]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
Sigma: Small cleanups.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX Sigma Logic Analyzer Driver
24 */
25
26#include <ftdi.h>
27#include <string.h>
28#include <zlib.h>
29#include <sigrok.h>
30#include "asix-sigma.h"
31
32#define USB_VENDOR 0xa600
33#define USB_PRODUCT 0xa000
34#define USB_DESCRIPTION "ASIX SIGMA"
35#define USB_VENDOR_NAME "ASIX"
36#define USB_MODEL_NAME "SIGMA"
37#define USB_MODEL_VERSION ""
38#define TRIGGER_TYPES "rf"
39
40static GSList *device_instances = NULL;
41
42// XXX These should be per device
43static struct ftdi_context ftdic;
44static uint64_t cur_samplerate = 0;
45static uint32_t limit_msec = 0;
46static struct timeval start_tv;
47static int cur_firmware = -1;
48static int num_probes = 0;
49static int samples_per_event = 0;
50static int capture_ratio = 50;
51
52/* Single-pin trigger support. */
53static uint8_t triggerpin = 1;
54static uint8_t triggerfall = 0;
55
56static uint64_t supported_samplerates[] = {
57 KHZ(200),
58 KHZ(250),
59 KHZ(500),
60 MHZ(1),
61 MHZ(5),
62 MHZ(10),
63 MHZ(25),
64 MHZ(50),
65 MHZ(100),
66 MHZ(200),
67 0,
68};
69
70static struct samplerates samplerates = {
71 KHZ(200),
72 MHZ(200),
73 0,
74 supported_samplerates,
75};
76
77static int capabilities[] = {
78 HWCAP_LOGIC_ANALYZER,
79 HWCAP_SAMPLERATE,
80 HWCAP_CAPTURE_RATIO,
81 HWCAP_PROBECONFIG,
82
83 HWCAP_LIMIT_MSEC,
84 0,
85};
86
87/* Force the FPGA to reboot. */
88static uint8_t suicide[] = {
89 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
90};
91
92/* Prepare to upload firmware (FPGA specific). */
93static uint8_t init[] = {
94 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
95};
96
97/* Initialize the logic analyzer mode. */
98static uint8_t logic_mode_start[] = {
99 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
100 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
101};
102
103static const char *firmware_files[] = {
104 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
105 "asix-sigma-100.fw", /* 100 MHz */
106 "asix-sigma-200.fw", /* 200 MHz */
107 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
108 "asix-sigma-phasor.fw", /* Frequency counter */
109};
110
111static int sigma_read(void *buf, size_t size)
112{
113 int ret;
114
115 ret = ftdi_read_data(&ftdic, (unsigned char *)buf, size);
116 if (ret < 0) {
117 g_warning("ftdi_read_data failed: %s",
118 ftdi_get_error_string(&ftdic));
119 }
120
121 return ret;
122}
123
124static int sigma_write(void *buf, size_t size)
125{
126 int ret;
127
128 ret = ftdi_write_data(&ftdic, (unsigned char *)buf, size);
129 if (ret < 0) {
130 g_warning("ftdi_write_data failed: %s",
131 ftdi_get_error_string(&ftdic));
132 } else if ((size_t) ret != size) {
133 g_warning("ftdi_write_data did not complete write\n");
134 }
135
136 return ret;
137}
138
139static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len)
140{
141 size_t i;
142 uint8_t buf[len + 2];
143 int idx = 0;
144
145 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
146 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
147
148 for (i = 0; i < len; ++i) {
149 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
150 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
151 }
152
153 return sigma_write(buf, idx);
154}
155
156static int sigma_set_register(uint8_t reg, uint8_t value)
157{
158 return sigma_write_register(reg, &value, 1);
