]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
demo: remove sources from session when done
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define USB_MODEL_VERSION ""
40#define TRIGGER_TYPES "rf10"
41#define NUM_PROBES 16
42
43SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
44static struct sr_dev_driver *adi = &asix_sigma_driver_info;
45
46static const uint64_t supported_samplerates[] = {
47 SR_KHZ(200),
48 SR_KHZ(250),
49 SR_KHZ(500),
50 SR_MHZ(1),
51 SR_MHZ(5),
52 SR_MHZ(10),
53 SR_MHZ(25),
54 SR_MHZ(50),
55 SR_MHZ(100),
56 SR_MHZ(200),
57 0,
58};
59
60/*
61 * Probe numbers seem to go from 1-16, according to this image:
62 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
63 * (the cable has two additional GND pins, and a TI and TO pin)
64 */
65static const char *probe_names[NUM_PROBES + 1] = {
66 "1",
67 "2",
68 "3",
69 "4",
70 "5",
71 "6",
72 "7",
73 "8",
74 "9",
75 "10",
76 "11",
77 "12",
78 "13",
79 "14",
80 "15",
81 "16",
82 NULL,
83};
84
85static const struct sr_samplerates samplerates = {
86 0,
87 0,
88 0,
89 supported_samplerates,
90};
91
92static const int hwcaps[] = {
93 SR_HWCAP_LOGIC_ANALYZER,
94 SR_HWCAP_SAMPLERATE,
95 SR_HWCAP_CAPTURE_RATIO,
96 SR_HWCAP_PROBECONFIG,
97
98 SR_HWCAP_LIMIT_MSEC,
99 0,
100};
101
102/* Force the FPGA to reboot. */
103static uint8_t suicide[] = {
104 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
105};
106
107/* Prepare to upload firmware (FPGA specific). */
108static uint8_t init[] = {
109 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
110};
111
112/* Initialize the logic analyzer mode. */
113static uint8_t logic_mode_start[] = {
114 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
115 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
116};
117
118static const char *firmware_files[] = {
119 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
120 "asix-sigma-100.fw", /* 100 MHz */
121 "asix-sigma-200.fw", /* 200 MHz */
122 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
123 "asix-sigma-phasor.fw", /* Frequency counter */
124};
125
126static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
127 void *cb_data);
128
129static int sigma_read(void *buf, size_t size, struct dev_context *devc)
130{
131 int ret;
132
133 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
134 if (ret < 0) {
135 sr_err("sigma: ftdi_read_data failed: %s",
136 ftdi_get_error_string(&devc->ftdic));
137 }
138
139 return ret;
140}
141
142static int sigma_write(void *buf, size_t size, struct dev_context *devc)
143{
144 int ret;
145
146 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
147 if (ret < 0) {
148 sr_err("sigma: ftdi_write_data failed: %s",
149 ftdi_get_error_string(&devc->ftdic));
150 } else if ((size_t) ret != size) {
151 sr_err("sigma: ftdi_write_data did not complete write.");
152 }
153
154 return ret;
155}
156
157static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
158 struct dev_context *devc)
159{
160 size_t i;
161 uint8_t buf[len + 2];
162 int idx = 0;
163
164 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
165 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
166
167 for (i = 0; i < len; ++i) {
168 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
169 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
170 }
171
172 return sigma_write(buf, idx, devc);
173}
174
175static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
176{
177 return sigma_write_register(reg, &value, 1, devc);
178}
179
180static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
181 struct dev_context *devc)
182{
183 uint8_t buf[3];
184
185 buf[0] = REG_ADDR_LOW | (reg & 0xf);
186 buf[1] = REG_ADDR_HIGH | (reg >> 4);
187 buf[2] = REG_READ_ADDR;
188
189 sigma_write(buf, sizeof(buf), devc);
190
191 return sigma_read(data, len, devc);
192}
193
194static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
195{
196 uint8_t value;
197
198 if (1 != sigma_read_register(reg, &value, 1, devc)) {
199 sr_err("sigma: sigma_get_register: 1 byte expected");
200 return 0;
201 }
202
203 return value;
204}
205
206static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
207 struct dev_context *devc)
208{
209 uint8_t buf[] = {
210 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
211
212 REG_READ_ADDR | NEXT_REG,
213 REG_READ_ADDR | NEXT_REG,
214 REG_READ_ADDR | NEXT_REG,
215 REG_READ_ADDR | NEXT_REG,
216 REG_READ_ADDR | NEXT_REG,
217 REG_READ_ADDR | NEXT_REG,
218 };
219 uint8_t result[6];
220
221 sigma_write(buf, sizeof(buf), devc);
222
223 sigma_read(result, sizeof(result), devc);
