]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
sr: Fix/document probe names.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA Logic Analyzer Driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include <zlib.h>
31#include "sigrok.h"
32#include "sigrok-internal.h"
33#include "asix-sigma.h"
34
35#define USB_VENDOR 0xa600
36#define USB_PRODUCT 0xa000
37#define USB_DESCRIPTION "ASIX SIGMA"
38#define USB_VENDOR_NAME "ASIX"
39#define USB_MODEL_NAME "SIGMA"
40#define USB_MODEL_VERSION ""
41#define TRIGGER_TYPES "rf10"
42#define NUM_PROBES 16
43
44static GSList *dev_insts = NULL;
45
46static uint64_t supported_samplerates[] = {
47 SR_KHZ(200),
48 SR_KHZ(250),
49 SR_KHZ(500),
50 SR_MHZ(1),
51 SR_MHZ(5),
52 SR_MHZ(10),
53 SR_MHZ(25),
54 SR_MHZ(50),
55 SR_MHZ(100),
56 SR_MHZ(200),
57 0,
58};
59
60/*
61 * Probe numbers seem to go from 1-16, according to this image:
62 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63 * (the cable has two additional GND pins, and a TI and TO pin)
64 */
65static const char *probe_names[NUM_PROBES + 1] = {
66 "1",
67 "2",
68 "3",
69 "4",
70 "5",
71 "6",
72 "7",
73 "8",
74 "9",
75 "10",
76 "11",
77 "12",
78 "13",
79 "14",
80 "15",
81 "16",
82 NULL,
83};
84
85static struct sr_samplerates samplerates = {
86 SR_KHZ(200),
87 SR_MHZ(200),
88 SR_HZ(0),
89 supported_samplerates,
90};
91
92static int hwcaps[] = {
93 SR_HWCAP_LOGIC_ANALYZER,
94 SR_HWCAP_SAMPLERATE,
95 SR_HWCAP_CAPTURE_RATIO,
96 SR_HWCAP_PROBECONFIG,
97
98 SR_HWCAP_LIMIT_MSEC,
99 0,
100};
101
102/* Force the FPGA to reboot. */
103static uint8_t suicide[] = {
104 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
105};
106
107/* Prepare to upload firmware (FPGA specific). */
108static uint8_t init[] = {
109 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
110};
111
112/* Initialize the logic analyzer mode. */
113static uint8_t logic_mode_start[] = {
114 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
115 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
116};
117
118static const char *firmware_files[] = {
119 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
120 "asix-sigma-100.fw", /* 100 MHz */
121 "asix-sigma-200.fw", /* 200 MHz */
122 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
123 "asix-sigma-phasor.fw", /* Frequency counter */
124};
125
126static int hw_dev_acquisition_stop(int dev_index, gpointer session_data);
127
128static int sigma_read(void *buf, size_t size, struct context *ctx)
129{
130 int ret;
131
132 ret = ftdi_read_data(&ctx->ftdic, (unsigned char *)buf, size);
133 if (ret < 0) {
134 sr_err("sigma: ftdi_read_data failed: %s",
135 ftdi_get_error_string(&ctx->ftdic));
136 }
137
138 return ret;
139}
140
141static int sigma_write(void *buf, size_t size, struct context *ctx)
142{
143 int ret;
144
145 ret = ftdi_write_data(&ctx->ftdic, (unsigned char *)buf, size);
146 if (ret < 0) {
147 sr_err("sigma: ftdi_write_data failed: %s",
148 ftdi_get_error_string(&ctx->ftdic));
149 } else if ((size_t) ret != size) {
150 sr_err("sigma: ftdi_write_data did not complete write\n");
151 }
152
153 return ret;
154}
155
156static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
157 struct context *ctx)
158{
159 size_t i;
160 uint8_t buf[len + 2];
161 int idx = 0;
162
163 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
164 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
165
166 for (i = 0; i < len; ++i) {
167 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
168 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
169 }
170
171 return sigma_write(buf, idx, ctx);
172}
173
174static int sigma_set_register(uint8_t reg, uint8_t value, struct context *ctx)
175{
176 return sigma_write_register(reg, &value, 1, ctx);
177}
178
179static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
180 struct context *ctx)
181{
182 uint8_t buf[3];
183
184 buf[0] = REG_ADDR_LOW | (reg & 0xf);
185 buf[1] = REG_ADDR_HIGH | (reg >> 4);
186 buf[2] = REG_READ_ADDR;
187
188 sigma_write(buf, sizeof(buf), ctx);
189
190 return sigma_read(data, len, ctx);
191}
192
193static uint8_t sigma_get_register(uint8_t reg, struct context *ctx)
194{
195 uint8_t value;
196
197 if (1 != sigma_read_register(reg, &value, 1, ctx)) {
198 sr_err("sigma: sigma_get_register: 1 byte expected");
199 return 0;
200 }
201
202 return value;
203}
204
205static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
206 struct context *ctx)
207{
208 uint8_t buf[] = {
209 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
210
211 REG_READ_ADDR | NEXT_REG,
212 REG_READ_ADDR | NEXT_REG,
213 REG_READ_ADDR | NEXT_REG,
214 REG_READ_ADDR | NEXT_REG,
215 REG_READ_ADDR | NEXT_REG,
216 REG_READ_ADDR | NEXT_REG,
217 };
218 uint8_t result[6];
219
220 sigma_write(buf, sizeof(buf), ctx);
221
222 sigma_read(result, sizeof(result), ctx);
223
224 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
225 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
226
227 /* Not really sure why this must be done, but according to spec. */
