]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
sr: chronovu-la8: Add missing <stdlib.h> #include.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA Logic Analyzer Driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include <zlib.h>
31#include "sigrok.h"
32#include "sigrok-internal.h"
33#include "asix-sigma.h"
34
35#define USB_VENDOR 0xa600
36#define USB_PRODUCT 0xa000
37#define USB_DESCRIPTION "ASIX SIGMA"
38#define USB_VENDOR_NAME "ASIX"
39#define USB_MODEL_NAME "SIGMA"
40#define USB_MODEL_VERSION ""
41#define TRIGGER_TYPES "rf10"
42#define NUM_PROBES 16
43
44static GSList *device_instances = NULL;
45
46static uint64_t supported_samplerates[] = {
47 SR_KHZ(200),
48 SR_KHZ(250),
49 SR_KHZ(500),
50 SR_MHZ(1),
51 SR_MHZ(5),
52 SR_MHZ(10),
53 SR_MHZ(25),
54 SR_MHZ(50),
55 SR_MHZ(100),
56 SR_MHZ(200),
57 0,
58};
59
60static const char *probe_names[NUM_PROBES + 1] = {
61 "0",
62 "1",
63 "2",
64 "3",
65 "4",
66 "5",
67 "6",
68 "7",
69 "8",
70 "9",
71 "10",
72 "11",
73 "12",
74 "13",
75 "14",
76 "15",
77 NULL,
78};
79
80static struct sr_samplerates samplerates = {
81 SR_KHZ(200),
82 SR_MHZ(200),
83 SR_HZ(0),
84 supported_samplerates,
85};
86
87static int capabilities[] = {
88 SR_HWCAP_LOGIC_ANALYZER,
89 SR_HWCAP_SAMPLERATE,
90 SR_HWCAP_CAPTURE_RATIO,
91 SR_HWCAP_PROBECONFIG,
92
93 SR_HWCAP_LIMIT_MSEC,
94 0,
95};
96
97/* Force the FPGA to reboot. */
98static uint8_t suicide[] = {
99 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
100};
101
102/* Prepare to upload firmware (FPGA specific). */
103static uint8_t init[] = {
104 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
105};
106
107/* Initialize the logic analyzer mode. */
108static uint8_t logic_mode_start[] = {
109 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
110 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
111};
112
113static const char *firmware_files[] = {
114 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
115 "asix-sigma-100.fw", /* 100 MHz */
116 "asix-sigma-200.fw", /* 200 MHz */
117 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
118 "asix-sigma-phasor.fw", /* Frequency counter */
119};
120
121static void hw_stop_acquisition(int device_index, gpointer session_data);
122
123static int sigma_read(void *buf, size_t size, struct sigma *sigma)
124{
125 int ret;
126
127 ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
128 if (ret < 0) {
129 sr_warn("ftdi_read_data failed: %s",
130 ftdi_get_error_string(&sigma->ftdic));
131 }
132
133 return ret;
134}
135
136static int sigma_write(void *buf, size_t size, struct sigma *sigma)
137{
138 int ret;
139
140 ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
141 if (ret < 0) {
142 sr_warn("ftdi_write_data failed: %s",
143 ftdi_get_error_string(&sigma->ftdic));
144 } else if ((size_t) ret != size) {
145 sr_warn("ftdi_write_data did not complete write\n");
146 }
147
148 return ret;
149}
150
151static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
152 struct sigma *sigma)
153{
154 size_t i;
155 uint8_t buf[len + 2];
156 int idx = 0;
157
158 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
159 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
160
161 for (i = 0; i < len; ++i) {
162 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
163 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
164 }
165
166 return sigma_write(buf, idx, sigma);
167}
168
169static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
170{
171 return sigma_write_register(reg, &value, 1, sigma);
172}
173
174static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
175 struct sigma *sigma)
176{
177 uint8_t buf[3];
178
179 buf[0] = REG_ADDR_LOW | (reg & 0xf);
180 buf[1] = REG_ADDR_HIGH | (reg >> 4);
181 buf[2] = REG_READ_ADDR;
182
183 sigma_write(buf, sizeof(buf), sigma);
184
185 return sigma_read(data, len, sigma);
186}
187
188static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
189{
190 uint8_t value;
191
192 if (1 != sigma_read_register(reg, &value, 1, sigma)) {
193 sr_warn("sigma_get_register: 1 byte expected");
194 return 0;
195 }
196
197 return value;
198}
199
200static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
201 struct sigma *sigma)
202{
203 uint8_t buf[] = {
204 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
205
206 REG_READ_ADDR | NEXT_REG,
207 REG_READ_ADDR | NEXT_REG,
208 REG_READ_ADDR | NEXT_REG,
209 REG_READ_ADDR | NEXT_REG,
210 REG_READ_ADDR | NEXT_REG,
211 REG_READ_ADDR | NEXT_REG,
212 };
213 uint8_t result[6];
214
215 sigma_write(buf, sizeof(buf), sigma);
216
217 sigma_read(result, sizeof(result), sigma);
218
219 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
220 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
221
222 /* Not really sure why this must be done, but according to spec. */
223 if ((--*stoppos & 0x1ff) == 0x1ff)
224 stoppos -= 64;
225
226 if ((*--triggerpos & 0x1ff) == 0x1ff)
227 triggerpos -= 64;
228
229 return 1;
230}
231