224
225 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
226 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
227
228 /* Not really sure why this must be done, but according to spec. */
229 if ((--*stoppos & 0x1ff) == 0x1ff)
230 stoppos -= 64;
231
232 if ((*--triggerpos & 0x1ff) == 0x1ff)
233 triggerpos -= 64;
234
235 return 1;
236}
237
238static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
239 uint8_t *data, struct dev_context *devc)
240{
241 size_t i;
242 uint8_t buf[4096];
243 int idx = 0;
244
245 /* Send the startchunk. Index start with 1. */
246 buf[0] = startchunk >> 8;
247 buf[1] = startchunk & 0xff;
248 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
249
250 /* Read the DRAM. */
251 buf[idx++] = REG_DRAM_BLOCK;
252 buf[idx++] = REG_DRAM_WAIT_ACK;
253
254 for (i = 0; i < numchunks; ++i) {
255 /* Alternate bit to copy from DRAM to cache. */
256 if (i != (numchunks - 1))
257 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
258
259 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
260
261 if (i != (numchunks - 1))
262 buf[idx++] = REG_DRAM_WAIT_ACK;
263 }
264
265 sigma_write(buf, idx, devc);
266
267 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
268}
269
270/* Upload trigger look-up tables to Sigma. */
271static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
272{
273 int i;
274 uint8_t tmp[2];
275 uint16_t bit;
276
277 /* Transpose the table and send to Sigma. */
278 for (i = 0; i < 16; ++i) {
279 bit = 1 << i;
280
281 tmp[0] = tmp[1] = 0;
282
283 if (lut->m2d[0] & bit)
284 tmp[0] |= 0x01;
285 if (lut->m2d[1] & bit)
286 tmp[0] |= 0x02;
287 if (lut->m2d[2] & bit)
288 tmp[0] |= 0x04;
289 if (lut->m2d[3] & bit)
290 tmp[0] |= 0x08;
291
292 if (lut->m3 & bit)
293 tmp[0] |= 0x10;
294 if (lut->m3s & bit)
295 tmp[0] |= 0x20;
296 if (lut->m4 & bit)
297 tmp[0] |= 0x40;
298
299 if (lut->m0d[0] & bit)
300 tmp[1] |= 0x01;
301 if (lut->m0d[1] & bit)
302 tmp[1] |= 0x02;
303 if (lut->m0d[2] & bit)
304 tmp[1] |= 0x04;
305 if (lut->m0d[3] & bit)
306 tmp[1] |= 0x08;
307
308 if (lut->m1d[0] & bit)
309 tmp[1] |= 0x10;
310 if (lut->m1d[1] & bit)
311 tmp[1] |= 0x20;
312 if (lut->m1d[2] & bit)
313 tmp[1] |= 0x40;
314 if (lut->m1d[3] & bit)
315 tmp[1] |= 0x80;
316
317 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
318 devc);
319 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
320 }
321
322 /* Send the parameters */
323 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
324 sizeof(lut->params), devc);
325
326 return SR_OK;
327}
328
329/* Generate the bitbang stream for programming the FPGA. */
330static int bin2bitbang(const char *filename,
331 unsigned char **buf, size_t *buf_size)
332{
333 FILE *f;
334 unsigned long file_size;
335 unsigned long offset = 0;
336 unsigned char *p;
337 uint8_t *firmware;
338 unsigned long fwsize = 0;
339 const int buffer_size = 65536;
340 size_t i;
341 int c, bit, v;
342 uint32_t imm = 0x3f6df2ab;
343
344 f = g_fopen(filename, "rb");
345 if (!f) {
346 sr_err("sigma: g_fopen(\"%s\", \"rb\")", filename);
347 return SR_ERR;
348 }
349
350 if (-1 == fseek(f, 0, SEEK_END)) {
351 sr_err("sigma: fseek on %s failed", filename);
352 fclose(f);
353 return SR_ERR;
354 }
355
356 file_size = ftell(f);
357
358 fseek(f, 0, SEEK_SET);
359
360 if (!(firmware = g_try_malloc(buffer_size))) {
361 sr_err("sigma: %s: firmware malloc failed", __func__);
362 fclose(f);
363 return SR_ERR_MALLOC;
364 }
365
366 while ((c = getc(f)) != EOF) {
367 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
368 firmware[fwsize++] = c ^ imm;
369 }
370 fclose(f);
371
372 if(fwsize != file_size) {
373 sr_err("sigma: %s: Error reading firmware", filename);
374 fclose(f);
375 g_free(firmware);
376 return SR_ERR;
377 }
378
379 *buf_size = fwsize * 2 * 8;
380
381 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
382 if (!p) {
383 sr_err("sigma: %s: buf/p malloc failed", __func__);
384 g_free(firmware);
385 return SR_ERR_MALLOC;
386 }
387
388 for (i = 0; i < fwsize; ++i) {
389 for (bit = 7; bit >= 0; --bit) {
390 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
391 p[offset++] = v | 0x01;
392 p[offset++] = v;
393 }
394 }
395
396 g_free(firmware);
397
398 if (offset != *buf_size) {
399 g_free(*buf);
400 sr_err("sigma: Error reading firmware %s "
401 "offset=%ld, file_size=%ld, buf_size=%zd.",
402 filename, offset, file_size, *buf_size);
403
404 return SR_ERR;
405 }
406
407 return SR_OK;
408}
409
410static void clear_instances(void)
411{
412 GSList *l;
413 struct sr_dev_inst *sdi;