228 if ((--*stoppos & 0x1ff) == 0x1ff)
229 stoppos -= 64;
230
231 if ((*--triggerpos & 0x1ff) == 0x1ff)
232 triggerpos -= 64;
233
234 return 1;
235}
236
237static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
238 uint8_t *data, struct context *ctx)
239{
240 size_t i;
241 uint8_t buf[4096];
242 int idx = 0;
243
244 /* Send the startchunk. Index start with 1. */
245 buf[0] = startchunk >> 8;
246 buf[1] = startchunk & 0xff;
247 sigma_write_register(WRITE_MEMROW, buf, 2, ctx);
248
249 /* Read the DRAM. */
250 buf[idx++] = REG_DRAM_BLOCK;
251 buf[idx++] = REG_DRAM_WAIT_ACK;
252
253 for (i = 0; i < numchunks; ++i) {
254 /* Alternate bit to copy from DRAM to cache. */
255 if (i != (numchunks - 1))
256 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
257
258 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
259
260 if (i != (numchunks - 1))
261 buf[idx++] = REG_DRAM_WAIT_ACK;
262 }
263
264 sigma_write(buf, idx, ctx);
265
266 return sigma_read(data, numchunks * CHUNK_SIZE, ctx);
267}
268
269/* Upload trigger look-up tables to Sigma. */
270static int sigma_write_trigger_lut(struct triggerlut *lut, struct context *ctx)
271{
272 int i;
273 uint8_t tmp[2];
274 uint16_t bit;
275
276 /* Transpose the table and send to Sigma. */
277 for (i = 0; i < 16; ++i) {
278 bit = 1 << i;
279
280 tmp[0] = tmp[1] = 0;
281
282 if (lut->m2d[0] & bit)
283 tmp[0] |= 0x01;
284 if (lut->m2d[1] & bit)
285 tmp[0] |= 0x02;
286 if (lut->m2d[2] & bit)
287 tmp[0] |= 0x04;
288 if (lut->m2d[3] & bit)
289 tmp[0] |= 0x08;
290
291 if (lut->m3 & bit)
292 tmp[0] |= 0x10;
293 if (lut->m3s & bit)
294 tmp[0] |= 0x20;
295 if (lut->m4 & bit)
296 tmp[0] |= 0x40;
297
298 if (lut->m0d[0] & bit)
299 tmp[1] |= 0x01;
300 if (lut->m0d[1] & bit)
301 tmp[1] |= 0x02;
302 if (lut->m0d[2] & bit)
303 tmp[1] |= 0x04;
304 if (lut->m0d[3] & bit)
305 tmp[1] |= 0x08;
306
307 if (lut->m1d[0] & bit)
308 tmp[1] |= 0x10;
309 if (lut->m1d[1] & bit)
310 tmp[1] |= 0x20;
311 if (lut->m1d[2] & bit)
312 tmp[1] |= 0x40;
313 if (lut->m1d[3] & bit)
314 tmp[1] |= 0x80;
315
316 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
317 ctx);
318 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, ctx);
319 }
320
321 /* Send the parameters */
322 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
323 sizeof(lut->params), ctx);
324
325 return SR_OK;
326}
327
328/* Generate the bitbang stream for programming the FPGA. */
329static int bin2bitbang(const char *filename,
330 unsigned char **buf, size_t *buf_size)
331{
332 FILE *f;
333 long file_size;
334 unsigned long offset = 0;
335 unsigned char *p;
336 uint8_t *compressed_buf, *firmware;
337 uLongf csize, fwsize;
338 const int buffer_size = 65536;
339 size_t i;
340 int c, ret, bit, v;
341 uint32_t imm = 0x3f6df2ab;
342
343 f = g_fopen(filename, "rb");
344 if (!f) {
345 sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename);
346 return SR_ERR;
347 }
348
349 if (-1 == fseek(f, 0, SEEK_END)) {
350 sr_err("sigma: fseek on %s failed", filename);
351 fclose(f);
352 return SR_ERR;
353 }
354
355 file_size = ftell(f);
356
357 fseek(f, 0, SEEK_SET);
358
359 if (!(compressed_buf = g_try_malloc(file_size))) {
360 sr_err("sigma: %s: compressed_buf malloc failed", __func__);
361 fclose(f);
362 return SR_ERR_MALLOC;
363 }
364
365 if (!(firmware = g_try_malloc(buffer_size))) {
366 sr_err("sigma: %s: firmware malloc failed", __func__);
367 fclose(f);
368 g_free(compressed_buf);
369 return SR_ERR_MALLOC;
370 }
371
372 csize = 0;
373 while ((c = getc(f)) != EOF) {
374 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
375 compressed_buf[csize++] = c ^ imm;
376 }
377 fclose(f);
378
379 fwsize = buffer_size;
380 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
381 if (ret < 0) {
382 g_free(compressed_buf);
383 g_free(firmware);
384 sr_err("sigma: Could not unpack Sigma firmware. "
385 "(Error %d)\n", ret);
386 return SR_ERR;
387 }
388
389 g_free(compressed_buf);
390
391 *buf_size = fwsize * 2 * 8;
392
393 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
394 if (!p) {
395 sr_err("sigma: %s: buf/p malloc failed", __func__);
396 g_free(compressed_buf);
397 g_free(firmware);
398 return SR_ERR_MALLOC;
399 }
400
401 for (i = 0; i < fwsize; ++i) {
402 for (bit = 7; bit >= 0; --bit) {
403 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
404 p[offset++] = v | 0x01;
405 p[offset++] = v;
406 }
407 }
408
409 g_free(firmware);
410
411 if (offset != *buf_size) {
412 g_free(*buf);
413 sr_err("sigma: Error reading firmware %s "
414 "offset=%ld, file_size=%ld, buf_size=%zd\n",
415 filename, offset, file_size, *buf_size);
416
417 return SR_ERR;
418 }
419
420 return SR_OK;
421}
422
423static int hw_init(const char *devinfo)
424{
425 struct sr_dev_inst *sdi;
426 struct context *ctx;
427
428 /* Avoid compiler warnings. */
429 (void)devinfo;
430
431 if (!(ctx = g_try_malloc(sizeof(struct context)))) {
432 sr_err("sigma: %s: ctx malloc failed", __func__);
433 return 0; /* FIXME: Should be SR_ERR_MALLOC. */
434 }
435
436 ftdi_init(&ctx->ftdic);
437
438 /* Look for SIGMAs. */