159}
160
161static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len)
162{
163 uint8_t buf[3];
164
165 buf[0] = REG_ADDR_LOW | (reg & 0xf);
166 buf[1] = REG_ADDR_HIGH | (reg >> 4);
167 buf[2] = REG_READ_ADDR;
168
169 sigma_write(buf, sizeof(buf));
170
171 return sigma_read(data, len);
172}
173
174static uint8_t sigma_get_register(uint8_t reg)
175{
176 uint8_t value;
177
178 if (1 != sigma_read_register(reg, &value, 1)) {
179 g_warning("Sigma_get_register: 1 byte expected");
180 return 0;
181 }
182
183 return value;
184}
185
186static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos)
187{
188 uint8_t buf[] = {
189 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
190
191 REG_READ_ADDR | NEXT_REG,
192 REG_READ_ADDR | NEXT_REG,
193 REG_READ_ADDR | NEXT_REG,
194 REG_READ_ADDR | NEXT_REG,
195 REG_READ_ADDR | NEXT_REG,
196 REG_READ_ADDR | NEXT_REG,
197 };
198 uint8_t result[6];
199
200 sigma_write(buf, sizeof(buf));
201
202 sigma_read(result, sizeof(result));
203
204 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
205 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
206
207 /* Not really sure why this must be done, but according to spec. */
208 if ((--*stoppos & 0x1ff) == 0x1ff)
209 stoppos -= 64;
210
211 if ((*--triggerpos & 0x1ff) == 0x1ff)
212 triggerpos -= 64;
213
214 return 1;
215}
216
217static int sigma_read_dram(uint16_t startchunk, size_t numchunks, uint8_t *data)
218{
219 size_t i;
220 uint8_t buf[4096];
221 int idx = 0;
222
223 /* Send the startchunk. Index start with 1. */
224 buf[0] = startchunk >> 8;
225 buf[1] = startchunk & 0xff;
226 sigma_write_register(WRITE_MEMROW, buf, 2);
227
228 /* Read the DRAM. */
229 buf[idx++] = REG_DRAM_BLOCK;
230 buf[idx++] = REG_DRAM_WAIT_ACK;
231
232 for (i = 0; i < numchunks; ++i) {
233 /* Alternate bit to copy from DRAM to cache. */
234 if (i != (numchunks - 1))
235 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
236
237 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
238
239 if (i != (numchunks - 1))
240 buf[idx++] = REG_DRAM_WAIT_ACK;
241 }
242
243 sigma_write(buf, idx);
244
245 return sigma_read(data, numchunks * CHUNK_SIZE);
246}
247
248/* Generate the bitbang stream for programming the FPGA. */
249static int bin2bitbang(const char *filename,
250 unsigned char **buf, size_t *buf_size)
251{
252 FILE *f;
253 long file_size;
254 unsigned long offset = 0;
255 unsigned char *p;
256 uint8_t *compressed_buf, *firmware;
257 uLongf csize, fwsize;
258 const int buffer_size = 65536;
259 size_t i;
260 int c, ret, bit, v;
261 uint32_t imm = 0x3f6df2ab;
262
263 f = fopen(filename, "r");
264 if (!f) {
265 g_warning("fopen(\"%s\", \"r\")", filename);
266 return -1;
267 }
268
269 if (-1 == fseek(f, 0, SEEK_END)) {
270 g_warning("fseek on %s failed", filename);
271 fclose(f);
272 return -1;
273 }
274
275 file_size = ftell(f);
276
277 fseek(f, 0, SEEK_SET);
278
279 compressed_buf = g_malloc(file_size);
280 firmware = g_malloc(buffer_size);
281
282 if (!compressed_buf || !firmware) {
283 g_warning("Error allocating buffers");
284 return -1;
285 }
286
287 csize = 0;
288 while ((c = getc(f)) != EOF) {
289 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
290 compressed_buf[csize++] = c ^ imm;
291 }
292 fclose(f);
293
294 fwsize = buffer_size;
295 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
296 if (ret < 0) {
297 g_free(compressed_buf);