414 struct drv_context *drvc;
415 struct dev_context *devc;
416
417 drvc = adi->priv;
418
419 /* Properly close all devices. */
420 for (l = drvc->instances; l; l = l->next) {
421 if (!(sdi = l->data)) {
422 /* Log error, but continue cleaning up the rest. */
423 sr_err("sigma: %s: sdi was NULL, continuing", __func__);
424 continue;
425 }
426 if (sdi->priv) {
427 devc = sdi->priv;
428 ftdi_free(&devc->ftdic);
429 g_free(devc);
430 }
431 sr_dev_inst_free(sdi);
432 }
433 g_slist_free(drvc->instances);
434 drvc->instances = NULL;
435
436}
437
438static int hw_init(void)
439{
440 struct drv_context *drvc;
441
442 if (!(drvc = g_try_malloc0(sizeof(struct drv_context)))) {
443 sr_err("asix-sigma: driver context malloc failed.");
444 return SR_ERR;
445 }
446 adi->priv = drvc;
447
448 return SR_OK;
449}
450
451static GSList *hw_scan(GSList *options)
452{
453 struct sr_dev_inst *sdi;
454 struct sr_probe *probe;
455 struct drv_context *drvc;
456 struct dev_context *devc;
457 GSList *devices;
458 struct ftdi_device_list *devlist;
459 char serial_txt[10];
460 uint32_t serial;
461 int ret, i;
462
463 (void)options;
464 drvc = adi->priv;
465 devices = NULL;
466 clear_instances();
467
468 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
469 sr_err("sigma: %s: devc malloc failed", __func__);
470 return NULL;
471 }
472
473 ftdi_init(&devc->ftdic);
474
475 /* Look for SIGMAs. */
476
477 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
478 USB_VENDOR, USB_PRODUCT)) <= 0) {
479 if (ret < 0)
480 sr_err("ftdi_usb_find_all(): %d", ret);
481 goto free;
482 }
483
484 /* Make sure it's a version 1 or 2 SIGMA. */
485 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
486 serial_txt, sizeof(serial_txt));
487 sscanf(serial_txt, "%x", &serial);
488
489 if (serial < 0xa6010000 || serial > 0xa602ffff) {
490 sr_err("sigma: Only SIGMA and SIGMA2 are supported "
491 "in this version of sigrok.");
492 goto free;
493 }
494
495 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
496
497 devc->cur_samplerate = 0;
498 devc->period_ps = 0;
499 devc->limit_msec = 0;
500 devc->cur_firmware = -1;
501 devc->num_probes = 0;
502 devc->samples_per_event = 0;
503 devc->capture_ratio = 50;
504 devc->use_triggers = 0;
505
506 /* Register SIGMA device. */
507 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
508 USB_MODEL_NAME, USB_MODEL_VERSION))) {
509 sr_err("sigma: %s: sdi was NULL", __func__);
510 goto free;
511 }
512 sdi->driver = adi;
513
514 for (i = 0; probe_names[i]; i++) {
515 if (!(probe = sr_probe_new(i, SR_PROBE_ANALOG, TRUE,
516 probe_names[i])))
517 return NULL;
518 sdi->probes = g_slist_append(sdi->probes, probe);
519 }
520
521 devices = g_slist_append(devices, sdi);
522 drvc->instances = g_slist_append(drvc->instances, sdi);
523 sdi->priv = devc;
524
525 /* We will open the device again when we need it. */
526 ftdi_list_free(&devlist);
527
528 return devices;
529
530free:
531 ftdi_deinit(&devc->ftdic);
532 g_free(devc);
533 return NULL;
534}
535
536static int upload_firmware(int firmware_idx, struct dev_context *devc)
537{
538 int ret;
539 unsigned char *buf;
540 unsigned char pins;
541 size_t buf_size;
542 unsigned char result[32];
543 char firmware_path[128];
544
545 /* Make sure it's an ASIX SIGMA. */
546 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
547 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
548 sr_err("sigma: ftdi_usb_open failed: %s",
549 ftdi_get_error_string(&devc->ftdic));
550 return 0;
551 }
552
553 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
554 sr_err("sigma: ftdi_set_bitmode failed: %s",
555 ftdi_get_error_string(&devc->ftdic));
556 return 0;
557 }
558
559 /* Four times the speed of sigmalogan - Works well. */
560 if ((ret = ftdi_set_baudrate(&devc->ftdic, 750000)) < 0) {
561 sr_err("sigma: ftdi_set_baudrate failed: %s",
562 ftdi_get_error_string(&devc->ftdic));
563 return 0;
564 }
565
566 /* Force the FPGA to reboot. */
567 sigma_write(suicide, sizeof(suicide), devc);
568 sigma_write(suicide, sizeof(suicide), devc);
569 sigma_write(suicide, sizeof(suicide), devc);
570 sigma_write(suicide, sizeof(suicide), devc);
571
572 /* Prepare to upload firmware (FPGA specific). */
573 sigma_write(init, sizeof(init), devc);
574
575 ftdi_usb_purge_buffers(&devc->ftdic);
576
577 /* Wait until the FPGA asserts INIT_B. */
578 while (1) {
579 ret = sigma_read(result, 1, devc);
580 if (result[0] & 0x20)
581 break;
582 }
583
584 /* Prepare firmware. */
585 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
586 firmware_files[firmware_idx]);
