]> sigrok.org Git - libsigrok.git/blame_incremental - src/analog.c
Doxygen: Fix various warnings.
[libsigrok.git] / src / analog.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdio.h>
22#include <stdint.h>
23#include <string.h>
24#include <ctype.h>
25#include <math.h>
26#include <libsigrok/libsigrok.h>
27#include "libsigrok-internal.h"
28
29/** @cond PRIVATE */
30#define LOG_PREFIX "analog"
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Handling and converting analog data.
37 */
38
39/**
40 * @defgroup grp_analog Analog data handling
41 *
42 * Handling and converting analog data.
43 *
44 * @{
45 */
46
47struct unit_mq_string {
48 uint64_t value;
49 const char *str;
50};
51
52/* Please use the same order as in enum sr_unit (libsigrok.h). */
53static struct unit_mq_string unit_strings[] = {
54 { SR_UNIT_VOLT, "V" },
55 { SR_UNIT_AMPERE, "A" },
56 { SR_UNIT_OHM, "\xe2\x84\xa6" },
57 { SR_UNIT_FARAD, "F" },
58 { SR_UNIT_KELVIN, "K" },
59 { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
60 { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
61 { SR_UNIT_HERTZ, "Hz" },
62 { SR_UNIT_PERCENTAGE, "%" },
63 { SR_UNIT_BOOLEAN, "" },
64 { SR_UNIT_SECOND, "s" },
65 { SR_UNIT_SIEMENS, "S" },
66 { SR_UNIT_DECIBEL_MW, "dBm" },
67 { SR_UNIT_DECIBEL_VOLT, "dBV" },
68 { SR_UNIT_UNITLESS, "" },
69 { SR_UNIT_DECIBEL_SPL, "dB" },
70 { SR_UNIT_CONCENTRATION, "ppm" },
71 { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
72 { SR_UNIT_VOLT_AMPERE, "VA" },
73 { SR_UNIT_WATT, "W" },
74 { SR_UNIT_WATT_HOUR, "Wh" },
75 { SR_UNIT_METER_SECOND, "m/s" },
76 { SR_UNIT_HECTOPASCAL, "hPa" },
77 { SR_UNIT_HUMIDITY_293K, "%rF" },
78 { SR_UNIT_DEGREE, "\xc2\xb0" },
79 { SR_UNIT_HENRY, "H" },
80 { SR_UNIT_GRAM, "g" },
81 { SR_UNIT_CARAT, "ct" },
82 { SR_UNIT_OUNCE, "oz" },
83 { SR_UNIT_TROY_OUNCE, "oz t" },
84 { SR_UNIT_POUND, "lb" },
85 { SR_UNIT_PENNYWEIGHT, "dwt" },
86 { SR_UNIT_GRAIN, "gr" },
87 { SR_UNIT_TAEL, "tael" },
88 { SR_UNIT_MOMME, "momme" },
89 { SR_UNIT_TOLA, "tola" },
90 { SR_UNIT_PIECE, "pcs" },
91 ALL_ZERO
92};
93
94/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
95static struct unit_mq_string mq_strings[] = {
96 { SR_MQFLAG_AC, " AC" },
97 { SR_MQFLAG_DC, " DC" },
98 { SR_MQFLAG_RMS, " RMS" },
99 { SR_MQFLAG_DIODE, " DIODE" },
100 { SR_MQFLAG_HOLD, " HOLD" },
101 { SR_MQFLAG_MAX, " MAX" },
102 { SR_MQFLAG_MIN, " MIN" },
103 { SR_MQFLAG_AUTORANGE, " AUTO" },
104 { SR_MQFLAG_RELATIVE, " REL" },
105 { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
106 { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
107 { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
108 { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
109 { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
110 { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
111 { SR_MQFLAG_SPL_LAT, " LAT" },
112 /* Not a standard function for SLMs, so this is a made-up notation. */
113 { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
114 { SR_MQFLAG_DURATION, " DURATION" },
115 { SR_MQFLAG_AVG, " AVG" },
116 { SR_MQFLAG_REFERENCE, " REF" },
117 { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
118 { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
119 ALL_ZERO
120};
121
122/** @private */
123SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