298 g_free(firmware);
299 g_warning("Could not unpack Sigma firmware. (Error %d)\n", ret);
300 return -1;
301 }
302
303 g_free(compressed_buf);
304
305 *buf_size = fwsize * 2 * 8;
306
307 *buf = p = (unsigned char *)g_malloc(*buf_size);
308
309 if (!p) {
310 g_warning("Error allocating buffers");
311 return -1;
312 }
313
314 for (i = 0; i < fwsize; ++i) {
315 for (bit = 7; bit >= 0; --bit) {
316 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
317 p[offset++] = v | 0x01;
318 p[offset++] = v;
319 }
320 }
321
322 g_free(firmware);
323
324 if (offset != *buf_size) {
325 g_free(*buf);
326 g_warning("Error reading firmware %s "
327 "offset=%ld, file_size=%ld, buf_size=%zd\n",
328 filename, offset, file_size, *buf_size);
329
330 return -1;
331 }
332
333 return 0;
334}
335
336static int hw_init(char *deviceinfo)
337{
338 struct sigrok_device_instance *sdi;
339
340 deviceinfo = deviceinfo;
341
342 ftdi_init(&ftdic);
343
344 /* Look for SIGMAs. */
345 if (ftdi_usb_open_desc(&ftdic, USB_VENDOR, USB_PRODUCT,
346 USB_DESCRIPTION, NULL) < 0)
347 return 0;
348
349 /* Register SIGMA device. */
350 sdi = sigrok_device_instance_new(0, ST_INITIALIZING,
351 USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
352 if (!sdi)
353 return 0;
354
355 device_instances = g_slist_append(device_instances, sdi);
356
357 /* We will open the device again when we need it. */
358 ftdi_usb_close(&ftdic);
359
360 return 1;
361}
362
363static int upload_firmware(int firmware_idx)
364{
365 int ret;
366 unsigned char *buf;
367 unsigned char pins;
368 size_t buf_size;
369 unsigned char result[32];
370 char firmware_path[128];
371
372 /* Make sure it's an ASIX SIGMA. */
373 if ((ret = ftdi_usb_open_desc(&ftdic,
374 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
375 g_warning("ftdi_usb_open failed: %s",
376 ftdi_get_error_string(&ftdic));
377 return 0;
378 }
379
380 if ((ret = ftdi_set_bitmode(&ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
381 g_warning("ftdi_set_bitmode failed: %s",
382 ftdi_get_error_string(&ftdic));
383 return 0;
384 }
385
386 /* Four times the speed of sigmalogan - Works well. */
387 if ((ret = ftdi_set_baudrate(&ftdic, 750000)) < 0) {
388 g_warning("ftdi_set_baudrate failed: %s",
389 ftdi_get_error_string(&ftdic));
390 return 0;
391 }
392
393 /* Force the FPGA to reboot. */
394 sigma_write(suicide, sizeof(suicide));
395 sigma_write(suicide, sizeof(suicide));
396 sigma_write(suicide, sizeof(suicide));
397 sigma_write(suicide, sizeof(suicide));
398
399 /* Prepare to upload firmware (FPGA specific). */
400 sigma_write(init, sizeof(init));
401
402 ftdi_usb_purge_buffers(&ftdic);
403
404 /* Wait until the FPGA asserts INIT_B. */
405 while (1) {
406 ret = sigma_read(result, 1);
407 if (result[0] & 0x20)
408 break;
409 }
410
411 /* Prepare firmware. */
412 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
413 firmware_files[firmware_idx]);
414
415 if (-1 == bin2bitbang(firmware_path, &buf, &buf_size)) {
416 g_warning("An error occured while reading the firmware: %s",
417 firmware_path);
418 return SIGROK_ERR;
419 }
420
421 /* Upload firmare. */
422 sigma_write(buf, buf_size);
423
424 g_free(buf);
425
426 if ((ret = ftdi_set_bitmode(&ftdic, 0x00, BITMODE_RESET)) < 0) {
427 g_warning("ftdi_set_bitmode failed: %s",
428 ftdi_get_error_string(&ftdic));
429 return SIGROK_ERR;
430 }
431
432 ftdi_usb_purge_buffers(&ftdic);
433
434 /* Discard garbage. */