232static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
233 uint8_t *data, struct sigma *sigma)
234{
235 size_t i;
236 uint8_t buf[4096];
237 int idx = 0;
238
239 /* Send the startchunk. Index start with 1. */
240 buf[0] = startchunk >> 8;
241 buf[1] = startchunk & 0xff;
242 sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
243
244 /* Read the DRAM. */
245 buf[idx++] = REG_DRAM_BLOCK;
246 buf[idx++] = REG_DRAM_WAIT_ACK;
247
248 for (i = 0; i < numchunks; ++i) {
249 /* Alternate bit to copy from DRAM to cache. */
250 if (i != (numchunks - 1))
251 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
252
253 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
254
255 if (i != (numchunks - 1))
256 buf[idx++] = REG_DRAM_WAIT_ACK;
257 }
258
259 sigma_write(buf, idx, sigma);
260
261 return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
262}
263
264/* Upload trigger look-up tables to Sigma. */
265static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
266{
267 int i;
268 uint8_t tmp[2];
269 uint16_t bit;
270
271 /* Transpose the table and send to Sigma. */
272 for (i = 0; i < 16; ++i) {
273 bit = 1 << i;
274
275 tmp[0] = tmp[1] = 0;
276
277 if (lut->m2d[0] & bit)
278 tmp[0] |= 0x01;
279 if (lut->m2d[1] & bit)
280 tmp[0] |= 0x02;
281 if (lut->m2d[2] & bit)
282 tmp[0] |= 0x04;
283 if (lut->m2d[3] & bit)
284 tmp[0] |= 0x08;
285
286 if (lut->m3 & bit)
287 tmp[0] |= 0x10;
288 if (lut->m3s & bit)
289 tmp[0] |= 0x20;
290 if (lut->m4 & bit)
291 tmp[0] |= 0x40;
292
293 if (lut->m0d[0] & bit)
294 tmp[1] |= 0x01;
295 if (lut->m0d[1] & bit)
296 tmp[1] |= 0x02;
297 if (lut->m0d[2] & bit)
298 tmp[1] |= 0x04;
299 if (lut->m0d[3] & bit)
300 tmp[1] |= 0x08;
301
302 if (lut->m1d[0] & bit)
303 tmp[1] |= 0x10;
304 if (lut->m1d[1] & bit)
305 tmp[1] |= 0x20;
306 if (lut->m1d[2] & bit)
307 tmp[1] |= 0x40;
308 if (lut->m1d[3] & bit)
309 tmp[1] |= 0x80;
310
311 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
312 sigma);
313 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
314 }
315
316 /* Send the parameters */
317 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
318 sizeof(lut->params), sigma);
319
320 return SR_OK;
321}
322
323/* Generate the bitbang stream for programming the FPGA. */
324static int bin2bitbang(const char *filename,
325 unsigned char **buf, size_t *buf_size)
326{
327 FILE *f;
328 long file_size;
329 unsigned long offset = 0;
330 unsigned char *p;
331 uint8_t *compressed_buf, *firmware;
332 uLongf csize, fwsize;
333 const int buffer_size = 65536;
334 size_t i;
335 int c, ret, bit, v;
336 uint32_t imm = 0x3f6df2ab;
337
338 f = g_fopen(filename, "rb");
339 if (!f) {
340 sr_warn("g_fopen(\"%s\", \"rb\")", filename);
341 return SR_ERR;
342 }
343
344 if (-1 == fseek(f, 0, SEEK_END)) {
345 sr_warn("fseek on %s failed", filename);
346 fclose(f);
347 return SR_ERR;
348 }
349
350 file_size = ftell(f);
351
352 fseek(f, 0, SEEK_SET);
353
354 if (!(compressed_buf = g_try_malloc(file_size))) {
355 sr_err("sigma: %s: compressed_buf malloc failed", __func__);
356 fclose(f);
357 return SR_ERR_MALLOC;
358 }
359
360 if (!(firmware = g_try_malloc(buffer_size))) {
361 sr_err("sigma: %s: firmware malloc failed", __func__);
362 fclose(f);
363 g_free(compressed_buf);
364 return SR_ERR_MALLOC;
365 }
366
367 csize = 0;
368 while ((c = getc(f)) != EOF) {
369 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
370 compressed_buf[csize++] = c ^ imm;
371 }
372 fclose(f);
373
374 fwsize = buffer_size;
375 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
376 if (ret < 0) {
377 g_free(compressed_buf);
378 g_free(firmware);
379 sr_warn("Could not unpack Sigma firmware. (Error %d)\n", ret);
380 return SR_ERR;
381 }
382
383 g_free(compressed_buf);
384
385 *buf_size = fwsize * 2 * 8;
386
387 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
388 if (!p) {
389 sr_err("sigma: %s: buf/p malloc failed", __func__);
390 g_free(compressed_buf);
391 g_free(firmware);
392 return SR_ERR_MALLOC;
393 }
394
395 for (i = 0; i < fwsize; ++i) {
396 for (bit = 7; bit >= 0; --bit) {
397 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
398 p[offset++] = v | 0x01;
399 p[offset++] = v;
400 }
401 }
402
403 g_free(firmware);
404
405 if (offset != *buf_size) {
406 g_free(*buf);
407 sr_warn("Error reading firmware %s "
408 "offset=%ld, file_size=%ld, buf_size=%zd\n",
409 filename, offset, file_size, *buf_size);
410
411 return SR_ERR;
412 }
413
414 return SR_OK;
415}
416
417static int hw_init(const char *deviceinfo)
418{
419 struct sr_device_instance *sdi;
420 struct sigma *sigma;
421
422 /* Avoid compiler warnings. */
423 (void)deviceinfo;
424
425 if (!(sigma = g_try_malloc(sizeof(struct sigma)))) {
426 sr_err("sigma: %s: sigma malloc failed", __func__);
427 return 0; /* FIXME: Should be SR_ERR_MALLOC. */
428 }
429
430 ftdi_init(&sigma->ftdic);
431
432 /* Look for SIGMAs. */
433 if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
434 USB_DESCRIPTION, NULL) < 0)