124 struct sr_analog_encoding *encoding,
125 struct sr_analog_meaning *meaning,
126 struct sr_analog_spec *spec,
127 int digits)
128{
129 memset(analog, 0, sizeof(*analog));
130 memset(encoding, 0, sizeof(*encoding));
131 memset(meaning, 0, sizeof(*meaning));
132 memset(spec, 0, sizeof(*spec));
133
134 analog->encoding = encoding;
135 analog->meaning = meaning;
136 analog->spec = spec;
137
138 encoding->unitsize = sizeof(float);
139 encoding->is_float = TRUE;
140#ifdef WORDS_BIGENDIAN
141 encoding->is_bigendian = TRUE;
142#else
143 encoding->is_bigendian = FALSE;
144#endif
145 encoding->digits = digits;
146 encoding->is_digits_decimal = TRUE;
147 encoding->scale.p = 1;
148 encoding->scale.q = 1;
149 encoding->offset.p = 0;
150 encoding->offset.q = 1;
151
152 spec->spec_digits = digits;
153
154 return SR_OK;
155}
156
157/**
158 * Convert an analog datafeed payload to an array of floats.
159 *
160 * Sufficient memory for outbuf must have been pre-allocated by the caller,
161 * who is also responsible for freeing it when no longer needed.
162 *
163 * @param[in] analog The analog payload to convert. Must not be NULL.
164 * analog->data, analog->meaning, and analog->encoding
165 * must not be NULL.
166 * @param[out] outbuf Memory where to store the result. Must not be NULL.
167 *
168 * @retval SR_OK Success.
169 * @retval SR_ERR Unsupported encoding.
170 * @retval SR_ERR_ARG Invalid argument.
171 *
172 * @since 0.4.0
173 */
174SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
175 float *outbuf)
176{
177 unsigned int b, count;
178 gboolean bigendian;
179
180 if (!analog || !(analog->data) || !(analog->meaning)
181 || !(analog->encoding) || !outbuf)
182 return SR_ERR_ARG;
183
184 count = analog->num_samples * g_slist_length(analog->meaning->channels);
185
186#ifdef WORDS_BIGENDIAN
187 bigendian = TRUE;
188#else
189 bigendian = FALSE;
190#endif
191
192 if (!analog->encoding->is_float) {
193 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
194 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
195 gboolean is_signed = analog->encoding->is_signed;
196 gboolean is_bigendian = analog->encoding->is_bigendian;
197 int8_t *data8 = (int8_t *)(analog->data);
198 int16_t *data16 = (int16_t *)(analog->data);
199 int32_t *data32 = (int32_t *)(analog->data);
200
201 switch (analog->encoding->unitsize) {
202 case 1:
203 if (is_signed) {
204 for (unsigned int i = 0; i < count; i++) {
205 outbuf[i] = scale * data8[i];
206 outbuf[i] += offset;
207 }
208 } else {
209 for (unsigned int i = 0; i < count; i++) {
210 outbuf[i] = scale * R8(data8 + i);
211 outbuf[i] += offset;
212 }
213 }
214 break;
215 case 2:
216 if (is_signed && is_bigendian) {
217 for (unsigned int i = 0; i < count; i++) {
218 outbuf[i] = scale * RB16S(&data16[i]);
219 outbuf[i] += offset;
220 }
221 } else if (is_bigendian) {
222 for (unsigned int i = 0; i < count; i++) {
223 outbuf[i] = scale * RB16(&data16[i]);
224 outbuf[i] += offset;
225 }
226 } else if (is_signed) {
227 for (unsigned int i = 0; i < count; i++) {
228 outbuf[i] = scale * RL16S(&data16[i]);
229 outbuf[i] += offset;
230 }
231 } else {
232 for (unsigned int i = 0; i < count; i++) {
233 outbuf[i] = scale * RL16(&data16[i]);
234 outbuf[i] += offset;
235 }
236 }
237 break;
238 case 4:
239 if (is_signed && is_bigendian) {
240 for (unsigned int i = 0; i < count; i++) {
241 outbuf[i] = scale * RB32S(&data32[i]);
242 outbuf[i] += offset;
243 }
244 } else if (is_bigendian) {
245 for (unsigned int i = 0; i < count; i++) {
246 outbuf[i] = scale * RB32(&data32[i]);
247 outbuf[i] += offset;
248 }
249 } else if (is_signed) {
250 for (unsigned int i = 0; i < count; i++) {
251 outbuf[i] = scale * RL32S(&data32[i]);
252 outbuf[i] += offset;
253 }
254 } else {
255 for (unsigned int i = 0; i < count; i++) {
256 outbuf[i] = scale * RL32(&data32[i]);
257 outbuf[i] += offset;
258 }
259 }
260 break;
261 default:
262 sr_err("Unsupported unit size '%d' for analog-to-float"
263 " conversion.", analog->encoding->unitsize);
264 return SR_ERR;
265 }
266 return SR_OK;
267 }
268
269 if (analog->encoding->unitsize == sizeof(float)
270 && analog->encoding->is_bigendian == bigendian
271 && analog->encoding->scale.p == 1
272 && analog->encoding->scale.q == 1
273 && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
274 /* The data is already in the right format. */
275 memcpy(outbuf, analog->data, count * sizeof(float));
276 } else {
277 for (unsigned int i = 0; i < count; i += analog->encoding->unitsize) {
278 for (b = 0; b < analog->encoding->unitsize; b++) {
279 if (analog->encoding->is_bigendian == bigendian)
280 ((uint8_t *)outbuf)[i + b] =
281 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
282 else
283 ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
284 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
285 }
286 if (analog->encoding->scale.p != 1
287 || analog->encoding->scale.q != 1)
288 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
289 float offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
290 outbuf[i] += offset;
291 }
292 }
293
294 return SR_OK;
295}
296
297/**
298 * Scale a float value to the appropriate SI prefix.
299 *
300 * @param[in,out] value The float value to convert to appropriate SI prefix.
301 * @param[in,out] digits The number of significant decimal digits in value.
302 *
303 * @return The SI prefix to which value was scaled, as a printable string.
304 *
305 * @since 0.5.0
306 */
307SR_API const char *sr_analog_si_prefix(float *value, int *digits)
308{
309/** @cond PRIVATE */
310#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
311#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
312/** @endcond */
313 static const char *prefixes[] = { "f", "p", "n", "ยต", "m", "", "k", "M", "G", "T" };
314
315 if (!value || !digits || isnan(*value))
316 return prefixes[NEG_PREFIX_COUNT];
317
318 float logval = log10f(fabsf(*value));
319 int prefix = (logval / 3) - (logval < 1);
320
321 if (prefix < -NEG_PREFIX_COUNT)
322 prefix = -NEG_PREFIX_COUNT;
323 if (3 * prefix < -*digits)
324 prefix = (-*digits + 2 * (*digits < 0)) / 3;
325 if (prefix > POS_PREFIX_COUNT)
326 prefix = POS_PREFIX_COUNT;
327
328 *value *= powf(10, -3 * prefix);
329 *digits += 3 * prefix;
330
331 return prefixes[prefix + NEG_PREFIX_COUNT];
332}
333
334/**
335 * Check if a unit "accepts" an SI prefix.
336 *
337 * E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
338 * SR_UNIT_PERCENTAGE are not.
339 *
340 * @param[in] unit The unit to check for SI prefix "friendliness".
341 *
342 * @return TRUE if the unit "accept" an SI prefix.