435 while (1 == sigma_read(&pins, 1))
436 ;
437
438 /* Initialize the logic analyzer mode. */
439 sigma_write(logic_mode_start, sizeof(logic_mode_start));
440
441 /* Expect a 3 byte reply. */
442 ret = sigma_read(result, 3);
443 if (ret != 3 ||
444 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
445 g_warning("Configuration failed. Invalid reply received.");
446 return SIGROK_ERR;
447 }
448
449 cur_firmware = firmware_idx;
450
451 return SIGROK_OK;
452}
453
454static int hw_opendev(int device_index)
455{
456 struct sigrok_device_instance *sdi;
457 int ret;
458
459 /* Make sure it's an ASIX SIGMA. */
460 if ((ret = ftdi_usb_open_desc(&ftdic,
461 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
462
463 g_warning("ftdi_usb_open failed: %s",
464 ftdi_get_error_string(&ftdic));
465
466 return 0;
467 }
468
469 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
470 return SIGROK_ERR;
471
472 sdi->status = ST_ACTIVE;
473
474 return SIGROK_OK;
475}
476
477static int set_samplerate(struct sigrok_device_instance *sdi, uint64_t samplerate)
478{
479 int i, ret;
480
481 sdi = sdi;
482
483 for (i = 0; supported_samplerates[i]; i++) {
484 if (supported_samplerates[i] == samplerate)
485 break;
486 }
487 if (supported_samplerates[i] == 0)
488 return SIGROK_ERR_SAMPLERATE;
489
490 if (samplerate <= MHZ(50)) {
491 ret = upload_firmware(0);
492 num_probes = 16;
493 }
494 if (samplerate == MHZ(100)) {
495 ret = upload_firmware(1);
496 num_probes = 8;
497 }
498 else if (samplerate == MHZ(200)) {
499 ret = upload_firmware(2);
500 num_probes = 4;
501 }
502
503 cur_samplerate = samplerate;
504 samples_per_event = 16 / num_probes;
505
506 g_message("Firmware uploaded");
507
508 return ret;
509}
510
511/* Only trigger on single pin supported (in 100-200 MHz modes). */
512static int configure_probes(GSList *probes)
513{
514 struct probe *probe;
515 GSList *l;
516 int trigger_set = 0;
517
518 if (cur_samplerate <= MHZ(50)) {
519 g_warning("Trigger support only implemented "
520 "in 100 and 200 MHz mode.");
521 return SIGROK_ERR;
522 }
523
524 for (l = probes; l; l = l->next) {
525 probe = (struct probe *)l->data;
526
527 if (!probe->enabled || !probe->trigger)
528 continue;
529
530 if (trigger_set) {
531 g_warning("Asix Sigma only supports a single pin trigger "
532 "in 100 and 200 MHz mode.");
533 return SIGROK_ERR;
534 }
535
536 /* Found trigger. */
537 if (probe->trigger[0] == 'f')
538 triggerfall = 1;
539 else
540 triggerfall = 0;
541
542 triggerpin = probe->index - 1;
543 trigger_set = 1;
544 }
545
546 return SIGROK_OK;
547}
548
549static void hw_closedev(int device_index)
550{
551 device_index = device_index;
552
553 ftdi_usb_close(&ftdic);
554}
555
556static void hw_cleanup(void)
557{
558}
559
560static void *hw_get_device_info(int device_index, int device_info_id)
561{
562 struct sigrok_device_instance *sdi;
563 void *info = NULL;
564
565 if (!(sdi = get_sigrok_device_instance(device_instances, device_index))) {
566 fprintf(stderr, "It's NULL.\n");
567 return NULL;
568 }
569
570 switch (device_info_id) {
571 case DI_INSTANCE:
572 info = sdi;
573 break;
574 case DI_NUM_PROBES:
575 info = GINT_TO_POINTER(16);
576 break;
577 case DI_SAMPLERATES:
578 info = &samplerates;
579 break;
580 case DI_TRIGGER_TYPES:
581 info = (char *)TRIGGER_TYPES;
582 break;
583 case DI_CUR_SAMPLERATE:
584 info = &cur_samplerate;
585 break;
586 }
587
588 return info;