435 goto free;
436
437 sigma->cur_samplerate = 0;
438 sigma->period_ps = 0;
439 sigma->limit_msec = 0;
440 sigma->cur_firmware = -1;
441 sigma->num_probes = 0;
442 sigma->samples_per_event = 0;
443 sigma->capture_ratio = 50;
444 sigma->use_triggers = 0;
445
446 /* Register SIGMA device. */
447 sdi = sr_device_instance_new(0, SR_ST_INITIALIZING,
448 USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
449 if (!sdi)
450 goto free;
451
452 sdi->priv = sigma;
453
454 device_instances = g_slist_append(device_instances, sdi);
455
456 /* We will open the device again when we need it. */
457 ftdi_usb_close(&sigma->ftdic);
458
459 return 1;
460free:
461 g_free(sigma);
462 return 0;
463}
464
465static int upload_firmware(int firmware_idx, struct sigma *sigma)
466{
467 int ret;
468 unsigned char *buf;
469 unsigned char pins;
470 size_t buf_size;
471 unsigned char result[32];
472 char firmware_path[128];
473
474 /* Make sure it's an ASIX SIGMA. */
475 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
476 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
477 sr_warn("ftdi_usb_open failed: %s",
478 ftdi_get_error_string(&sigma->ftdic));
479 return 0;
480 }
481
482 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
483 sr_warn("ftdi_set_bitmode failed: %s",
484 ftdi_get_error_string(&sigma->ftdic));
485 return 0;
486 }
487
488 /* Four times the speed of sigmalogan - Works well. */
489 if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
490 sr_warn("ftdi_set_baudrate failed: %s",
491 ftdi_get_error_string(&sigma->ftdic));
492 return 0;
493 }
494
495 /* Force the FPGA to reboot. */
496 sigma_write(suicide, sizeof(suicide), sigma);
497 sigma_write(suicide, sizeof(suicide), sigma);
498 sigma_write(suicide, sizeof(suicide), sigma);
499 sigma_write(suicide, sizeof(suicide), sigma);
500
501 /* Prepare to upload firmware (FPGA specific). */
502 sigma_write(init, sizeof(init), sigma);
503
504 ftdi_usb_purge_buffers(&sigma->ftdic);
505
506 /* Wait until the FPGA asserts INIT_B. */
507 while (1) {
508 ret = sigma_read(result, 1, sigma);
509 if (result[0] & 0x20)
510 break;
511 }
512
513 /* Prepare firmware. */
514 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
515 firmware_files[firmware_idx]);
516
517 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
518 sr_warn("An error occured while reading the firmware: %s",
519 firmware_path);
520 return ret;
521 }
522
523 /* Upload firmare. */
524 sigma_write(buf, buf_size, sigma);
525
526 g_free(buf);
527
528 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
529 sr_warn("ftdi_set_bitmode failed: %s",
530 ftdi_get_error_string(&sigma->ftdic));
531 return SR_ERR;
532 }
533
534 ftdi_usb_purge_buffers(&sigma->ftdic);
535
536 /* Discard garbage. */
537 while (1 == sigma_read(&pins, 1, sigma))
538 ;
539
540 /* Initialize the logic analyzer mode. */
541 sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
542
543 /* Expect a 3 byte reply. */
544 ret = sigma_read(result, 3, sigma);
545 if (ret != 3 ||
546 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
547 sr_warn("Configuration failed. Invalid reply received.");
548 return SR_ERR;
549 }
550
551 sigma->cur_firmware = firmware_idx;
552
553 return SR_OK;
554}
555
556static int hw_opendev(int device_index)
557{
558 struct sr_device_instance *sdi;
559 struct sigma *sigma;
560 int ret;
561
562 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
563 return SR_ERR;
564
565 sigma = sdi->priv;
566
567 /* Make sure it's an ASIX SIGMA. */
568 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
569 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
570
571 sr_warn("ftdi_usb_open failed: %s",
572 ftdi_get_error_string(&sigma->ftdic));
573
574 return 0;
575 }
576
577 sdi->status = SR_ST_ACTIVE;
578
579 return SR_OK;
580}
581
582static int set_samplerate(struct sr_device_instance *sdi,
583 uint64_t samplerate)
584{
585 int i, ret;
586 struct sigma *sigma = sdi->priv;
587
588 for (i = 0; supported_samplerates[i]; i++) {
589 if (supported_samplerates[i] == samplerate)
590 break;
591 }
592 if (supported_samplerates[i] == 0)
593 return SR_ERR_SAMPLERATE;
594
595 if (samplerate <= SR_MHZ(50)) {
596 ret = upload_firmware(0, sigma);
597 sigma->num_probes = 16;
598 }
599 if (samplerate == SR_MHZ(100)) {
600 ret = upload_firmware(1, sigma);
601 sigma->num_probes = 8;
602 }
603 else if (samplerate == SR_MHZ(200)) {
604 ret = upload_firmware(2, sigma);
605 sigma->num_probes = 4;
606 }
607
608 sigma->cur_samplerate = samplerate;
609 sigma->period_ps = 1000000000000 / samplerate;
610 sigma->samples_per_event = 16 / sigma->num_probes;
611 sigma->state.state = SIGMA_IDLE;
612
613 sr_info("Firmware uploaded");
614
615 return ret;
616}
617
618/*
619 * In 100 and 200 MHz mode, only a single pin rising/falling can be
620 * set as trigger. In other modes, two rising/falling triggers can be set,
621 * in addition to value/mask trigger for any number of probes.
