]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
libsigrok: closedev() now has a return code.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the sigrok project.
3 *
4 * Copyright (C) 2010 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA Logic Analyzer Driver
24 */
25
26#include "config.h"
27#include <glib.h>
28#include <glib/gstdio.h>
29#include <ftdi.h>
30#include <string.h>
31#include <zlib.h>
32#include <sigrok.h>
33#include <sigrok-internal.h>
34#include "asix-sigma.h"
35
36#define USB_VENDOR 0xa600
37#define USB_PRODUCT 0xa000
38#define USB_DESCRIPTION "ASIX SIGMA"
39#define USB_VENDOR_NAME "ASIX"
40#define USB_MODEL_NAME "SIGMA"
41#define USB_MODEL_VERSION ""
42#define TRIGGER_TYPES "rf10"
43
44static GSList *device_instances = NULL;
45
46static uint64_t supported_samplerates[] = {
47 SR_KHZ(200),
48 SR_KHZ(250),
49 SR_KHZ(500),
50 SR_MHZ(1),
51 SR_MHZ(5),
52 SR_MHZ(10),
53 SR_MHZ(25),
54 SR_MHZ(50),
55 SR_MHZ(100),
56 SR_MHZ(200),
57 0,
58};
59
60static struct sr_samplerates samplerates = {
61 SR_KHZ(200),
62 SR_MHZ(200),
63 SR_HZ(0),
64 supported_samplerates,
65};
66
67static int capabilities[] = {
68 SR_HWCAP_LOGIC_ANALYZER,
69 SR_HWCAP_SAMPLERATE,
70 SR_HWCAP_CAPTURE_RATIO,
71 SR_HWCAP_PROBECONFIG,
72
73 SR_HWCAP_LIMIT_MSEC,
74 0,
75};
76
77/* Force the FPGA to reboot. */
78static uint8_t suicide[] = {
79 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
80};
81
82/* Prepare to upload firmware (FPGA specific). */
83static uint8_t init[] = {
84 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
85};
86
87/* Initialize the logic analyzer mode. */
88static uint8_t logic_mode_start[] = {
89 0x00, 0x40, 0x0f, 0x25, 0x35, 0x40,
90 0x2a, 0x3a, 0x40, 0x03, 0x20, 0x38,
91};
92
93static const char *firmware_files[] = {
94 "asix-sigma-50.fw", /* 50 MHz, supports 8 bit fractions */
95 "asix-sigma-100.fw", /* 100 MHz */
96 "asix-sigma-200.fw", /* 200 MHz */
97 "asix-sigma-50sync.fw", /* Synchronous clock from pin */
98 "asix-sigma-phasor.fw", /* Frequency counter */
99};
100
101static void hw_stop_acquisition(int device_index, gpointer session_device_id);
102
103static int sigma_read(void *buf, size_t size, struct sigma *sigma)
104{
105 int ret;
106
107 ret = ftdi_read_data(&sigma->ftdic, (unsigned char *)buf, size);
108 if (ret < 0) {
109 sr_warn("ftdi_read_data failed: %s",
110 ftdi_get_error_string(&sigma->ftdic));
111 }
112
113 return ret;
114}
115
116static int sigma_write(void *buf, size_t size, struct sigma *sigma)
117{
118 int ret;
119
120 ret = ftdi_write_data(&sigma->ftdic, (unsigned char *)buf, size);
121 if (ret < 0) {
122 sr_warn("ftdi_write_data failed: %s",
123 ftdi_get_error_string(&sigma->ftdic));
124 } else if ((size_t) ret != size) {
125 sr_warn("ftdi_write_data did not complete write\n");
126 }
127
128 return ret;
129}
130
131static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
132 struct sigma *sigma)
133{
134 size_t i;
135 uint8_t buf[len + 2];
136 int idx = 0;
137
138 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
139 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
140
141 for (i = 0; i < len; ++i) {
142 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
143 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
144 }
145
146 return sigma_write(buf, idx, sigma);
147}
148
149static int sigma_set_register(uint8_t reg, uint8_t value, struct sigma *sigma)
150{
151 return sigma_write_register(reg, &value, 1, sigma);
152}
153
154static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
155 struct sigma *sigma)
156{
157 uint8_t buf[3];
158
159 buf[0] = REG_ADDR_LOW | (reg & 0xf);
160 buf[1] = REG_ADDR_HIGH | (reg >> 4);
161 buf[2] = REG_READ_ADDR;
162
163 sigma_write(buf, sizeof(buf), sigma);
164
165 return sigma_read(data, len, sigma);
166}
167
168static uint8_t sigma_get_register(uint8_t reg, struct sigma *sigma)
169{
170 uint8_t value;
171
172 if (1 != sigma_read_register(reg, &value, 1, sigma)) {
173 sr_warn("sigma_get_register: 1 byte expected");
174 return 0;
175 }
176
177 return value;
178}
179
180static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