343 *
344 * @since 0.5.0
345 */
346SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
347{
348 static const enum sr_unit prefix_friendly_units[] = {
349 SR_UNIT_VOLT,
350 SR_UNIT_AMPERE,
351 SR_UNIT_OHM,
352 SR_UNIT_FARAD,
353 SR_UNIT_KELVIN,
354 SR_UNIT_HERTZ,
355 SR_UNIT_SECOND,
356 SR_UNIT_SIEMENS,
357 SR_UNIT_VOLT_AMPERE,
358 SR_UNIT_WATT,
359 SR_UNIT_WATT_HOUR,
360 SR_UNIT_METER_SECOND,
361 SR_UNIT_HENRY,
362 SR_UNIT_GRAM
363 };
364 unsigned int i;
365
366 for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
367 if (unit == prefix_friendly_units[i])
368 return TRUE;
369
370 return FALSE;
371}
372
373/**
374 * Convert the unit/MQ/MQ flags in the analog struct to a string.
375 *
376 * The string is allocated by the function and must be freed by the caller
377 * after use by calling g_free().
378 *
379 * @param[in] analog Struct containing the unit, MQ and MQ flags.
380 * Must not be NULL. analog->meaning must not be NULL.
381 * @param[out] result Pointer to store result. Must not be NULL.
382 *
383 * @retval SR_OK Success.
384 * @retval SR_ERR_ARG Invalid argument.
385 *
386 * @since 0.4.0
387 */
388SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
389 char **result)
390{
391 int i;
392 GString *buf;
393
394 if (!analog || !(analog->meaning) || !result)
395 return SR_ERR_ARG;
396
397 buf = g_string_new(NULL);
398
399 for (i = 0; unit_strings[i].value; i++) {
400 if (analog->meaning->unit == unit_strings[i].value) {
401 g_string_assign(buf, unit_strings[i].str);
402 break;
403 }
404 }
405
406 /* More than one MQ flag may apply. */
407 for (i = 0; mq_strings[i].value; i++)
408 if (analog->meaning->mqflags & mq_strings[i].value)
409 g_string_append(buf, mq_strings[i].str);
410
411 *result = buf->str;
412 g_string_free(buf, FALSE);
413
414 return SR_OK;
415}
416
417/**
418 * Set sr_rational r to the given value.
419 *
420 * @param[out] r Rational number struct to set. Must not be NULL.
421 * @param[in] p Numerator.
422 * @param[in] q Denominator.
423 *
424 * @since 0.4.0
425 */
426SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
427{
428 if (!r)
429 return;
430
431 r->p = p;
432 r->q = q;
433}
434
435#ifndef HAVE___INT128_T
436struct sr_int128_t {
437 int64_t high;
438 uint64_t low;
439};
440
441struct sr_uint128_t {
442 uint64_t high;
443 uint64_t low;
444};
445
446static void mult_int64(struct sr_int128_t *res, const int64_t a,
447 const int64_t b)
448{
449 uint64_t t1, t2, t3, t4;
450
451 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
452 t2 = (UINT32_MAX & a) * (b >> 32);
453 t3 = (a >> 32) * (UINT32_MAX & b);
454 t4 = (a >> 32) * (b >> 32);
455
456 res->low = t1 + (t2 << 32) + (t3 << 32);
457 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
458 res->high >>= 32;
459 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
460}
461
462static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
463 const uint64_t b)
464{
465 uint64_t t1, t2, t3, t4;
466
467 // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
468 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
469 t2 = (UINT32_MAX & a) * (b >> 32);
470 t3 = (a >> 32) * (UINT32_MAX & b);
471 t4 = (a >> 32) * (b >> 32);
472
473 res->low = t1 + (t2 << 32) + (t3 << 32);
474 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
475 res->high >>= 32;
476 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
477}
478#endif
479
480/**
481 * Compare two sr_rational for equality.