439 if (ftdi_usb_open_desc(&ctx->ftdic, USB_VENDOR, USB_PRODUCT,
440 USB_DESCRIPTION, NULL) < 0)
441 goto free;
442
443 ctx->cur_samplerate = 0;
444 ctx->period_ps = 0;
445 ctx->limit_msec = 0;
446 ctx->cur_firmware = -1;
447 ctx->num_probes = 0;
448 ctx->samples_per_event = 0;
449 ctx->capture_ratio = 50;
450 ctx->use_triggers = 0;
451
452 /* Register SIGMA device. */
453 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
454 USB_MODEL_NAME, USB_MODEL_VERSION))) {
455 sr_err("sigma: %s: sdi was NULL", __func__);
456 goto free;
457 }
458
459 sdi->priv = ctx;
460
461 dev_insts = g_slist_append(dev_insts, sdi);
462
463 /* We will open the device again when we need it. */
464 ftdi_usb_close(&ctx->ftdic);
465
466 return 1;
467
468free:
469 g_free(ctx);
470 return 0;
471}
472
473static int upload_firmware(int firmware_idx, struct context *ctx)
474{
475 int ret;
476 unsigned char *buf;
477 unsigned char pins;
478 size_t buf_size;
479 unsigned char result[32];
480 char firmware_path[128];
481
482 /* Make sure it's an ASIX SIGMA. */
483 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
484 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
485 sr_err("sigma: ftdi_usb_open failed: %s",
486 ftdi_get_error_string(&ctx->ftdic));
487 return 0;
488 }
489
490 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
491 sr_err("sigma: ftdi_set_bitmode failed: %s",
492 ftdi_get_error_string(&ctx->ftdic));
493 return 0;
494 }
495
496 /* Four times the speed of sigmalogan - Works well. */
497 if ((ret = ftdi_set_baudrate(&ctx->ftdic, 750000)) < 0) {
498 sr_err("sigma: ftdi_set_baudrate failed: %s",
499 ftdi_get_error_string(&ctx->ftdic));
500 return 0;
501 }
502
503 /* Force the FPGA to reboot. */
504 sigma_write(suicide, sizeof(suicide), ctx);
505 sigma_write(suicide, sizeof(suicide), ctx);
506 sigma_write(suicide, sizeof(suicide), ctx);
507 sigma_write(suicide, sizeof(suicide), ctx);
508
509 /* Prepare to upload firmware (FPGA specific). */
510 sigma_write(init, sizeof(init), ctx);
511
512 ftdi_usb_purge_buffers(&ctx->ftdic);
513
514 /* Wait until the FPGA asserts INIT_B. */
515 while (1) {
516 ret = sigma_read(result, 1, ctx);
517 if (result[0] & 0x20)
518 break;
519 }
520
521 /* Prepare firmware. */
522 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
523 firmware_files[firmware_idx]);
524
525 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
526 sr_err("sigma: An error occured while reading the firmware: %s",
527 firmware_path);
528 return ret;
529 }
530
531 /* Upload firmare. */
532 sigma_write(buf, buf_size, ctx);
533
534 g_free(buf);
535
536 if ((ret = ftdi_set_bitmode(&ctx->ftdic, 0x00, BITMODE_RESET)) < 0) {
537 sr_err("sigma: ftdi_set_bitmode failed: %s",
538 ftdi_get_error_string(&ctx->ftdic));
539 return SR_ERR;
540 }
541
542 ftdi_usb_purge_buffers(&ctx->ftdic);
543
544 /* Discard garbage. */
545 while (1 == sigma_read(&pins, 1, ctx))
546 ;
547
548 /* Initialize the logic analyzer mode. */
549 sigma_write(logic_mode_start, sizeof(logic_mode_start), ctx);
550
551 /* Expect a 3 byte reply. */
552 ret = sigma_read(result, 3, ctx);
553 if (ret != 3 ||
554 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
555 sr_err("sigma: Configuration failed. Invalid reply received.");
556 return SR_ERR;
557 }
558
559 ctx->cur_firmware = firmware_idx;
560
561 return SR_OK;
562}
563
564static int hw_dev_open(int dev_index)
565{
566 struct sr_dev_inst *sdi;
567 struct context *ctx;
568 int ret;
569
570 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
571 return SR_ERR;
572
573 ctx = sdi->priv;
574
575 /* Make sure it's an ASIX SIGMA. */
576 if ((ret = ftdi_usb_open_desc(&ctx->ftdic,
577 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
578
579 sr_err("sigma: ftdi_usb_open failed: %s",
580 ftdi_get_error_string(&ctx->ftdic));
581
582 return 0;
583 }
584
585 sdi->status = SR_ST_ACTIVE;
586
587 return SR_OK;
588}
589
590static int set_samplerate(struct sr_dev_inst *sdi, uint64_t samplerate)
591{
592 int i, ret;
593 struct context *ctx = sdi->priv;
594
595 for (i = 0; supported_samplerates[i]; i++) {
596 if (supported_samplerates[i] == samplerate)
597 break;
598 }
599 if (supported_samplerates[i] == 0)
600 return SR_ERR_SAMPLERATE;
601
602 if (samplerate <= SR_MHZ(50)) {
603 ret = upload_firmware(0, ctx);
604 ctx->num_probes = 16;
605 }
606 if (samplerate == SR_MHZ(100)) {
607 ret = upload_firmware(1, ctx);
608 ctx->num_probes = 8;
609 }
610 else if (samplerate == SR_MHZ(200)) {
611 ret = upload_firmware(2, ctx);
612 ctx->num_probes = 4;
613 }
614
615 ctx->cur_samplerate = samplerate;
616 ctx->period_ps = 1000000000000 / samplerate;
617 ctx->samples_per_event = 16 / ctx->num_probes;
618 ctx->state.state = SIGMA_IDLE;
619
620 sr_info("sigma: Firmware uploaded");
621
622 return ret;
623}
624
625/*
626 * In 100 and 200 MHz mode, only a single pin rising/falling can be
627 * set as trigger. In other modes, two rising/falling triggers can be set,
628 * in addition to value/mask trigger for any number of probes.