622 *
623 * The Sigma supports complex triggers using boolean expressions, but this
624 * has not been implemented yet.
625 */
626static int configure_probes(struct sr_device_instance *sdi, GSList *probes)
627{
628 struct sigma *sigma = sdi->priv;
629 struct sr_probe *probe;
630 GSList *l;
631 int trigger_set = 0;
632 int probebit;
633
634 memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
635
636 for (l = probes; l; l = l->next) {
637 probe = (struct sr_probe *)l->data;
638 probebit = 1 << (probe->index - 1);
639
640 if (!probe->enabled || !probe->trigger)
641 continue;
642
643 if (sigma->cur_samplerate >= SR_MHZ(100)) {
644 /* Fast trigger support. */
645 if (trigger_set) {
646 sr_warn("ASIX SIGMA only supports a single "
647 "pin trigger in 100 and 200MHz mode.");
648 return SR_ERR;
649 }
650 if (probe->trigger[0] == 'f')
651 sigma->trigger.fallingmask |= probebit;
652 else if (probe->trigger[0] == 'r')
653 sigma->trigger.risingmask |= probebit;
654 else {
655 sr_warn("ASIX SIGMA only supports "
656 "rising/falling trigger in 100 "
657 "and 200MHz mode.");
658 return SR_ERR;
659 }
660
661 ++trigger_set;
662 } else {
663 /* Simple trigger support (event). */
664 if (probe->trigger[0] == '1') {
665 sigma->trigger.simplevalue |= probebit;
666 sigma->trigger.simplemask |= probebit;
667 }
668 else if (probe->trigger[0] == '0') {
669 sigma->trigger.simplevalue &= ~probebit;
670 sigma->trigger.simplemask |= probebit;
671 }
672 else if (probe->trigger[0] == 'f') {
673 sigma->trigger.fallingmask |= probebit;
674 ++trigger_set;
675 }
676 else if (probe->trigger[0] == 'r') {
677 sigma->trigger.risingmask |= probebit;
678 ++trigger_set;
679 }
680
681 /*
682 * Actually, Sigma supports 2 rising/falling triggers,
683 * but they are ORed and the current trigger syntax
684 * does not permit ORed triggers.
685 */
686 if (trigger_set > 1) {
687 sr_warn("ASIX SIGMA only supports 1 rising/"
688 "falling triggers.");
689 return SR_ERR;
690 }
691 }
692
693 if (trigger_set)
694 sigma->use_triggers = 1;
695 }
696
697 return SR_OK;
698}
699
700static int hw_closedev(int device_index)
701{
702 struct sr_device_instance *sdi;
703 struct sigma *sigma;
704
705 if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
706 sr_err("sigma: %s: sdi was NULL", __func__);
707 return SR_ERR; /* TODO: SR_ERR_ARG? */
708 }
709
710 if (!(sigma = sdi->priv)) {
711 sr_err("sigma: %s: sdi->priv was NULL", __func__);
712 return SR_ERR; /* TODO: SR_ERR_ARG? */
713 }
714
715 /* TODO */
716 if (sdi->status == SR_ST_ACTIVE)
717 ftdi_usb_close(&sigma->ftdic);
718
719 sdi->status = SR_ST_INACTIVE;
720
721 return SR_OK;
722}
723
724static void hw_cleanup(void)
725{
726 GSList *l;
727 struct sr_device_instance *sdi;
728
729 /* Properly close all devices. */
730 for (l = device_instances; l; l = l->next) {
731 sdi = l->data;
732 if (sdi->priv != NULL)
733 g_free(sdi->priv);
734 sr_device_instance_free(sdi);
735 }
736 g_slist_free(device_instances);
737 device_instances = NULL;
738}
739
740static void *hw_get_device_info(int device_index, int device_info_id)
741{
742 struct sr_device_instance *sdi;
743 struct sigma *sigma;
744 void *info = NULL;
745
746 if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
747 sr_err("It's NULL.\n");
748 return NULL;
749 }
750
751 sigma = sdi->priv;
752
753 switch (device_info_id) {
754 case SR_DI_INSTANCE:
755 info = sdi;
756 break;
757 case SR_DI_NUM_PROBES:
758 info = GINT_TO_POINTER(NUM_PROBES);
759 break;
760 case SR_DI_PROBE_NAMES:
761 info = probe_names;
762 break;
763 case SR_DI_SAMPLERATES:
764 info = &samplerates;
765 break;
766 case SR_DI_TRIGGER_TYPES:
767 info = (char *)TRIGGER_TYPES;
768 break;
769 case SR_DI_CUR_SAMPLERATE:
770 info = &sigma->cur_samplerate;
771 break;
772 }
773
774 return info;
775}
776
777static int hw_get_status(int device_index)
778{
779 struct sr_device_instance *sdi;
780
781 sdi = sr_get_device_instance(device_instances, device_index);
782 if (sdi)
783 return sdi->status;
784 else
785 return SR_ST_NOT_FOUND;
786}
787
788static int *hw_get_capabilities(void)
789{
790 return capabilities;
791}
792
793static int hw_set_configuration(int device_index, int capability, void *value)
794{
795 struct sr_device_instance *sdi;
796 struct sigma *sigma;
797 int ret;
798
799 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
800 return SR_ERR;