589}
590
591static int hw_get_status(int device_index)
592{
593 struct sigrok_device_instance *sdi;
594
595 sdi = get_sigrok_device_instance(device_instances, device_index);
596 if (sdi)
597 return sdi->status;
598 else
599 return ST_NOT_FOUND;
600}
601
602static int *hw_get_capabilities(void)
603{
604 return capabilities;
605}
606
607static int hw_set_configuration(int device_index, int capability, void *value)
608{
609 struct sigrok_device_instance *sdi;
610 int ret;
611
612 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
613 return SIGROK_ERR;
614
615 if (capability == HWCAP_SAMPLERATE) {
616 ret = set_samplerate(sdi, *(uint64_t*) value);
617 } else if (capability == HWCAP_PROBECONFIG) {
618 ret = configure_probes(value);
619 } else if (capability == HWCAP_LIMIT_MSEC) {
620 limit_msec = strtoull(value, NULL, 10);
621 ret = SIGROK_OK;
622 } else if (capability == HWCAP_CAPTURE_RATIO) {
623 capture_ratio = strtoull(value, NULL, 10);
624 ret = SIGROK_OK;
625 } else if (capability == HWCAP_PROBECONFIG) {
626 ret = configure_probes((GSList *) value);
627 } else {
628 ret = SIGROK_ERR;
629 }
630
631 return ret;
632}
633
634/*
635 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
636 * Each event is 20ns apart, and can contain multiple samples.
637 *
638 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
639 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
640 * For 50 MHz and below, events contain one sample for each channel,
641 * spread 20 ns apart.
642 */
643static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
644 uint16_t *lastsample, int triggerpos, void *user_data)
645{
646 uint16_t tsdiff, ts;
647 uint16_t samples[65536 * samples_per_event];
648 struct datafeed_packet packet;
649 int i, j, k, l, numpad, tosend;
650 size_t n = 0, sent = 0;
651 int clustersize = EVENTS_PER_CLUSTER * samples_per_event;
652 uint16_t *event;
653 uint16_t cur_sample;
654 int triggerts = -1;
655
656 /* Find in which cluster the trigger occured. */
657 if (triggerpos != -1)
658 triggerts = (triggerpos / 7);
659
660 /* For each ts. */
661 for (i = 0; i < 64; ++i) {
662 ts = *(uint16_t *) &buf[i * 16];
663 tsdiff = ts - *lastts;
664 *lastts = ts;
665
666 /* Pad last sample up to current point. */
667 numpad = tsdiff * samples_per_event - clustersize;
668 if (numpad > 0) {
669 for (j = 0; j < numpad; ++j)
670 samples[j] = *lastsample;
671
672 n = numpad;
673 }
674
675 /* Send samples between previous and this timestamp to sigrok. */
676 sent = 0;
677 while (sent < n) {
678 tosend = MIN(2048, n - sent);
679
680 packet.type = DF_LOGIC16;
681 packet.length = tosend * sizeof(uint16_t);
682 packet.payload = samples + sent;
683 session_bus(user_data, &packet);
684
685 sent += tosend;
686 }
687 n = 0;
688
689 event = (uint16_t *) &buf[i * 16 + 2];
690 cur_sample = 0;
691
692 /* For each event in cluster. */
693 for (j = 0; j < 7; ++j) {
694
695 /* For each sample in event. */
696 for (k = 0; k < samples_per_event; ++k) {
697 cur_sample = 0;
698
699 /* For each probe. */
700 for (l = 0; l < num_probes; ++l)
701 cur_sample |= (!!(event[j] & (1 << (l *
702 samples_per_event + k))))
703 << l;
704
705 samples[n++] = cur_sample;
706 }
707 }
708
709 *lastsample = samples[n - 1];
710
711 /* Send data up to trigger point (if triggered). */
712 sent = 0;
713 if (i == triggerts) {
714 /*
715 * Trigger is presumptively only accurate to event, i.e.