629 *
630 * The Sigma supports complex triggers using boolean expressions, but this
631 * has not been implemented yet.
632 */
633static int configure_probes(struct sr_dev_inst *sdi, GSList *probes)
634{
635 struct context *ctx = sdi->priv;
636 struct sr_probe *probe;
637 GSList *l;
638 int trigger_set = 0;
639 int probebit;
640
641 memset(&ctx->trigger, 0, sizeof(struct sigma_trigger));
642
643 for (l = probes; l; l = l->next) {
644 probe = (struct sr_probe *)l->data;
645 probebit = 1 << (probe->index - 1);
646
647 if (!probe->enabled || !probe->trigger)
648 continue;
649
650 if (ctx->cur_samplerate >= SR_MHZ(100)) {
651 /* Fast trigger support. */
652 if (trigger_set) {
653 sr_err("sigma: ASIX SIGMA only supports a single "
654 "pin trigger in 100 and 200MHz mode.");
655 return SR_ERR;
656 }
657 if (probe->trigger[0] == 'f')
658 ctx->trigger.fallingmask |= probebit;
659 else if (probe->trigger[0] == 'r')
660 ctx->trigger.risingmask |= probebit;
661 else {
662 sr_err("sigma: ASIX SIGMA only supports "
663 "rising/falling trigger in 100 "
664 "and 200MHz mode.");
665 return SR_ERR;
666 }
667
668 ++trigger_set;
669 } else {
670 /* Simple trigger support (event). */
671 if (probe->trigger[0] == '1') {
672 ctx->trigger.simplevalue |= probebit;
673 ctx->trigger.simplemask |= probebit;
674 }
675 else if (probe->trigger[0] == '0') {
676 ctx->trigger.simplevalue &= ~probebit;
677 ctx->trigger.simplemask |= probebit;
678 }
679 else if (probe->trigger[0] == 'f') {
680 ctx->trigger.fallingmask |= probebit;
681 ++trigger_set;
682 }
683 else if (probe->trigger[0] == 'r') {
684 ctx->trigger.risingmask |= probebit;
685 ++trigger_set;
686 }
687
688 /*
689 * Actually, Sigma supports 2 rising/falling triggers,
690 * but they are ORed and the current trigger syntax
691 * does not permit ORed triggers.
692 */
693 if (trigger_set > 1) {
694 sr_err("sigma: ASIX SIGMA only supports 1 "
695 "rising/falling triggers.");
696 return SR_ERR;
697 }
698 }
699
700 if (trigger_set)
701 ctx->use_triggers = 1;
702 }
703
704 return SR_OK;
705}
706
707static int hw_dev_close(int dev_index)
708{
709 struct sr_dev_inst *sdi;
710 struct context *ctx;
711
712 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
713 sr_err("sigma: %s: sdi was NULL", __func__);
714 return SR_ERR; /* TODO: SR_ERR_ARG? */
715 }
716
717 if (!(ctx = sdi->priv)) {
718 sr_err("sigma: %s: sdi->priv was NULL", __func__);
719 return SR_ERR; /* TODO: SR_ERR_ARG? */
720 }
721
722 /* TODO */
723 if (sdi->status == SR_ST_ACTIVE)
724 ftdi_usb_close(&ctx->ftdic);
725
726 sdi->status = SR_ST_INACTIVE;
727
728 return SR_OK;
729}
730
731static int hw_cleanup(void)
732{
733 GSList *l;
734 struct sr_dev_inst *sdi;
735 int ret = SR_OK;
736
737 /* Properly close all devices. */
738 for (l = dev_insts; l; l = l->next) {
739 if (!(sdi = l->data)) {
740 /* Log error, but continue cleaning up the rest. */
741 sr_err("sigma: %s: sdi was NULL, continuing", __func__);
742 ret = SR_ERR_BUG;
743 continue;
744 }
745 sr_dev_inst_free(sdi);
746 }
747 g_slist_free(dev_insts);
748 dev_insts = NULL;
749
750 return ret;
751}
752
753static void *hw_dev_info_get(int dev_index, int dev_info_id)
754{
755 struct sr_dev_inst *sdi;
756 struct context *ctx;
757 void *info = NULL;
758
759 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
760 sr_err("sigma: %s: sdi was NULL", __func__);
761 return NULL;
762 }
763
764 ctx = sdi->priv;
765
766 switch (dev_info_id) {
767 case SR_DI_INST:
768 info = sdi;
769 break;
770 case SR_DI_NUM_PROBES:
771 info = GINT_TO_POINTER(NUM_PROBES);
772 break;
773 case SR_DI_PROBE_NAMES:
774 info = probe_names;
775 break;
776 case SR_DI_SAMPLERATES:
777 info = &samplerates;
778 break;
779 case SR_DI_TRIGGER_TYPES:
780 info = (char *)TRIGGER_TYPES;
781 break;
782 case SR_DI_CUR_SAMPLERATE:
783 info = &ctx->cur_samplerate;
784 break;
785 }
786
787 return info;
788}
789
790static int hw_dev_status_get(int dev_index)
791{
792 struct sr_dev_inst *sdi;
793
794 sdi = sr_dev_inst_get(dev_insts, dev_index);
795 if (sdi)
796 return sdi->status;
797 else
798 return SR_ST_NOT_FOUND;
799}
800
801static int *hw_hwcap_get_all(void)
802{
803 return hwcaps;
804}
805
806static int hw_dev_config_set(int dev_index, int hwcap, void *value)
807{
808 struct sr_dev_inst *sdi;
809 struct context *ctx;
810 int ret;
811
812 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