801
802 sigma = sdi->priv;
803
804 if (capability == SR_HWCAP_SAMPLERATE) {
805 ret = set_samplerate(sdi, *(uint64_t*) value);
806 } else if (capability == SR_HWCAP_PROBECONFIG) {
807 ret = configure_probes(sdi, value);
808 } else if (capability == SR_HWCAP_LIMIT_MSEC) {
809 sigma->limit_msec = *(uint64_t*) value;
810 if (sigma->limit_msec > 0)
811 ret = SR_OK;
812 else
813 ret = SR_ERR;
814 } else if (capability == SR_HWCAP_CAPTURE_RATIO) {
815 sigma->capture_ratio = *(uint64_t*) value;
816 if (sigma->capture_ratio < 0 || sigma->capture_ratio > 100)
817 ret = SR_ERR;
818 else
819 ret = SR_OK;
820 } else {
821 ret = SR_ERR;
822 }
823
824 return ret;
825}
826
827/* Software trigger to determine exact trigger position. */
828static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
829 struct sigma_trigger *t)
830{
831 int i;
832
833 for (i = 0; i < 8; ++i) {
834 if (i > 0)
835 last_sample = samples[i-1];
836
837 /* Simple triggers. */
838 if ((samples[i] & t->simplemask) != t->simplevalue)
839 continue;
840
841 /* Rising edge. */
842 if ((last_sample & t->risingmask) != 0 || (samples[i] &
843 t->risingmask) != t->risingmask)
844 continue;
845
846 /* Falling edge. */
847 if ((last_sample & t->fallingmask) != t->fallingmask ||
848 (samples[i] & t->fallingmask) != 0)
849 continue;
850
851 break;
852 }
853
854 /* If we did not match, return original trigger pos. */
855 return i & 0x7;
856}
857
858/*
859 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
860 * Each event is 20ns apart, and can contain multiple samples.
861 *
862 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
863 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
864 * For 50 MHz and below, events contain one sample for each channel,
865 * spread 20 ns apart.
866 */
867static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
868 uint16_t *lastsample, int triggerpos,
869 uint16_t limit_chunk, void *session_data)
870{
871 struct sr_device_instance *sdi = session_data;
872 struct sigma *sigma = sdi->priv;
873 uint16_t tsdiff, ts;
874 uint16_t samples[65536 * sigma->samples_per_event];
875 struct sr_datafeed_packet packet;
876 struct sr_datafeed_logic logic;
877 int i, j, k, l, numpad, tosend;
878 size_t n = 0, sent = 0;
879 int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
880 uint16_t *event;
881 uint16_t cur_sample;
882 int triggerts = -1;
883
884 /* Check if trigger is in this chunk. */
885 if (triggerpos != -1) {
886 if (sigma->cur_samplerate <= SR_MHZ(50))
887 triggerpos -= EVENTS_PER_CLUSTER - 1;
888
889 if (triggerpos < 0)
890 triggerpos = 0;
891
892 /* Find in which cluster the trigger occured. */
893 triggerts = triggerpos / 7;
894 }
895
896 /* For each ts. */
897 for (i = 0; i < 64; ++i) {
898 ts = *(uint16_t *) &buf[i * 16];
899 tsdiff = ts - *lastts;
900 *lastts = ts;
901
902 /* Decode partial chunk. */
903 if (limit_chunk && ts > limit_chunk)
904 return SR_OK;
905
906 /* Pad last sample up to current point. */
907 numpad = tsdiff * sigma->samples_per_event - clustersize;
908 if (numpad > 0) {
909 for (j = 0; j < numpad; ++j)
910 samples[j] = *lastsample;
911
912 n = numpad;
913 }
914
915 /* Send samples between previous and this timestamp to sigrok. */
916 sent = 0;
917 while (sent < n) {
918 tosend = MIN(2048, n - sent);
919
920 packet.type = SR_DF_LOGIC;
921 packet.payload = &logic;
922 logic.length = tosend * sizeof(uint16_t);
923 logic.unitsize = 2;
924 logic.data = samples + sent;
925 sr_session_bus(sigma->session_id, &packet);
926
927 sent += tosend;
928 }
929 n = 0;
930
931 event = (uint16_t *) &buf[i * 16 + 2];
932 cur_sample = 0;
933
934 /* For each event in cluster. */
935 for (j = 0; j < 7; ++j) {
936
937 /* For each sample in event. */
938 for (k = 0; k < sigma->samples_per_event; ++k) {
939 cur_sample = 0;
940
941 /* For each probe. */
942 for (l = 0; l < sigma->num_probes; ++l)
943 cur_sample |= (!!(event[j] & (1 << (l *
944 sigma->samples_per_event
945 + k))))
946 << l;
947
948 samples[n++] = cur_sample;
949 }
950 }
951
952 /* Send data up to trigger point (if triggered). */
953 sent = 0;
954 if (i == triggerts) {
955 /*
956 * Trigger is not always accurate to sample because of
957 * pipeline delay. However, it always triggers before
958 * the actual event. We therefore look at the next
959 * samples to pinpoint the exact position of the trigger.