587
588 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
589 sr_err("sigma: An error occured while reading the firmware: %s",
590 firmware_path);
591 return ret;
592 }
593
594 /* Upload firmare. */
595 sr_info("sigma: Uploading firmware %s", firmware_files[firmware_idx]);
596 sigma_write(buf, buf_size, devc);
597
598 g_free(buf);
599
600 if ((ret = ftdi_set_bitmode(&devc->ftdic, 0x00, BITMODE_RESET)) < 0) {
601 sr_err("sigma: ftdi_set_bitmode failed: %s",
602 ftdi_get_error_string(&devc->ftdic));
603 return SR_ERR;
604 }
605
606 ftdi_usb_purge_buffers(&devc->ftdic);
607
608 /* Discard garbage. */
609 while (1 == sigma_read(&pins, 1, devc))
610 ;
611
612 /* Initialize the logic analyzer mode. */
613 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
614
615 /* Expect a 3 byte reply. */
616 ret = sigma_read(result, 3, devc);
617 if (ret != 3 ||
618 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
619 sr_err("sigma: Configuration failed. Invalid reply received.");
620 return SR_ERR;
621 }
622
623 devc->cur_firmware = firmware_idx;
624
625 sr_info("sigma: Firmware uploaded");
626
627 return SR_OK;
628}
629
630static int hw_dev_open(struct sr_dev_inst *sdi)
631{
632 struct dev_context *devc;
633 int ret;
634
635 devc = sdi->priv;
636
637 /* Make sure it's an ASIX SIGMA. */
638 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
639 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
640
641 sr_err("sigma: ftdi_usb_open failed: %s",
642 ftdi_get_error_string(&devc->ftdic));
643
644 return 0;
645 }
646
647 sdi->status = SR_ST_ACTIVE;
648
649 return SR_OK;
650}
651
652static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
653{
654 int i, ret;
655 struct dev_context *devc = sdi->priv;
656
657 for (i = 0; supported_samplerates[i]; i++) {
658 if (supported_samplerates[i] == samplerate)
659 break;
660 }
661 if (supported_samplerates[i] == 0)
662 return SR_ERR_SAMPLERATE;
663
664 if (samplerate <= SR_MHZ(50)) {
665 ret = upload_firmware(0, devc);
666 devc->num_probes = 16;
667 }
668 if (samplerate == SR_MHZ(100)) {
669 ret = upload_firmware(1, devc);
670 devc->num_probes = 8;
671 }
672 else if (samplerate == SR_MHZ(200)) {
673 ret = upload_firmware(2, devc);
674 devc->num_probes = 4;
675 }
676
677 devc->cur_samplerate = samplerate;
678 devc->period_ps = 1000000000000 / samplerate;
679 devc->samples_per_event = 16 / devc->num_probes;
680 devc->state.state = SIGMA_IDLE;
681
682 return ret;
683}
684
685/*
686 * In 100 and 200 MHz mode, only a single pin rising/falling can be
687 * set as trigger. In other modes, two rising/falling triggers can be set,
688 * in addition to value/mask trigger for any number of probes.
689 *
690 * The Sigma supports complex triggers using boolean expressions, but this
691 * has not been implemented yet.
692 */
693static int configure_probes(const struct sr_dev_inst *sdi, const GSList *probes)
694{
695 struct dev_context *devc = sdi->priv;
696 const struct sr_probe *probe;
697 const GSList *l;
698 int trigger_set = 0;
699 int probebit;
700
701 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
702
703 for (l = probes; l; l = l->next) {
704 probe = (struct sr_probe *)l->data;
705 probebit = 1 << (probe->index);
706
707 if (!probe->enabled || !probe->trigger)
708 continue;
709
710 if (devc->cur_samplerate >= SR_MHZ(100)) {
711 /* Fast trigger support. */
712 if (trigger_set) {
713 sr_err("sigma: ASIX SIGMA only supports a single "
714 "pin trigger in 100 and 200MHz mode.");
715 return SR_ERR;
716 }
717 if (probe->trigger[0] == 'f')
718 devc->trigger.fallingmask |= probebit;
719 else if (probe->trigger[0] == 'r')
720 devc->trigger.risingmask |= probebit;
721 else {
722 sr_err("sigma: ASIX SIGMA only supports "
723 "rising/falling trigger in 100 "
724 "and 200MHz mode.");
725 return SR_ERR;
726 }
727
728 ++trigger_set;
729 } else {
730 /* Simple trigger support (event). */
731 if (probe->trigger[0] == '1') {
732 devc->trigger.simplevalue |= probebit;
733 devc->trigger.simplemask |= probebit;
734 }
735 else if (probe->trigger[0] == '0') {
736 devc->trigger.simplevalue &= ~probebit;
737 devc->trigger.simplemask |= probebit;
738 }
739 else if (probe->trigger[0] == 'f') {
740 devc->trigger.fallingmask |= probebit;
741 ++trigger_set;
742 }
743 else if (probe->trigger[0] == 'r') {
744 devc->trigger.risingmask |= probebit;
745 ++trigger_set;
746 }
747
748 /*
749 * Actually, Sigma supports 2 rising/falling triggers,
750 * but they are ORed and the current trigger syntax
751 * does not permit ORed triggers.