813 return SR_ERR;
814
815 ctx = sdi->priv;
816
817 if (hwcap == SR_HWCAP_SAMPLERATE) {
818 ret = set_samplerate(sdi, *(uint64_t *)value);
819 } else if (hwcap == SR_HWCAP_PROBECONFIG) {
820 ret = configure_probes(sdi, value);
821 } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
822 ctx->limit_msec = *(uint64_t *)value;
823 if (ctx->limit_msec > 0)
824 ret = SR_OK;
825 else
826 ret = SR_ERR;
827 } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
828 ctx->capture_ratio = *(uint64_t *)value;
829 if (ctx->capture_ratio < 0 || ctx->capture_ratio > 100)
830 ret = SR_ERR;
831 else
832 ret = SR_OK;
833 } else {
834 ret = SR_ERR;
835 }
836
837 return ret;
838}
839
840/* Software trigger to determine exact trigger position. */
841static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
842 struct sigma_trigger *t)
843{
844 int i;
845
846 for (i = 0; i < 8; ++i) {
847 if (i > 0)
848 last_sample = samples[i-1];
849
850 /* Simple triggers. */
851 if ((samples[i] & t->simplemask) != t->simplevalue)
852 continue;
853
854 /* Rising edge. */
855 if ((last_sample & t->risingmask) != 0 || (samples[i] &
856 t->risingmask) != t->risingmask)
857 continue;
858
859 /* Falling edge. */
860 if ((last_sample & t->fallingmask) != t->fallingmask ||
861 (samples[i] & t->fallingmask) != 0)
862 continue;
863
864 break;
865 }
866
867 /* If we did not match, return original trigger pos. */
868 return i & 0x7;
869}
870
871/*
872 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
873 * Each event is 20ns apart, and can contain multiple samples.
874 *
875 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
876 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
877 * For 50 MHz and below, events contain one sample for each channel,
878 * spread 20 ns apart.
879 */
880static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
881 uint16_t *lastsample, int triggerpos,
882 uint16_t limit_chunk, void *session_data)
883{
884 struct sr_dev_inst *sdi = session_data;
885 struct context *ctx = sdi->priv;
886 uint16_t tsdiff, ts;
887 uint16_t samples[65536 * ctx->samples_per_event];
888 struct sr_datafeed_packet packet;
889 struct sr_datafeed_logic logic;
890 int i, j, k, l, numpad, tosend;
891 size_t n = 0, sent = 0;
892 int clustersize = EVENTS_PER_CLUSTER * ctx->samples_per_event;
893 uint16_t *event;
894 uint16_t cur_sample;
895 int triggerts = -1;
896
897 /* Check if trigger is in this chunk. */
898 if (triggerpos != -1) {
899 if (ctx->cur_samplerate <= SR_MHZ(50))
900 triggerpos -= EVENTS_PER_CLUSTER - 1;
901
902 if (triggerpos < 0)
903 triggerpos = 0;
904
905 /* Find in which cluster the trigger occured. */
906 triggerts = triggerpos / 7;
907 }
908
909 /* For each ts. */
910 for (i = 0; i < 64; ++i) {
911 ts = *(uint16_t *) &buf[i * 16];
912 tsdiff = ts - *lastts;
913 *lastts = ts;
914
915 /* Decode partial chunk. */
916 if (limit_chunk && ts > limit_chunk)
917 return SR_OK;
918
919 /* Pad last sample up to current point. */
920 numpad = tsdiff * ctx->samples_per_event - clustersize;
921 if (numpad > 0) {
922 for (j = 0; j < numpad; ++j)
923 samples[j] = *lastsample;
924
925 n = numpad;
926 }
927
928 /* Send samples between previous and this timestamp to sigrok. */
929 sent = 0;
930 while (sent < n) {
931 tosend = MIN(2048, n - sent);
932
933 packet.type = SR_DF_LOGIC;
934 packet.payload = &logic;
935 logic.length = tosend * sizeof(uint16_t);
936 logic.unitsize = 2;
937 logic.data = samples + sent;
938 sr_session_bus(ctx->session_id, &packet);
939
940 sent += tosend;
941 }
942 n = 0;
943
944 event = (uint16_t *) &buf[i * 16 + 2];
945 cur_sample = 0;
946
947 /* For each event in cluster. */
948 for (j = 0; j < 7; ++j) {
949
950 /* For each sample in event. */
951 for (k = 0; k < ctx->samples_per_event; ++k) {
952 cur_sample = 0;
953
954 /* For each probe. */
955 for (l = 0; l < ctx->num_probes; ++l)
956 cur_sample |= (!!(event[j] & (1 << (l *
957 ctx->samples_per_event + k)))) << l;
958
959 samples[n++] = cur_sample;
960 }
961 }
962
963 /* Send data up to trigger point (if triggered). */
964 sent = 0;
965 if (i == triggerts) {
966 /*
967 * Trigger is not always accurate to sample because of
968 * pipeline delay. However, it always triggers before
969 * the actual event. We therefore look at the next
970 * samples to pinpoint the exact position of the trigger.