960 */
961 tosend = get_trigger_offset(samples, *lastsample,
962 &sigma->trigger);
963
964 if (tosend > 0) {
965 packet.type = SR_DF_LOGIC;
966 packet.payload = &logic;
967 logic.length = tosend * sizeof(uint16_t);
968 logic.unitsize = 2;
969 logic.data = samples;
970 sr_session_bus(sigma->session_id, &packet);
971
972 sent += tosend;
973 }
974
975 /* Only send trigger if explicitly enabled. */
976 if (sigma->use_triggers) {
977 packet.type = SR_DF_TRIGGER;
978 sr_session_bus(sigma->session_id, &packet);
979 }
980 }
981
982 /* Send rest of the chunk to sigrok. */
983 tosend = n - sent;
984
985 if (tosend > 0) {
986 packet.type = SR_DF_LOGIC;
987 packet.payload = &logic;
988 logic.length = tosend * sizeof(uint16_t);
989 logic.unitsize = 2;
990 logic.data = samples + sent;
991 sr_session_bus(sigma->session_id, &packet);
992 }
993
994 *lastsample = samples[n - 1];
995 }
996
997 return SR_OK;
998}
999
1000static int receive_data(int fd, int revents, void *session_data)
1001{
1002 struct sr_device_instance *sdi = session_data;
1003 struct sigma *sigma = sdi->priv;
1004 struct sr_datafeed_packet packet;
1005 const int chunks_per_read = 32;
1006 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1007 int bufsz, numchunks, i, newchunks;
1008 uint64_t running_msec;
1009 struct timeval tv;
1010
1011 /* Avoid compiler warnings. */
1012 (void)fd;
1013 (void)revents;
1014
1015 numchunks = (sigma->state.stoppos + 511) / 512;
1016
1017 if (sigma->state.state == SIGMA_IDLE)
1018 return FALSE;
1019
1020 if (sigma->state.state == SIGMA_CAPTURE) {
1021
1022 /* Check if the timer has expired, or memory is full. */
1023 gettimeofday(&tv, 0);
1024 running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
1025 (tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
1026
1027 if (running_msec < sigma->limit_msec && numchunks < 32767)
1028 return FALSE;
1029
1030 hw_stop_acquisition(sdi->index, session_data);
1031
1032 return FALSE;
1033
1034 } else if (sigma->state.state == SIGMA_DOWNLOAD) {
1035 if (sigma->state.chunks_downloaded >= numchunks) {
1036 /* End of samples. */
1037 packet.type = SR_DF_END;
1038 sr_session_bus(sigma->session_id, &packet);
1039
1040 sigma->state.state = SIGMA_IDLE;
1041
1042 return TRUE;
1043 }
1044
1045 newchunks = MIN(chunks_per_read,
1046 numchunks - sigma->state.chunks_downloaded);
1047
1048 sr_info("Downloading sample data: %.0f %%",
1049 100.0 * sigma->state.chunks_downloaded / numchunks);
1050
1051 bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
1052 newchunks, buf, sigma);
1053 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1054 (void)bufsz;
1055
1056 /* Find first ts. */
1057 if (sigma->state.chunks_downloaded == 0) {
1058 sigma->state.lastts = *(uint16_t *) buf - 1;
1059 sigma->state.lastsample = 0;
1060 }
1061
1062 /* Decode chunks and send them to sigrok. */
1063 for (i = 0; i < newchunks; ++i) {
1064 int limit_chunk = 0;
1065
1066 /* The last chunk may potentially be only in part. */
1067 if (sigma->state.chunks_downloaded == numchunks - 1)
1068 {
1069 /* Find the last valid timestamp */
1070 limit_chunk = sigma->state.stoppos % 512 + sigma->state.lastts;
1071 }
1072
1073 if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
1074 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1075 &sigma->state.lastts,
1076 &sigma->state.lastsample,
1077 sigma->state.triggerpos & 0x1ff,
1078 limit_chunk, session_data);
1079 else
1080 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1081 &sigma->state.lastts,
1082 &sigma->state.lastsample,
1083 -1, limit_chunk, session_data);
1084
1085 ++sigma->state.chunks_downloaded;
1086 }
1087 }
1088
1089 return TRUE;
1090}
1091
1092/* Build a LUT entry used by the trigger functions. */
1093static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1094{
1095 int i, j, k, bit;
1096
1097 /* For each quad probe. */
1098 for (i = 0; i < 4; ++i) {
1099 entry[i] = 0xffff;
1100
1101 /* For each bit in LUT. */
1102 for (j = 0; j < 16; ++j)
1103
1104 /* For each probe in quad. */
1105 for (k = 0; k < 4; ++k) {
1106 bit = 1 << (i * 4 + k);
1107
1108 /* Set bit in entry */
1109 if ((mask & bit) &&
1110 ((!(value & bit)) !=
1111 (!(j & (1 << k)))))
1112 entry[i] &= ~(1 << j);
1113 }
1114 }
1115}
1116