752 */
753 if (trigger_set > 1) {
754 sr_err("sigma: ASIX SIGMA only supports 1 "
755 "rising/falling triggers.");
756 return SR_ERR;
757 }
758 }
759
760 if (trigger_set)
761 devc->use_triggers = 1;
762 }
763
764 return SR_OK;
765}
766
767static int hw_dev_close(struct sr_dev_inst *sdi)
768{
769 struct dev_context *devc;
770
771 if (!(devc = sdi->priv)) {
772 sr_err("sigma: %s: sdi->priv was NULL", __func__);
773 return SR_ERR_BUG;
774 }
775
776 /* TODO */
777 if (sdi->status == SR_ST_ACTIVE)
778 ftdi_usb_close(&devc->ftdic);
779
780 sdi->status = SR_ST_INACTIVE;
781
782 return SR_OK;
783}
784
785static int hw_cleanup(void)
786{
787
788 if (!adi->priv)
789 return SR_OK;
790
791 clear_instances();
792
793 return SR_OK;
794}
795
796static int hw_info_get(int info_id, const void **data,
797 const struct sr_dev_inst *sdi)
798{
799 struct dev_context *devc;
800
801 switch (info_id) {
802 case SR_DI_HWCAPS:
803 *data = hwcaps;
804 break;
805 case SR_DI_NUM_PROBES:
806 *data = GINT_TO_POINTER(NUM_PROBES);
807 break;
808 case SR_DI_PROBE_NAMES:
809 *data = probe_names;
810 break;
811 case SR_DI_SAMPLERATES:
812 *data = &samplerates;
813 break;
814 case SR_DI_TRIGGER_TYPES:
815 *data = (char *)TRIGGER_TYPES;
816 break;
817 case SR_DI_CUR_SAMPLERATE:
818 if (sdi) {
819 devc = sdi->priv;
820 *data = &devc->cur_samplerate;
821 } else
822 return SR_ERR;
823 break;
824 default:
825 return SR_ERR_ARG;
826 }
827
828 return SR_OK;
829}
830
831static int hw_dev_config_set(const struct sr_dev_inst *sdi, int hwcap,
832 const void *value)
833{
834 struct dev_context *devc;
835 int ret;
836
837 devc = sdi->priv;
838
839 if (hwcap == SR_HWCAP_SAMPLERATE) {
840 ret = set_samplerate(sdi, *(const uint64_t *)value);
841 } else if (hwcap == SR_HWCAP_PROBECONFIG) {
842 ret = configure_probes(sdi, value);
843 } else if (hwcap == SR_HWCAP_LIMIT_MSEC) {
844 devc->limit_msec = *(const uint64_t *)value;
845 if (devc->limit_msec > 0)
846 ret = SR_OK;
847 else
848 ret = SR_ERR;
849 } else if (hwcap == SR_HWCAP_CAPTURE_RATIO) {
850 devc->capture_ratio = *(const uint64_t *)value;
851 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
852 ret = SR_ERR;
853 else
854 ret = SR_OK;
855 } else {
856 ret = SR_ERR;
857 }
858
859 return ret;
860}
861
862/* Software trigger to determine exact trigger position. */
863static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
864 struct sigma_trigger *t)
865{
866 int i;
867
868 for (i = 0; i < 8; ++i) {
869 if (i > 0)
870 last_sample = samples[i-1];
871
872 /* Simple triggers. */
873 if ((samples[i] & t->simplemask) != t->simplevalue)
874 continue;
875
876 /* Rising edge. */
877 if ((last_sample & t->risingmask) != 0 || (samples[i] &
878 t->risingmask) != t->risingmask)
879 continue;
880
881 /* Falling edge. */
882 if ((last_sample & t->fallingmask) != t->fallingmask ||
883 (samples[i] & t->fallingmask) != 0)
884 continue;
885
886 break;
887 }
888
889 /* If we did not match, return original trigger pos. */
890 return i & 0x7;
891}
892
893/*
894 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
895 * Each event is 20ns apart, and can contain multiple samples.
896 *
897 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
898 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
899 * For 50 MHz and below, events contain one sample for each channel,
900 * spread 20 ns apart.
901 */
902static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
903 uint16_t *lastsample, int triggerpos,
904 uint16_t limit_chunk, void *cb_data)
905{
906 struct sr_dev_inst *sdi = cb_data;
907 struct dev_context *devc = sdi->priv;
908 uint16_t tsdiff, ts;
909 uint16_t samples[65536 * devc->samples_per_event];
910 struct sr_datafeed_packet packet;
911 struct sr_datafeed_logic logic;
912 int i, j, k, l, numpad, tosend;
913 size_t n = 0, sent = 0;
914 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
915 uint16_t *event;
916 uint16_t cur_sample;
917 int triggerts = -1;
918
919 /* Check if trigger is in this chunk. */
920 if (triggerpos != -1) {
921 if (devc->cur_samplerate <= SR_MHZ(50))
922 triggerpos -= EVENTS_PER_CLUSTER - 1;
923
924 if (triggerpos < 0)
925 triggerpos = 0;
926
927 /* Find in which cluster the trigger occured. */
928 triggerts = triggerpos / 7;
929 }
930
931 /* For each ts. */
932 for (i = 0; i < 64; ++i) {
933 ts = *(uint16_t *) &buf[i * 16];
934 tsdiff = ts - *lastts;
935 *lastts = ts;
936
937 /* Decode partial chunk. */
938 if (limit_chunk && ts > limit_chunk)
939 return SR_OK;
940
941 /* Pad last sample up to current point. */
942 numpad = tsdiff * devc->samples_per_event - clustersize;
943 if (numpad > 0) {
944 for (j = 0; j < numpad; ++j)
945 samples[j] = *lastsample;
946
947 n = numpad;
948 }
949
950 /* Send samples between previous and this timestamp to sigrok. */
951 sent = 0;
952 while (sent < n) {
953 tosend = MIN(2048, n - sent);
954
955 packet.type = SR_DF_LOGIC;
956 packet.payload = &logic;
957 logic.length = tosend * sizeof(uint16_t);
958 logic.unitsize = 2;
959 logic.data = samples + sent;
960 sr_session_send(devc->session_dev_id, &packet);
961
962 sent += tosend;
963 }
964 n = 0;
965
966 event = (uint16_t *) &buf[i * 16 + 2];
967 cur_sample = 0;
968
969 /* For each event in cluster. */
970 for (j = 0; j < 7; ++j) {
971
972 /* For each sample in event. */
973 for (k = 0; k < devc->samples_per_event; ++k) {
974 cur_sample = 0;
975
976 /* For each probe. */
977 for (l = 0; l < devc->num_probes; ++l)
978 cur_sample |= (!!(event[j] & (1 << (l *
979 devc->samples_per_event + k)))) << l;
980
981 samples[n++] = cur_sample;
982 }
983 }
984
985 /* Send data up to trigger point (if triggered). */
986 sent = 0;
987 if (i == triggerts) {
988 /*
989 * Trigger is not always accurate to sample because of
990 * pipeline delay. However, it always triggers before
991 * the actual event. We therefore look at the next
992 * samples to pinpoint the exact position of the trigger.