971 */
972 tosend = get_trigger_offset(samples, *lastsample,
973 &ctx->trigger);
974
975 if (tosend > 0) {
976 packet.type = SR_DF_LOGIC;
977 packet.payload = &logic;
978 logic.length = tosend * sizeof(uint16_t);
979 logic.unitsize = 2;
980 logic.data = samples;
981 sr_session_bus(ctx->session_id, &packet);
982
983 sent += tosend;
984 }
985
986 /* Only send trigger if explicitly enabled. */
987 if (ctx->use_triggers) {
988 packet.type = SR_DF_TRIGGER;
989 sr_session_bus(ctx->session_id, &packet);
990 }
991 }
992
993 /* Send rest of the chunk to sigrok. */
994 tosend = n - sent;
995
996 if (tosend > 0) {
997 packet.type = SR_DF_LOGIC;
998 packet.payload = &logic;
999 logic.length = tosend * sizeof(uint16_t);
1000 logic.unitsize = 2;
1001 logic.data = samples + sent;
1002 sr_session_bus(ctx->session_id, &packet);
1003 }
1004
1005 *lastsample = samples[n - 1];
1006 }
1007
1008 return SR_OK;
1009}
1010
1011static int receive_data(int fd, int revents, void *session_data)
1012{
1013 struct sr_dev_inst *sdi = session_data;
1014 struct context *ctx = sdi->priv;
1015 struct sr_datafeed_packet packet;
1016 const int chunks_per_read = 32;
1017 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1018 int bufsz, numchunks, i, newchunks;
1019 uint64_t running_msec;
1020 struct timeval tv;
1021
1022 /* Avoid compiler warnings. */
1023 (void)fd;
1024 (void)revents;
1025
1026 numchunks = (ctx->state.stoppos + 511) / 512;
1027
1028 if (ctx->state.state == SIGMA_IDLE)
1029 return FALSE;
1030
1031 if (ctx->state.state == SIGMA_CAPTURE) {
1032 /* Check if the timer has expired, or memory is full. */
1033 gettimeofday(&tv, 0);
1034 running_msec = (tv.tv_sec - ctx->start_tv.tv_sec) * 1000 +
1035 (tv.tv_usec - ctx->start_tv.tv_usec) / 1000;
1036
1037 if (running_msec < ctx->limit_msec && numchunks < 32767)
1038 return FALSE;
1039
1040 hw_dev_acquisition_stop(sdi->index, session_data);
1041
1042 return FALSE;
1043 } else if (ctx->state.state == SIGMA_DOWNLOAD) {
1044 if (ctx->state.chunks_downloaded >= numchunks) {
1045 /* End of samples. */
1046 packet.type = SR_DF_END;
1047 sr_session_bus(ctx->session_id, &packet);
1048
1049 ctx->state.state = SIGMA_IDLE;
1050
1051 return TRUE;
1052 }
1053
1054 newchunks = MIN(chunks_per_read,
1055 numchunks - ctx->state.chunks_downloaded);
1056
1057 sr_info("sigma: Downloading sample data: %.0f %%",
1058 100.0 * ctx->state.chunks_downloaded / numchunks);
1059
1060 bufsz = sigma_read_dram(ctx->state.chunks_downloaded,
1061 newchunks, buf, ctx);
1062 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1063 (void)bufsz;
1064
1065 /* Find first ts. */
1066 if (ctx->state.chunks_downloaded == 0) {
1067 ctx->state.lastts = *(uint16_t *) buf - 1;
1068 ctx->state.lastsample = 0;
1069 }
1070
1071 /* Decode chunks and send them to sigrok. */
1072 for (i = 0; i < newchunks; ++i) {
1073 int limit_chunk = 0;
1074
1075 /* The last chunk may potentially be only in part. */
1076 if (ctx->state.chunks_downloaded == numchunks - 1) {
1077 /* Find the last valid timestamp */
1078 limit_chunk = ctx->state.stoppos % 512 + ctx->state.lastts;
1079 }
1080
1081 if (ctx->state.chunks_downloaded + i == ctx->state.triggerchunk)
1082 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1083 &ctx->state.lastts,
1084 &ctx->state.lastsample,
1085 ctx->state.triggerpos & 0x1ff,
1086 limit_chunk, session_data);
1087 else
1088 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1089 &ctx->state.lastts,
1090 &ctx->state.lastsample,
1091 -1, limit_chunk, session_data);
1092
1093 ++ctx->state.chunks_downloaded;
1094 }
1095 }
1096
1097 return TRUE;
1098}
1099
1100/* Build a LUT entry used by the trigger functions. */
1101static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1102{
1103 int i, j, k, bit;
1104
1105 /* For each quad probe. */
1106 for (i = 0; i < 4; ++i) {
1107 entry[i] = 0xffff;
1108
1109 /* For each bit in LUT. */
1110 for (j = 0; j < 16; ++j)
1111
1112 /* For each probe in quad. */
1113 for (k = 0; k < 4; ++k) {
1114 bit = 1 << (i * 4 + k);
1115
1116 /* Set bit in entry */
1117 if ((mask & bit) &&
1118 ((!(value & bit)) !=
1119 (!(j & (1 << k)))))
1120 entry[i] &= ~(1 << j);
1121 }
1122 }
1123}
1124
1125/* Add a logical function to LUT mask. */
1126static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1127 int index, int neg, uint16_t *mask)