1117/* Add a logical function to LUT mask. */
1118static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1119 int index, int neg, uint16_t *mask)
1120{
1121 int i, j;
1122 int x[2][2], tmp, a, b, aset, bset, rset;
1123
1124 memset(x, 0, 4 * sizeof(int));
1125
1126 /* Trigger detect condition. */
1127 switch (oper) {
1128 case OP_LEVEL:
1129 x[0][1] = 1;
1130 x[1][1] = 1;
1131 break;
1132 case OP_NOT:
1133 x[0][0] = 1;
1134 x[1][0] = 1;
1135 break;
1136 case OP_RISE:
1137 x[0][1] = 1;
1138 break;
1139 case OP_FALL:
1140 x[1][0] = 1;
1141 break;
1142 case OP_RISEFALL:
1143 x[0][1] = 1;
1144 x[1][0] = 1;
1145 break;
1146 case OP_NOTRISE:
1147 x[1][1] = 1;
1148 x[0][0] = 1;
1149 x[1][0] = 1;
1150 break;
1151 case OP_NOTFALL:
1152 x[1][1] = 1;
1153 x[0][0] = 1;
1154 x[0][1] = 1;
1155 break;
1156 case OP_NOTRISEFALL:
1157 x[1][1] = 1;
1158 x[0][0] = 1;
1159 break;
1160 }
1161
1162 /* Transpose if neg is set. */
1163 if (neg) {
1164 for (i = 0; i < 2; ++i)
1165 for (j = 0; j < 2; ++j) {
1166 tmp = x[i][j];
1167 x[i][j] = x[1-i][1-j];
1168 x[1-i][1-j] = tmp;
1169 }
1170 }
1171
1172 /* Update mask with function. */
1173 for (i = 0; i < 16; ++i) {
1174 a = (i >> (2 * index + 0)) & 1;
1175 b = (i >> (2 * index + 1)) & 1;
1176
1177 aset = (*mask >> i) & 1;
1178 bset = x[b][a];
1179
1180 if (func == FUNC_AND || func == FUNC_NAND)
1181 rset = aset & bset;
1182 else if (func == FUNC_OR || func == FUNC_NOR)
1183 rset = aset | bset;
1184 else if (func == FUNC_XOR || func == FUNC_NXOR)
1185 rset = aset ^ bset;
1186
1187 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1188 rset = !rset;
1189
1190 *mask &= ~(1 << i);
1191
1192 if (rset)
1193 *mask |= 1 << i;
1194 }
1195}
1196
1197/*
1198 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1199 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1200 * set at any time, but a full mask and value can be set (0/1).
1201 */
1202static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
1203{
1204 int i,j;
1205 uint16_t masks[2] = { 0, 0 };
1206
1207 memset(lut, 0, sizeof(struct triggerlut));
1208
1209 /* Contant for simple triggers. */
1210 lut->m4 = 0xa000;
1211
1212 /* Value/mask trigger support. */
1213 build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
1214 lut->m2d);
1215
1216 /* Rise/fall trigger support. */
1217 for (i = 0, j = 0; i < 16; ++i) {
1218 if (sigma->trigger.risingmask & (1 << i) ||
1219 sigma->trigger.fallingmask & (1 << i))
1220 masks[j++] = 1 << i;
1221 }
1222
1223 build_lut_entry(masks[0], masks[0], lut->m0d);
1224 build_lut_entry(masks[1], masks[1], lut->m1d);
1225
1226 /* Add glue logic */
1227 if (masks[0] || masks[1]) {
1228 /* Transition trigger. */
1229 if (masks[0] & sigma->trigger.risingmask)
1230 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1231 if (masks[0] & sigma->trigger.fallingmask)
1232 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1233 if (masks[1] & sigma->trigger.risingmask)
1234 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1235 if (masks[1] & sigma->trigger.fallingmask)
1236 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1237 } else {
1238 /* Only value/mask trigger. */
1239 lut->m3 = 0xffff;
1240 }
1241
1242 /* Triggertype: event. */
1243 lut->params.selres = 3;
1244
1245 return SR_OK;
1246}
1247
1248static int hw_start_acquisition(int device_index, gpointer session_data)
1249{
1250 struct sr_device_instance *sdi;
1251 struct sigma *sigma;
1252 struct sr_datafeed_packet packet;
1253 struct sr_datafeed_header header;
1254 struct clockselect_50 clockselect;
1255 int frac, triggerpin, ret;
1256 uint8_t triggerselect;
1257 struct triggerinout triggerinout_conf;
1258 struct triggerlut lut;
1259
1260 /* Avoid compiler warnings. */
1261 (void)session_data;
1262
1263 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1264 return SR_ERR;
1265
1266 sigma = sdi->priv;
1267
1268 /* If the samplerate has not been set, default to 200 KHz. */
1269 if (sigma->cur_firmware == -1) {
1270 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1271 return ret;
1272 }
1273
1274 /* Enter trigger programming mode. */
1275 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
1276
1277 /* 100 and 200 MHz mode. */
1278 if (sigma->cur_samplerate >= SR_MHZ(100)) {