993 */
994 tosend = get_trigger_offset(samples, *lastsample,
995 &devc->trigger);
996
997 if (tosend > 0) {
998 packet.type = SR_DF_LOGIC;
999 packet.payload = &logic;
1000 logic.length = tosend * sizeof(uint16_t);
1001 logic.unitsize = 2;
1002 logic.data = samples;
1003 sr_session_send(devc->session_dev_id, &packet);
1004
1005 sent += tosend;
1006 }
1007
1008 /* Only send trigger if explicitly enabled. */
1009 if (devc->use_triggers) {
1010 packet.type = SR_DF_TRIGGER;
1011 sr_session_send(devc->session_dev_id, &packet);
1012 }
1013 }
1014
1015 /* Send rest of the chunk to sigrok. */
1016 tosend = n - sent;
1017
1018 if (tosend > 0) {
1019 packet.type = SR_DF_LOGIC;
1020 packet.payload = &logic;
1021 logic.length = tosend * sizeof(uint16_t);
1022 logic.unitsize = 2;
1023 logic.data = samples + sent;
1024 sr_session_send(devc->session_dev_id, &packet);
1025 }
1026
1027 *lastsample = samples[n - 1];
1028 }
1029
1030 return SR_OK;
1031}
1032
1033static int receive_data(int fd, int revents, void *cb_data)
1034{
1035 struct sr_dev_inst *sdi = cb_data;
1036 struct dev_context *devc = sdi->priv;
1037 struct sr_datafeed_packet packet;
1038 const int chunks_per_read = 32;
1039 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1040 int bufsz, numchunks, i, newchunks;
1041 uint64_t running_msec;
1042 struct timeval tv;
1043
1044 /* Avoid compiler warnings. */
1045 (void)fd;
1046 (void)revents;
1047
1048 /* Get the current position. */
1049 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1050
1051 numchunks = (devc->state.stoppos + 511) / 512;
1052
1053 if (devc->state.state == SIGMA_IDLE)
1054 return TRUE;
1055
1056 if (devc->state.state == SIGMA_CAPTURE) {
1057 /* Check if the timer has expired, or memory is full. */
1058 gettimeofday(&tv, 0);
1059 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1060 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1061
1062 if (running_msec < devc->limit_msec && numchunks < 32767)
1063 return TRUE; /* While capturing... */
1064 else
1065 hw_dev_acquisition_stop(sdi, sdi);
1066
1067 } else if (devc->state.state == SIGMA_DOWNLOAD) {
1068 if (devc->state.chunks_downloaded >= numchunks) {
1069 /* End of samples. */
1070 packet.type = SR_DF_END;
1071 sr_session_send(devc->session_dev_id, &packet);
1072
1073 devc->state.state = SIGMA_IDLE;
1074
1075 return TRUE;
1076 }
1077
1078 newchunks = MIN(chunks_per_read,
1079 numchunks - devc->state.chunks_downloaded);
1080
1081 sr_info("sigma: Downloading sample data: %.0f %%",
1082 100.0 * devc->state.chunks_downloaded / numchunks);
1083
1084 bufsz = sigma_read_dram(devc->state.chunks_downloaded,
1085 newchunks, buf, devc);
1086 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1087 (void)bufsz;
1088
1089 /* Find first ts. */
1090 if (devc->state.chunks_downloaded == 0) {
1091 devc->state.lastts = *(uint16_t *) buf - 1;
1092 devc->state.lastsample = 0;
1093 }
1094
1095 /* Decode chunks and send them to sigrok. */
1096 for (i = 0; i < newchunks; ++i) {
1097 int limit_chunk = 0;
1098
1099 /* The last chunk may potentially be only in part. */
1100 if (devc->state.chunks_downloaded == numchunks - 1) {
1101 /* Find the last valid timestamp */
1102 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1103 }
1104
1105 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1106 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1107 &devc->state.lastts,
1108 &devc->state.lastsample,
1109 devc->state.triggerpos & 0x1ff,
1110 limit_chunk, sdi);
1111 else
1112 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1113 &devc->state.lastts,
1114 &devc->state.lastsample,
1115 -1, limit_chunk, sdi);
1116
1117 ++devc->state.chunks_downloaded;
1118 }
1119 }
1120
1121 return TRUE;
1122}
1123
1124/* Build a LUT entry used by the trigger functions. */
1125static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1126{
1127 int i, j, k, bit;
1128
1129 /* For each quad probe. */
1130 for (i = 0; i < 4; ++i) {
1131 entry[i] = 0xffff;
1132
1133 /* For each bit in LUT. */
1134 for (j = 0; j < 16; ++j)
1135
1136 /* For each probe in quad. */
1137 for (k = 0; k < 4; ++k) {
1138 bit = 1 << (i * 4 + k);
1139
1140 /* Set bit in entry */
1141 if ((mask & bit) &&
1142 ((!(value & bit)) !=
1143 (!(j & (1 << k)))))
1144 entry[i] &= ~(1 << j);
1145 }
1146 }
1147}
1148
1149/* Add a logical function to LUT mask. */
