i]);
250 outbuf[i] += offset;
251 }
252 } else if (is_signed) {
253 for (unsigned int i = 0; i < count; i++) {
254 outbuf[i] = scale * RL32S(&data32[i]);
255 outbuf[i] += offset;
256 }
257 } else {
258 for (unsigned int i = 0; i < count; i++) {
259 outbuf[i] = scale * RL32(&data32[i]);
260 outbuf[i] += offset;
261 }
262 }
263 break;
264 default:
265 sr_err("Unsupported unit size '%d' for analog-to-float"
266 " conversion.", analog->encoding->unitsize);
267 return SR_ERR;
268 }
269 return SR_OK;
270 }
271
272 if (analog->encoding->unitsize == sizeof(float)
273 && analog->encoding->is_bigendian == bigendian
274 && analog->encoding->scale.p == 1
275 && analog->encoding->scale.q == 1
276 && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
277 /* The data is already in the right format. */
278 memcpy(outbuf, analog->data, count * sizeof(float));
279 } else {
280 for (unsigned int i = 0; i < count; i += analog->encoding->unitsize) {
281 for (b = 0; b < analog->encoding->unitsize; b++) {
282 if (analog->encoding->is_bigendian == bigendian)
283 ((uint8_t *)outbuf)[i + b] =
284 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
285 else
286 ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
287 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
288 }
289 if (analog->encoding->scale.p != 1
290 || analog->encoding->scale.q != 1)
291 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
292 float offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
293 outbuf[i] += offset;
294 }
295 }
296
297 return SR_OK;
298}
299
300/**
301 * Scale a float value to the appropriate SI prefix.
302 *
303 * @param[in,out] value The float value to convert to appropriate SI prefix.
304 * @param[in,out] digits The number of significant decimal digits in value.
305 *
306 * @return The SI prefix to which value was scaled, as a printable string.
307 *
308 * @since 0.5.0
309 */
310SR_API const char *sr_analog_si_prefix(float *value, int *digits)
311{
312/** @cond PRIVATE */
313#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
314#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
315/** @endcond */
316 static const char *prefixes[] = { "f", "p", "n", "ยต", "m", "", "k", "M", "G", "T" };
317
318 if (!value || !digits || isnan(*value))
319 return prefixes[NEG_PREFIX_COUNT];
320
321 float logval = log10f(fabsf(*value));
322 int prefix = (logval / 3) - (logval < 1);
323
324 if (prefix < -NEG_PREFIX_COUNT)
325 prefix = -NEG_PREFIX_COUNT;
326 if (3 * prefix < -*digits)
327 prefix = (-*digits + 2 * (*digits < 0)) / 3;
328 if (prefix > POS_PREFIX_COUNT)
329 prefix = POS_PREFIX_COUNT;
330
331 *value *= powf(10, -3 * prefix);
332 *digits += 3 * prefix;
333
334 return prefixes[prefix + NEG_PREFIX_COUNT];
335}
336
337/**
338 * Check if a unit "accepts" an SI prefix.
339 *
340 * E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
341 * SR_UNIT_PERCENTAGE are not.
342 *
343 * @param[in] unit The unit to check for SI prefix "friendliness".
344 *
345 * @return TRUE if the unit "accept" an SI prefix.
346 *
347 * @since 0.5.0
348 */
349SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
350{
351 static const enum sr_unit prefix_friendly_units[] = {
352 SR_UNIT_VOLT,
353 SR_UNIT_AMPERE,
354 SR_UNIT_OHM,
355 SR_UNIT_FARAD,
356 SR_UNIT_KELVIN,
357 SR_UNIT_HERTZ,
358 SR_UNIT_SECOND,
359 SR_UNIT_SIEMENS,
360 SR_UNIT_VOLT_AMPERE,
361 SR_UNIT_WATT,
362 SR_UNIT_WATT_HOUR,
363 SR_UNIT_METER_SECOND,
364 SR_UNIT_HENRY,
365 SR_UNIT_GRAM
366 };
367 unsigned int i;
368
369 for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
370 if (unit == prefix_friendly_units[i])
371 return TRUE;
372
373 return FALSE;
374}
375
376/**
377 * Convert the unit/MQ/MQ flags in the analog struct to a string.
378 *
379 * The string is allocated by the function and must be freed by the caller
380 * after use by calling g_free().
381 *
382 * @param[in] analog Struct containing the unit, MQ and MQ flags.
383 * Must not be NULL. analog->meaning must not be NULL.
384 * @param[out] result Pointer to store result. Must not be NULL.
385 *
386 * @retval SR_OK Success.
387 * @retval SR_ERR_ARG Invalid argument.
388 *
389 * @since 0.4.0
390 */
391SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
392 char **result)
393{
394 int i;
395 GString *buf;
396
397 if (!analog || !(analog->meaning) || !result)
398 return SR_ERR_ARG;
399
400 buf = g_string_new(NULL);
401
402 for (i = 0; unit_strings[i].value; i++) {
403 if (analog->meaning->unit == unit_strings[i].value) {
404 g_string_assign(buf, unit_strings[i].str);
405 break;
406 }
407 }
408
409 /* More than one MQ flag may apply. */
410 for (i = 0; mq_strings[i].value; i++)
411 if (analog->meaning->mqflags & mq_strings[i].value)
412 g_string_append(buf, mq_strings[i].str);
413
414 *result = buf->str;
415 g_string_free(buf, FALSE);
416
417 return SR_OK;
418}
419
420/**
421 * Set sr_rational r to the given value.