1279 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
1280
1281 /* Find which pin to trigger on from mask. */
1282 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1283 if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
1284 (1 << triggerpin))
1285 break;
1286
1287 /* Set trigger pin and light LED on trigger. */
1288 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1289
1290 /* Default rising edge. */
1291 if (sigma->trigger.fallingmask)
1292 triggerselect |= 1 << 3;
1293
1294 /* All other modes. */
1295 } else if (sigma->cur_samplerate <= SR_MHZ(50)) {
1296 build_basic_trigger(&lut, sigma);
1297
1298 sigma_write_trigger_lut(&lut, sigma);
1299
1300 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1301 }
1302
1303 /* Setup trigger in and out pins to default values. */
1304 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1305 triggerinout_conf.trgout_bytrigger = 1;
1306 triggerinout_conf.trgout_enable = 1;
1307
1308 sigma_write_register(WRITE_TRIGGER_OPTION,
1309 (uint8_t *) &triggerinout_conf,
1310 sizeof(struct triggerinout), sigma);
1311
1312 /* Go back to normal mode. */
1313 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
1314
1315 /* Set clock select register. */
1316 if (sigma->cur_samplerate == SR_MHZ(200))
1317 /* Enable 4 probes. */
1318 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
1319 else if (sigma->cur_samplerate == SR_MHZ(100))
1320 /* Enable 8 probes. */
1321 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
1322 else {
1323 /*
1324 * 50 MHz mode (or fraction thereof). Any fraction down to
1325 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1326 */
1327 frac = SR_MHZ(50) / sigma->cur_samplerate - 1;
1328
1329 clockselect.async = 0;
1330 clockselect.fraction = frac;
1331 clockselect.disabled_probes = 0;
1332
1333 sigma_write_register(WRITE_CLOCK_SELECT,
1334 (uint8_t *) &clockselect,
1335 sizeof(clockselect), sigma);
1336 }
1337
1338 /* Setup maximum post trigger time. */
1339 sigma_set_register(WRITE_POST_TRIGGER,
1340 (sigma->capture_ratio * 255) / 100, sigma);
1341
1342 /* Start acqusition. */
1343 gettimeofday(&sigma->start_tv, 0);
1344 sigma_set_register(WRITE_MODE, 0x0d, sigma);
1345
1346 sigma->session_id = session_data;
1347
1348 /* Send header packet to the session bus. */
1349 packet.type = SR_DF_HEADER;
1350 packet.payload = &header;
1351 header.feed_version = 1;
1352 gettimeofday(&header.starttime, NULL);
1353 header.samplerate = sigma->cur_samplerate;
1354 header.num_logic_probes = sigma->num_probes;
1355 sr_session_bus(session_data, &packet);
1356
1357 /* Add capture source. */
1358 sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
1359
1360 sigma->state.state = SIGMA_CAPTURE;
1361
1362 return SR_OK;
1363}
1364
1365static void hw_stop_acquisition(int device_index, gpointer session_data)
1366{
1367 struct sr_device_instance *sdi;
1368 struct sigma *sigma;
1369 uint8_t modestatus;
1370
1371 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1372 return;
1373
1374 sigma = sdi->priv;
1375
1376 /* Avoid compiler warnings. */
1377 (void)session_data;
1378
1379 /* Stop acquisition. */
1380 sigma_set_register(WRITE_MODE, 0x11, sigma);
1381
1382 /* Set SDRAM Read Enable. */
1383 sigma_set_register(WRITE_MODE, 0x02, sigma);
1384
1385 /* Get the current position. */
1386 sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
1387
1388 /* Check if trigger has fired. */
1389 modestatus = sigma_get_register(READ_MODE, sigma);
1390 if (modestatus & 0x20) {
1391 sigma->state.triggerchunk = sigma->state.triggerpos / 512;
1392
1393 } else
1394 sigma->state.triggerchunk = -1;
1395
1396 sigma->state.chunks_downloaded = 0;
1397
1398 sigma->state.state = SIGMA_DOWNLOAD;
1399}
1400
1401SR_PRIV struct sr_device_plugin asix_sigma_plugin_info = {
1402 .name = "asix-sigma",
1403 .longname = "ASIX SIGMA",
1404 .api_version = 1,
1405 .init = hw_init,
1406 .cleanup = hw_cleanup,
1407 .opendev = hw_opendev,
1408 .closedev = hw_closedev,
1409 .get_device_info = hw_get_device_info,
1410 .get_status = hw_get_status,
1411 .get_capabilities = hw_get_capabilities,
1412 .set_configuration = hw_set_configuration,
1413 .start_acquisition = hw_start_acquisition,
1414 .stop_acquisition = hw_stop_acquisition,
1415};