1128{
1129 int i, j;
1130 int x[2][2], tmp, a, b, aset, bset, rset;
1131
1132 memset(x, 0, 4 * sizeof(int));
1133
1134 /* Trigger detect condition. */
1135 switch (oper) {
1136 case OP_LEVEL:
1137 x[0][1] = 1;
1138 x[1][1] = 1;
1139 break;
1140 case OP_NOT:
1141 x[0][0] = 1;
1142 x[1][0] = 1;
1143 break;
1144 case OP_RISE:
1145 x[0][1] = 1;
1146 break;
1147 case OP_FALL:
1148 x[1][0] = 1;
1149 break;
1150 case OP_RISEFALL:
1151 x[0][1] = 1;
1152 x[1][0] = 1;
1153 break;
1154 case OP_NOTRISE:
1155 x[1][1] = 1;
1156 x[0][0] = 1;
1157 x[1][0] = 1;
1158 break;
1159 case OP_NOTFALL:
1160 x[1][1] = 1;
1161 x[0][0] = 1;
1162 x[0][1] = 1;
1163 break;
1164 case OP_NOTRISEFALL:
1165 x[1][1] = 1;
1166 x[0][0] = 1;
1167 break;
1168 }
1169
1170 /* Transpose if neg is set. */
1171 if (neg) {
1172 for (i = 0; i < 2; ++i) {
1173 for (j = 0; j < 2; ++j) {
1174 tmp = x[i][j];
1175 x[i][j] = x[1-i][1-j];
1176 x[1-i][1-j] = tmp;
1177 }
1178 }
1179 }
1180
1181 /* Update mask with function. */
1182 for (i = 0; i < 16; ++i) {
1183 a = (i >> (2 * index + 0)) & 1;
1184 b = (i >> (2 * index + 1)) & 1;
1185
1186 aset = (*mask >> i) & 1;
1187 bset = x[b][a];
1188
1189 if (func == FUNC_AND || func == FUNC_NAND)
1190 rset = aset & bset;
1191 else if (func == FUNC_OR || func == FUNC_NOR)
1192 rset = aset | bset;
1193 else if (func == FUNC_XOR || func == FUNC_NXOR)
1194 rset = aset ^ bset;
1195
1196 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1197 rset = !rset;
1198
1199 *mask &= ~(1 << i);
1200
1201 if (rset)
1202 *mask |= 1 << i;
1203 }
1204}
1205
1206/*
1207 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1208 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1209 * set at any time, but a full mask and value can be set (0/1).
1210 */
1211static int build_basic_trigger(struct triggerlut *lut, struct context *ctx)
1212{
1213 int i,j;
1214 uint16_t masks[2] = { 0, 0 };
1215
1216 memset(lut, 0, sizeof(struct triggerlut));
1217
1218 /* Contant for simple triggers. */
1219 lut->m4 = 0xa000;
1220
1221 /* Value/mask trigger support. */
1222 build_lut_entry(ctx->trigger.simplevalue, ctx->trigger.simplemask,
1223 lut->m2d);
1224
1225 /* Rise/fall trigger support. */
1226 for (i = 0, j = 0; i < 16; ++i) {
1227 if (ctx->trigger.risingmask & (1 << i) ||
1228 ctx->trigger.fallingmask & (1 << i))
1229 masks[j++] = 1 << i;
1230 }
1231
1232 build_lut_entry(masks[0], masks[0], lut->m0d);
1233 build_lut_entry(masks[1], masks[1], lut->m1d);
1234
1235 /* Add glue logic */
1236 if (masks[0] || masks[1]) {
1237 /* Transition trigger. */
1238 if (masks[0] & ctx->trigger.risingmask)
1239 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1240 if (masks[0] & ctx->trigger.fallingmask)
1241 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1242 if (masks[1] & ctx->trigger.risingmask)
1243 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1244 if (masks[1] & ctx->trigger.fallingmask)
1245 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1246 } else {
1247 /* Only value/mask trigger. */
1248 lut->m3 = 0xffff;
1249 }
1250
1251 /* Triggertype: event. */
1252 lut->params.selres = 3;
1253
1254 return SR_OK;
1255}
1256
1257static int hw_dev_acquisition_start(int dev_index, gpointer session_data)
1258{
1259 struct sr_dev_inst *sdi;
1260 struct context *ctx;
1261 struct sr_datafeed_packet packet;
1262 struct sr_datafeed_header header;
1263 struct clockselect_50 clockselect;
1264 int frac, triggerpin, ret;
1265 uint8_t triggerselect;
1266 struct triggerinout triggerinout_conf;
1267 struct triggerlut lut;
1268
1269 /* Avoid compiler warnings. */
1270 (void)session_data;
1271
1272 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index)))
1273 return SR_ERR;
1274
1275 ctx = sdi->priv;
1276
1277 /* If the samplerate has not been set, default to 200 kHz. */
1278 if (ctx->cur_firmware == -1) {
1279 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1280 return ret;
1281 }
1282
1283 /* Enter trigger programming mode. */
1284 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, ctx);
1285
1286 /* 100 and 200 MHz mode. */
1287 if (ctx->cur_samplerate >= SR_MHZ(100)) {
1288 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, ctx);
1289
1290 /* Find which pin to trigger on from mask. */