716 * for 100 and 200 MHz, where multiple samples are coded
717 * in a single event, the trigger does not match the
718 * exact sample.
719 */
720 tosend = (triggerpos % 7) - 3;
721
722 if (tosend > 0) {
723 packet.type = DF_LOGIC16;
724 packet.length = tosend * sizeof(uint16_t);
725 packet.payload = samples;
726 session_bus(user_data, &packet);
727
728 sent += tosend;
729 }
730
731 packet.type = DF_TRIGGER;
732 packet.length = 0;
733 packet.payload = 0;
734 session_bus(user_data, &packet);
735 }
736
737 /* Send rest of the chunk to sigrok. */
738 tosend = n - sent;
739
740 packet.type = DF_LOGIC16;
741 packet.length = tosend * sizeof(uint16_t);
742 packet.payload = samples + sent;
743 session_bus(user_data, &packet);
744 }
745
746 return SIGROK_OK;
747}
748
749static int receive_data(int fd, int revents, void *user_data)
750{
751 struct datafeed_packet packet;
752 const int chunks_per_read = 32;
753 unsigned char buf[chunks_per_read * CHUNK_SIZE];
754 int bufsz, numchunks, curchunk, i, newchunks;
755 uint32_t triggerpos, stoppos, running_msec;
756 struct timeval tv;
757 uint16_t lastts = 0;
758 uint16_t lastsample = 0;
759 uint8_t modestatus;
760 int triggerchunk = -1;
761
762 fd = fd;
763 revents = revents;
764
765 /* Get the current position. */
766 sigma_read_pos(&stoppos, &triggerpos);
767 numchunks = stoppos / 512;
768
769 /* Check if the has expired, or memory is full. */
770 gettimeofday(&tv, 0);
771 running_msec = (tv.tv_sec - start_tv.tv_sec) * 1000 +
772 (tv.tv_usec - start_tv.tv_usec) / 1000;
773
774 if (running_msec < limit_msec && numchunks < 32767)
775 return FALSE;
776
777 /* Stop acqusition. */
778 sigma_set_register(WRITE_MODE, 0x11);
779
780 /* Set SDRAM Read Enable. */
781 sigma_set_register(WRITE_MODE, 0x02);
782
783 /* Get the current position. */
784 sigma_read_pos(&stoppos, &triggerpos);
785
786 /* Check if trigger has fired. */
787 modestatus = sigma_get_register(READ_MODE);
788 if (modestatus & 0x20) {
789 triggerchunk = triggerpos / 512;
790 }
791
792 /* Download sample data. */
793 for (curchunk = 0; curchunk < numchunks;) {
794 newchunks = MIN(chunks_per_read, numchunks - curchunk);
795
796 g_message("Downloading sample data: %.0f %%",
797 100.0 * curchunk / numchunks);
798
799 bufsz = sigma_read_dram(curchunk, newchunks, buf);
800
801 /* Find first ts. */
802 if (curchunk == 0)
803 lastts = *(uint16_t *) buf - 1;
804
805 /* Decode chunks and send them to sigrok. */
806 for (i = 0; i < newchunks; ++i) {
807 if (curchunk + i == triggerchunk)
808 decode_chunk_ts(buf + (i * CHUNK_SIZE),
809 &lastts, &lastsample,
810 triggerpos & 0x1ff, user_data);
811 else
812 decode_chunk_ts(buf + (i * CHUNK_SIZE),
813 &lastts, &lastsample,
814 -1, user_data);
815 }
816
817 curchunk += newchunks;
818 }
819
820 /* End of data. */
821 packet.type = DF_END;
822 packet.length = 0;
823 session_bus(user_data, &packet);
824
825 return TRUE;
826}
827
828static int hw_start_acquisition(int device_index, gpointer session_device_id)
829{
830 struct sigrok_device_instance *sdi;
831 struct datafeed_packet packet;
832 struct datafeed_header header;
833 struct clockselect_50 clockselect;
834 int frac;
835 uint8_t triggerselect;
836 struct triggerinout triggerinout_conf;
837
838 session_device_id = session_device_id;
839