482 *
483 * The values are compared for numerical equality, i.e. 2/10 == 1/5.
484 *
485 * @param[in] a First value.
486 * @param[in] b Second value.
487 *
488 * @retval 1 if both values are equal.
489 * @retval 0 Otherwise.
490 *
491 * @since 0.5.0
492 */
493SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
494{
495#ifdef HAVE___INT128_T
496 __int128_t m1, m2;
497
498 /* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
499 m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
500 m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
501
502 return (m1 == m2);
503
504#else
505 struct sr_int128_t m1, m2;
506
507 mult_int64(&m1, a->q, b->p);
508 mult_int64(&m2, a->p, b->q);
509
510 return (m1.high == m2.high) && (m1.low == m2.low);
511#endif
512}
513
514/**
515 * Multiply two sr_rational.
516 *
517 * The resulting nominator/denominator are reduced if the result would not fit
518 * otherwise. If the resulting nominator/denominator are relatively prime,
519 * this may not be possible.
520 *
521 * It is safe to use the same variable for result and input values.
522 *
523 * @param[in] a First value.
524 * @param[in] b Second value.
525 * @param[out] res Result.
526 *
527 * @retval SR_OK Success.
528 * @retval SR_ERR_ARG Resulting value too large.
529 *
530 * @since 0.5.0
531 */
532SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
533 const struct sr_rational *b)
534{
535#ifdef HAVE___INT128_T
536 __int128_t p;
537 __uint128_t q;
538
539 p = (__int128_t)(a->p) * (__int128_t)(b->p);
540 q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
541
542 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
543 while (!((p & 1) || (q & 1))) {
544 p /= 2;
545 q /= 2;
546 }
547 }
548
549 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
550 // TODO: determine gcd to do further reduction
551 return SR_ERR_ARG;
552 }
553
554 res->p = (int64_t)p;
555 res->q = (uint64_t)q;
556
557 return SR_OK;
558
559#else
560 struct sr_int128_t p;
561 struct sr_uint128_t q;
562
563 mult_int64(&p, a->p, b->p);
564 mult_uint64(&q, a->q, b->q);
565
566 while (!(p.low & 1) && !(q.low & 1)) {
567 p.low /= 2;
568 if (p.high & 1)
569 p.low |= (1ll << 63);
570 p.high >>= 1;
571 q.low /= 2;
572 if (q.high & 1)
573 q.low |= (1ll << 63);
574 q.high >>= 1;
575 }
576
577 if (q.high)
578 return SR_ERR_ARG;
579 if ((p.high >= 0) && (p.low > INT64_MAX))
580 return SR_ERR_ARG;
581 if (p.high < -1)
582 return SR_ERR_ARG;
583
584 res->p = (int64_t)p.low;
585 res->q = q.low;
586
587 return SR_OK;
588#endif
589}
590
591/**
592 * Divide rational a by rational b.
593 *
594 * The resulting nominator/denominator are reduced if the result would not fit
595 * otherwise. If the resulting nominator/denominator are relatively prime,
596 * this may not be possible.
597 *
598 * It is safe to use the same variable for result and input values.
599 *
600 * @param[in] num Numerator.
601 * @param[in] div Divisor.
602 * @param[out] res Result.
603 *
604 * @retval SR_OK Success.
605 * @retval SR_ERR_ARG Division by zero, denominator of divisor too large,
606 * or resulting value too large.
607 *
608 * @since 0.5.0
609 */
610SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
611 const struct sr_rational *div)
612{
613 struct sr_rational t;
614
615 if (div->q > INT64_MAX)
616 return SR_ERR_ARG;
617 if (div->p == 0)
618 return SR_ERR_ARG;
619
620 if (div->p > 0) {
621 t.p = div->q;
622 t.q = div->p;
623 } else {
624 t.p = -div->q;
625 t.q = -div->p;
626 }
627
628 return sr_rational_mult(res, num, &t);
629}
630
631/** @} */