1291 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1292 if ((ctx->trigger.risingmask | ctx->trigger.fallingmask) &
1293 (1 << triggerpin))
1294 break;
1295
1296 /* Set trigger pin and light LED on trigger. */
1297 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1298
1299 /* Default rising edge. */
1300 if (ctx->trigger.fallingmask)
1301 triggerselect |= 1 << 3;
1302
1303 /* All other modes. */
1304 } else if (ctx->cur_samplerate <= SR_MHZ(50)) {
1305 build_basic_trigger(&lut, ctx);
1306
1307 sigma_write_trigger_lut(&lut, ctx);
1308
1309 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1310 }
1311
1312 /* Setup trigger in and out pins to default values. */
1313 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1314 triggerinout_conf.trgout_bytrigger = 1;
1315 triggerinout_conf.trgout_enable = 1;
1316
1317 sigma_write_register(WRITE_TRIGGER_OPTION,
1318 (uint8_t *) &triggerinout_conf,
1319 sizeof(struct triggerinout), ctx);
1320
1321 /* Go back to normal mode. */
1322 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, ctx);
1323
1324 /* Set clock select register. */
1325 if (ctx->cur_samplerate == SR_MHZ(200))
1326 /* Enable 4 probes. */
1327 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, ctx);
1328 else if (ctx->cur_samplerate == SR_MHZ(100))
1329 /* Enable 8 probes. */
1330 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, ctx);
1331 else {
1332 /*
1333 * 50 MHz mode (or fraction thereof). Any fraction down to
1334 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1335 */
1336 frac = SR_MHZ(50) / ctx->cur_samplerate - 1;
1337
1338 clockselect.async = 0;
1339 clockselect.fraction = frac;
1340 clockselect.disabled_probes = 0;
1341
1342 sigma_write_register(WRITE_CLOCK_SELECT,
1343 (uint8_t *) &clockselect,
1344 sizeof(clockselect), ctx);
1345 }
1346
1347 /* Setup maximum post trigger time. */
1348 sigma_set_register(WRITE_POST_TRIGGER,
1349 (ctx->capture_ratio * 255) / 100, ctx);
1350
1351 /* Start acqusition. */
1352 gettimeofday(&ctx->start_tv, 0);
1353 sigma_set_register(WRITE_MODE, 0x0d, ctx);
1354
1355 ctx->session_id = session_data;
1356
1357 /* Send header packet to the session bus. */
1358 packet.type = SR_DF_HEADER;
1359 packet.payload = &header;
1360 header.feed_version = 1;
1361 gettimeofday(&header.starttime, NULL);
1362 header.samplerate = ctx->cur_samplerate;
1363 header.num_logic_probes = ctx->num_probes;
1364 sr_session_bus(session_data, &packet);
1365
1366 /* Add capture source. */
1367 sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
1368
1369 ctx->state.state = SIGMA_CAPTURE;
1370
1371 return SR_OK;
1372}
1373
1374static int hw_dev_acquisition_stop(int dev_index, gpointer session_data)
1375{
1376 struct sr_dev_inst *sdi;
1377 struct context *ctx;
1378 uint8_t modestatus;
1379
1380 /* Avoid compiler warnings. */
1381 (void)session_data;
1382
1383 if (!(sdi = sr_dev_inst_get(dev_insts, dev_index))) {
1384 sr_err("sigma: %s: sdi was NULL", __func__);
1385 return SR_ERR_BUG;
1386 }
1387
1388 if (!(ctx = sdi->priv)) {
1389 sr_err("sigma: %s: sdi->priv was NULL", __func__);
1390 return SR_ERR_BUG;
1391 }
1392
1393 /* Stop acquisition. */
1394 sigma_set_register(WRITE_MODE, 0x11, ctx);
1395
1396 /* Set SDRAM Read Enable. */
1397 sigma_set_register(WRITE_MODE, 0x02, ctx);
1398
1399 /* Get the current position. */
1400 sigma_read_pos(&ctx->state.stoppos, &ctx->state.triggerpos, ctx);
1401
1402 /* Check if trigger has fired. */
1403 modestatus = sigma_get_register(READ_MODE, ctx);
1404 if (modestatus & 0x20)
1405 ctx->state.triggerchunk = ctx->state.triggerpos / 512;
1406 else
1407 ctx->state.triggerchunk = -1;
1408
1409 ctx->state.chunks_downloaded = 0;
1410
1411 ctx->state.state = SIGMA_DOWNLOAD;
1412
1413 return SR_OK;
1414}
1415
1416SR_PRIV struct sr_dev_plugin asix_sigma_plugin_info = {
1417 .name = "asix-sigma",
1418 .longname = "ASIX SIGMA",
1419 .api_version = 1,
1420 .init = hw_init,
1421 .cleanup = hw_cleanup,
1422 .dev_open = hw_dev_open,
1423 .dev_close = hw_dev_close,
1424 .dev_info_get = hw_dev_info_get,
1425 .dev_status_get = hw_dev_status_get,
1426 .hwcap_get_all = hw_hwcap_get_all,
1427 .dev_config_set = hw_dev_config_set,
1428 .dev_acquisition_start = hw_dev_acquisition_start,
1429 .dev_acquisition_stop = hw_dev_acquisition_stop,
1430};