1150static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1151 int index, int neg, uint16_t *mask)
1152{
1153 int i, j;
1154 int x[2][2], tmp, a, b, aset, bset, rset;
1155
1156 memset(x, 0, 4 * sizeof(int));
1157
1158 /* Trigger detect condition. */
1159 switch (oper) {
1160 case OP_LEVEL:
1161 x[0][1] = 1;
1162 x[1][1] = 1;
1163 break;
1164 case OP_NOT:
1165 x[0][0] = 1;
1166 x[1][0] = 1;
1167 break;
1168 case OP_RISE:
1169 x[0][1] = 1;
1170 break;
1171 case OP_FALL:
1172 x[1][0] = 1;
1173 break;
1174 case OP_RISEFALL:
1175 x[0][1] = 1;
1176 x[1][0] = 1;
1177 break;
1178 case OP_NOTRISE:
1179 x[1][1] = 1;
1180 x[0][0] = 1;
1181 x[1][0] = 1;
1182 break;
1183 case OP_NOTFALL:
1184 x[1][1] = 1;
1185 x[0][0] = 1;
1186 x[0][1] = 1;
1187 break;
1188 case OP_NOTRISEFALL:
1189 x[1][1] = 1;
1190 x[0][0] = 1;
1191 break;
1192 }
1193
1194 /* Transpose if neg is set. */
1195 if (neg) {
1196 for (i = 0; i < 2; ++i) {
1197 for (j = 0; j < 2; ++j) {
1198 tmp = x[i][j];
1199 x[i][j] = x[1-i][1-j];
1200 x[1-i][1-j] = tmp;
1201 }
1202 }
1203 }
1204
1205 /* Update mask with function. */
1206 for (i = 0; i < 16; ++i) {
1207 a = (i >> (2 * index + 0)) & 1;
1208 b = (i >> (2 * index + 1)) & 1;
1209
1210 aset = (*mask >> i) & 1;
1211 bset = x[b][a];
1212
1213 if (func == FUNC_AND || func == FUNC_NAND)
1214 rset = aset & bset;
1215 else if (func == FUNC_OR || func == FUNC_NOR)
1216 rset = aset | bset;
1217 else if (func == FUNC_XOR || func == FUNC_NXOR)
1218 rset = aset ^ bset;
1219
1220 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1221 rset = !rset;
1222
1223 *mask &= ~(1 << i);
1224
1225 if (rset)
1226 *mask |= 1 << i;
1227 }
1228}
1229
1230/*
1231 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1232 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1233 * set at any time, but a full mask and value can be set (0/1).
1234 */
1235static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1236{
1237 int i,j;
1238 uint16_t masks[2] = { 0, 0 };
1239
1240 memset(lut, 0, sizeof(struct triggerlut));
1241
1242 /* Contant for simple triggers. */
1243 lut->m4 = 0xa000;
1244
1245 /* Value/mask trigger support. */
1246 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1247 lut->m2d);
1248
1249 /* Rise/fall trigger support. */
1250 for (i = 0, j = 0; i < 16; ++i) {
1251 if (devc->trigger.risingmask & (1 << i) ||
1252 devc->trigger.fallingmask & (1 << i))
1253 masks[j++] = 1 << i;
1254 }
1255
1256 build_lut_entry(masks[0], masks[0], lut->m0d);
1257 build_lut_entry(masks[1], masks[1], lut->m1d);
1258
1259 /* Add glue logic */
1260 if (masks[0] || masks[1]) {
1261 /* Transition trigger. */
1262 if (masks[0] & devc->trigger.risingmask)
1263 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1264 if (masks[0] & devc->trigger.fallingmask)
1265 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1266 if (masks[1] & devc->trigger.risingmask)
1267 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1268 if (masks[1] & devc->trigger.fallingmask)
1269 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1270 } else {
1271 /* Only value/mask trigger. */
1272 lut->m3 = 0xffff;
1273 }
1274
1275 /* Triggertype: event. */
1276 lut->params.selres = 3;
1277
1278 return SR_OK;
1279}
1280
1281static int hw_dev_acquisition_start(const struct sr_dev_inst *sdi,
1282 void *cb_data)
1283{
1284 struct dev_context *devc;
1285 struct sr_datafeed_packet *packet;
1286 struct sr_datafeed_header *header;
1287 struct sr_datafeed_meta_logic meta;
1288 struct clockselect_50 clockselect;
1289 int frac, triggerpin, ret;
1290 uint8_t triggerselect;
1291 struct triggerinout triggerinout_conf;
1292 struct triggerlut lut;
1293
1294 devc = sdi->priv;
1295
1296 /* If the samplerate has not been set, default to 200 kHz. */
1297 if (devc->cur_firmware == -1) {
1298 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1299 return ret;
1300 }
1301
1302 /* Enter trigger programming mode. */
1303 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1304
1305 /* 100 and 200 MHz mode. */
1306 if (devc->cur_samplerate >= SR_MHZ(100)) {
1307 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1308
1309 /* Find which pin to trigger on from mask. */
1310 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1311 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1312 (1 << triggerpin))
1313 break;
1314
1315 /* Set trigger pin and light LED on trigger. */
1316 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1317