840 if (!(sdi = get_sigrok_device_instance(device_instances, device_index)))
841 return SIGROK_ERR;
842
843 device_index = device_index;
844
845 /* If the samplerate has not been set, default to 50 MHz. */
846 if (cur_firmware == -1)
847 set_samplerate(sdi, MHZ(50));
848
849 /* Enter trigger programming mode. */
850 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
851
852 /* 100 and 200 MHz mode. */
853 if (cur_samplerate >= MHZ(100)) {
854 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81);
855
856 triggerselect = (1 << LEDSEL1) | (triggerfall << 3) |
857 (triggerpin & 0x7);
858
859 /* All other modes. */
860 } else if (cur_samplerate <= MHZ(50)) {
861 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20);
862
863 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
864 }
865
866 /* Setup trigger in and out pins to default values. */
867 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
868 triggerinout_conf.trgout_bytrigger = 1;
869 triggerinout_conf.trgout_enable = 1;
870
871 sigma_write_register(WRITE_TRIGGER_OPTION,
872 (uint8_t *) &triggerinout_conf,
873 sizeof(struct triggerinout));
874
875 /* Go back to normal mode. */
876 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect);
877
878 /* Set clock select register. */
879 if (cur_samplerate == MHZ(200))
880 /* Enable 4 probes. */
881 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0);
882 else if (cur_samplerate == MHZ(100))
883 /* Enable 8 probes. */
884 sigma_set_register(WRITE_CLOCK_SELECT, 0x00);
885 else {
886 /*
887 * 50 MHz mode (or fraction thereof). Any fraction down to
888 * 50 MHz / 256 can be used, but is not supported by sigrok API.
889 */
890 frac = MHZ(50) / cur_samplerate - 1;
891
892 clockselect.async = 0;
893 clockselect.fraction = frac;
894 clockselect.disabled_probes = 0;
895
896 sigma_write_register(WRITE_CLOCK_SELECT,
897 (uint8_t *) &clockselect,
898 sizeof(clockselect));
899 }
900
901 /* Setup maximum post trigger time. */
902 sigma_set_register(WRITE_POST_TRIGGER, (capture_ratio * 256) / 100);
903
904 /* Start acqusition. */
905 gettimeofday(&start_tv, 0);
906 sigma_set_register(WRITE_MODE, 0x0d);
907
908 /* Send header packet to the session bus. */
909 packet.type = DF_HEADER;
910 packet.length = sizeof(struct datafeed_header);
911 packet.payload = &header;
912 header.feed_version = 1;
913 gettimeofday(&header.starttime, NULL);
914 header.samplerate = cur_samplerate;
915 header.protocol_id = PROTO_RAW;
916 header.num_probes = num_probes;
917 session_bus(session_device_id, &packet);
918
919 /* Add capture source. */
920 source_add(0, G_IO_IN, 10, receive_data, session_device_id);
921
922 return SIGROK_OK;
923}
924
925static void hw_stop_acquisition(int device_index, gpointer session_device_id)
926{
927 device_index = device_index;
928 session_device_id = session_device_id;
929
930 /* Stop acquisition. */
931 sigma_set_register(WRITE_MODE, 0x11);
932
933 // XXX Set some state to indicate that data should be sent to sigrok
934 // Now, we just wait for timeout
935}
936
937struct device_plugin asix_sigma_plugin_info = {
938 "asix-sigma",
939 1,
940 hw_init,
941 hw_cleanup,
942 hw_opendev,
943 hw_closedev,
944 hw_get_device_info,
945 hw_get_status,
946 hw_get_capabilities,
947 hw_set_configuration,
948 hw_start_acquisition,
949 hw_stop_acquisition,
950};