422 *
423 * @param[out] r Rational number struct to set. Must not be NULL.
424 * @param[in] p Numerator.
425 * @param[in] q Denominator.
426 *
427 * @since 0.4.0
428 */
429SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
430{
431 if (!r)
432 return;
433
434 r->p = p;
435 r->q = q;
436}
437
438#ifndef HAVE___INT128_T
439struct sr_int128_t {
440 int64_t high;
441 uint64_t low;
442};
443
444struct sr_uint128_t {
445 uint64_t high;
446 uint64_t low;
447};
448
449static void mult_int64(struct sr_int128_t *res, const int64_t a,
450 const int64_t b)
451{
452 uint64_t t1, t2, t3, t4;
453
454 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
455 t2 = (UINT32_MAX & a) * (b >> 32);
456 t3 = (a >> 32) * (UINT32_MAX & b);
457 t4 = (a >> 32) * (b >> 32);
458
459 res->low = t1 + (t2 << 32) + (t3 << 32);
460 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
461 res->high >>= 32;
462 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
463}
464
465static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
466 const uint64_t b)
467{
468 uint64_t t1, t2, t3, t4;
469
470 // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
471 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
472 t2 = (UINT32_MAX & a) * (b >> 32);
473 t3 = (a >> 32) * (UINT32_MAX & b);
474 t4 = (a >> 32) * (b >> 32);
475
476 res->low = t1 + (t2 << 32) + (t3 << 32);
477 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
478 res->high >>= 32;
479 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
480}
481#endif
482
483/**
484 * Compare two sr_rational for equality.
485 *
486 * The values are compared for numerical equality, i.e. 2/10 == 1/5.
487 *
488 * @param[in] a First value.
489 * @param[in] b Second value.
490 *
491 * @retval 1 if both values are equal.
492 * @retval 0 Otherwise.
493 *
494 * @since 0.5.0
495 */
496SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
497{
498#ifdef HAVE___INT128_T
499 __int128_t m1, m2;
500
501 /* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
502 m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
503 m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
504
505 return (m1 == m2);
506
507#else
508 struct sr_int128_t m1, m2;
509
510 mult_int64(&m1, a->q, b->p);
511 mult_int64(&m2, a->p, b->q);
512
513 return (m1.high == m2.high) && (m1.low == m2.low);
514#endif
515}
516
517/**
518 * Multiply two sr_rational.
519 *
520 * The resulting nominator/denominator are reduced if the result would not fit
521 * otherwise. If the resulting nominator/denominator are relatively prime,
522 * this may not be possible.
523 *
524 * It is safe to use the same variable for result and input values.
525 *
526 * @param[in] a First value.
527 * @param[in] b Second value.
528 * @param[out] res Result.
529 *
530 * @retval SR_OK Success.
531 * @retval SR_ERR_ARG Resulting value too large.
532 *
533 * @since 0.5.0
534 */
535SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
536 const struct sr_rational *b)
537{
538#ifdef HAVE___INT128_T
539 __int128_t p;
540 __uint128_t q;
541
542 p = (__int128_t)(a->p) * (__int128_t)(b->p);
543 q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
544
545 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
546 while (!((p & 1) || (q & 1))) {
547 p /= 2;
548 q /= 2;
549 }
550 }
551
552 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
553 // TODO: determine gcd to do further reduction
554 return SR_ERR_ARG;
555 }
556
557 res->p = (int64_t)p;
558 res->q = (uint64_t)q;
559
560 return SR_OK;
561
562#else
563 struct sr_int128_t p;
564 struct sr_uint128_t q;
565
566 mult_int64(&p, a->p, b->p);
567 mult_uint64(&q, a->q, b->q);
568
569 while (!(p.low & 1) && !(q.low & 1)) {
570 p.low /= 2;
571 if (p.high & 1)
572 p.low |= (1ll << 63);
573 p.high >>= 1;
574 q.low /= 2;
575 if (q.high & 1)
576 q.low |= (1ll << 63);
577 q.high >>= 1;
578 }
579
580 if (q.high)
581 return SR_ERR_ARG;
582 if ((p.high >= 0) && (p.low > INT64_MAX))
583 return SR_ERR_ARG;
584 if (p.high < -1)
585 return SR_ERR_ARG;
586
587 res->p = (int64_t)p.low;
588 res->q = q.low;
589
590 return SR_OK;
591#endif
592}
593
594/**
595 * Divide rational a by rational b.
596 *
597 * The resulting nominator/denominator are reduced if the result would not fit
598 * otherwise. If the resulting nominator/denominator are relatively prime,
599 * this may not be possible.
600 *
601 * It is safe to use the same variable for result and input values.
602 *
603 * @param[in] num Numerator.
604 * @param[in] div Divisor.
605 * @param[out] res Result.
606 *
607 * @retval SR_OK Success.
608 * @retval SR_ERR_ARG Division by zero, denominator of divisor too large,
609 * or resulting value too large.
610 *
611 * @since 0.5.0
612 */
613SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
614 const struct sr_rational *div)
615{
616 struct sr_rational t;
617
618 if (div->q > INT64_MAX)
619 return SR_ERR_ARG;
620 if (div->p == 0)
621 return SR_ERR_ARG;
622
623 if (div->p > 0) {
624 t.p = div->q;
625 t.q = div->p;
626 } else {
627 t.p = -div->q;
628 t.q = -div->p;
629 }
630
631 return sr_rational_mult(res, num, &t);
632}
633
634/** @} */