1318 /* Default rising edge. */
1319 if (devc->trigger.fallingmask)
1320 triggerselect |= 1 << 3;
1321
1322 /* All other modes. */
1323 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1324 build_basic_trigger(&lut, devc);
1325
1326 sigma_write_trigger_lut(&lut, devc);
1327
1328 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1329 }
1330
1331 /* Setup trigger in and out pins to default values. */
1332 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1333 triggerinout_conf.trgout_bytrigger = 1;
1334 triggerinout_conf.trgout_enable = 1;
1335
1336 sigma_write_register(WRITE_TRIGGER_OPTION,
1337 (uint8_t *) &triggerinout_conf,
1338 sizeof(struct triggerinout), devc);
1339
1340 /* Go back to normal mode. */
1341 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1342
1343 /* Set clock select register. */
1344 if (devc->cur_samplerate == SR_MHZ(200))
1345 /* Enable 4 probes. */
1346 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1347 else if (devc->cur_samplerate == SR_MHZ(100))
1348 /* Enable 8 probes. */
1349 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1350 else {
1351 /*
1352 * 50 MHz mode (or fraction thereof). Any fraction down to
1353 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1354 */
1355 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1356
1357 clockselect.async = 0;
1358 clockselect.fraction = frac;
1359 clockselect.disabled_probes = 0;
1360
1361 sigma_write_register(WRITE_CLOCK_SELECT,
1362 (uint8_t *) &clockselect,
1363 sizeof(clockselect), devc);
1364 }
1365
1366 /* Setup maximum post trigger time. */
1367 sigma_set_register(WRITE_POST_TRIGGER,
1368 (devc->capture_ratio * 255) / 100, devc);
1369
1370 /* Start acqusition. */
1371 gettimeofday(&devc->start_tv, 0);
1372 sigma_set_register(WRITE_MODE, 0x0d, devc);
1373
1374 devc->session_dev_id = cb_data;
1375
1376 if (!(packet = g_try_malloc(sizeof(struct sr_datafeed_packet)))) {
1377 sr_err("sigma: %s: packet malloc failed.", __func__);
1378 return SR_ERR_MALLOC;
1379 }
1380
1381 if (!(header = g_try_malloc(sizeof(struct sr_datafeed_header)))) {
1382 sr_err("sigma: %s: header malloc failed.", __func__);
1383 return SR_ERR_MALLOC;
1384 }
1385
1386 /* Send header packet to the session bus. */
1387 packet->type = SR_DF_HEADER;
1388 packet->payload = header;
1389 header->feed_version = 1;
1390 gettimeofday(&header->starttime, NULL);
1391 sr_session_send(devc->session_dev_id, packet);
1392
1393 /* Send metadata about the SR_DF_LOGIC packets to come. */
1394 packet->type = SR_DF_META_LOGIC;
1395 packet->payload = &meta;
1396 meta.samplerate = devc->cur_samplerate;
1397 meta.num_probes = devc->num_probes;
1398 sr_session_send(devc->session_dev_id, packet);
1399
1400 /* Add capture source. */
1401 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1402
1403 g_free(header);
1404 g_free(packet);
1405
1406 devc->state.state = SIGMA_CAPTURE;
1407
1408 return SR_OK;
1409}
1410
1411static int hw_dev_acquisition_stop(const struct sr_dev_inst *sdi,
1412 void *cb_data)
1413{
1414 struct dev_context *devc;
1415 uint8_t modestatus;
1416
1417 /* Avoid compiler warnings. */
1418 (void)cb_data;
1419
1420 if (!(devc = sdi->priv)) {
1421 sr_err("sigma: %s: sdi->priv was NULL", __func__);
1422 return SR_ERR_BUG;
1423 }
1424
1425 /* Stop acquisition. */
1426 sigma_set_register(WRITE_MODE, 0x11, devc);
1427
1428 /* Set SDRAM Read Enable. */
1429 sigma_set_register(WRITE_MODE, 0x02, devc);
1430
1431 /* Get the current position. */
1432 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1433
1434 /* Check if trigger has fired. */
1435 modestatus = sigma_get_register(READ_MODE, devc);
1436 if (modestatus & 0x20)
1437 devc->state.triggerchunk = devc->state.triggerpos / 512;
1438 else
1439 devc->state.triggerchunk = -1;
1440
1441 devc->state.chunks_downloaded = 0;
1442
1443 devc->state.state = SIGMA_DOWNLOAD;
1444
1445 return SR_OK;
1446}
1447
1448SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1449 .name = "asix-sigma",
1450 .longname = "ASIX SIGMA/SIGMA2",
1451 .api_version = 1,
1452 .init = hw_init,
1453 .cleanup = hw_cleanup,
1454 .scan = hw_scan,
1455 .dev_open = hw_dev_open,
1456 .dev_close = hw_dev_close,
1457 .info_get = hw_info_get,
1458 .dev_config_set = hw_dev_config_set,
1459 .dev_acquisition_start = hw_dev_acquisition_start,
1460 .dev_acquisition_stop = hw_dev_acquisition_stop,
1461 .priv = NULL,
1462};