181 struct sigma *sigma)
182{
183 uint8_t buf[] = {
184 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
185
186 REG_READ_ADDR | NEXT_REG,
187 REG_READ_ADDR | NEXT_REG,
188 REG_READ_ADDR | NEXT_REG,
189 REG_READ_ADDR | NEXT_REG,
190 REG_READ_ADDR | NEXT_REG,
191 REG_READ_ADDR | NEXT_REG,
192 };
193 uint8_t result[6];
194
195 sigma_write(buf, sizeof(buf), sigma);
196
197 sigma_read(result, sizeof(result), sigma);
198
199 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
200 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
201
202 /* Not really sure why this must be done, but according to spec. */
203 if ((--*stoppos & 0x1ff) == 0x1ff)
204 stoppos -= 64;
205
206 if ((*--triggerpos & 0x1ff) == 0x1ff)
207 triggerpos -= 64;
208
209 return 1;
210}
211
212static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
213 uint8_t *data, struct sigma *sigma)
214{
215 size_t i;
216 uint8_t buf[4096];
217 int idx = 0;
218
219 /* Send the startchunk. Index start with 1. */
220 buf[0] = startchunk >> 8;
221 buf[1] = startchunk & 0xff;
222 sigma_write_register(WRITE_MEMROW, buf, 2, sigma);
223
224 /* Read the DRAM. */
225 buf[idx++] = REG_DRAM_BLOCK;
226 buf[idx++] = REG_DRAM_WAIT_ACK;
227
228 for (i = 0; i < numchunks; ++i) {
229 /* Alternate bit to copy from DRAM to cache. */
230 if (i != (numchunks - 1))
231 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
232
233 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
234
235 if (i != (numchunks - 1))
236 buf[idx++] = REG_DRAM_WAIT_ACK;
237 }
238
239 sigma_write(buf, idx, sigma);
240
241 return sigma_read(data, numchunks * CHUNK_SIZE, sigma);
242}
243
244/* Upload trigger look-up tables to Sigma. */
245static int sigma_write_trigger_lut(struct triggerlut *lut, struct sigma *sigma)
246{
247 int i;
248 uint8_t tmp[2];
249 uint16_t bit;
250
251 /* Transpose the table and send to Sigma. */
252 for (i = 0; i < 16; ++i) {
253 bit = 1 << i;
254
255 tmp[0] = tmp[1] = 0;
256
257 if (lut->m2d[0] & bit)
258 tmp[0] |= 0x01;
259 if (lut->m2d[1] & bit)
260 tmp[0] |= 0x02;
261 if (lut->m2d[2] & bit)
262 tmp[0] |= 0x04;
263 if (lut->m2d[3] & bit)
264 tmp[0] |= 0x08;
265
266 if (lut->m3 & bit)
267 tmp[0] |= 0x10;
268 if (lut->m3s & bit)
269 tmp[0] |= 0x20;
270 if (lut->m4 & bit)
271 tmp[0] |= 0x40;
272
273 if (lut->m0d[0] & bit)
274 tmp[1] |= 0x01;
275 if (lut->m0d[1] & bit)
276 tmp[1] |= 0x02;
277 if (lut->m0d[2] & bit)
278 tmp[1] |= 0x04;
279 if (lut->m0d[3] & bit)
280 tmp[1] |= 0x08;
281
282 if (lut->m1d[0] & bit)
283 tmp[1] |= 0x10;
284 if (lut->m1d[1] & bit)
285 tmp[1] |= 0x20;
286 if (lut->m1d[2] & bit)
287 tmp[1] |= 0x40;
288 if (lut->m1d[3] & bit)
289 tmp[1] |= 0x80;
290
291 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
292 sigma);
293 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, sigma);
294 }
295
296 /* Send the parameters */
297 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
298 sizeof(lut->params), sigma);
299
300 return SR_OK;
301}
302
303/* Generate the bitbang stream for programming the FPGA. */
304static int bin2bitbang(const char *filename,
305 unsigned char **buf, size_t *buf_size)
306{
307 FILE *f;
308 long file_size;
309 unsigned long offset = 0;
310 unsigned char *p;
311 uint8_t *compressed_buf, *firmware;
312 uLongf csize, fwsize;
313 const int buffer_size = 65536;
314 size_t i;
315 int c, ret, bit, v;
316 uint32_t imm = 0x3f6df2ab;
317
318 f = g_fopen(filename, "rb");
319 if (!f) {
320 sr_warn("g_fopen(\"%s\", \"rb\")", filename);
321 return SR_ERR;
322 }
323
324 if (-1 == fseek(f, 0, SEEK_END)) {
325 sr_warn("fseek on %s failed", filename);
326 fclose(f);
327 return SR_ERR;
328 }
329
330 file_size = ftell(f);
331
332 fseek(f, 0, SEEK_SET);
333
334 if (!(compressed_buf = g_try_malloc(file_size))) {
335 sr_err("asix: %s: compressed_buf malloc failed", __func__);
336 fclose(f);
337 return SR_ERR_MALLOC;
338 }
339
340 if (!(firmware = g_try_malloc(buffer_size))) {
341 sr_err("asix: %s: firmware malloc failed", __func__);
342 fclose(f);
343 g_free(compressed_buf);
344 return SR_ERR_MALLOC;
345 }
346
347 csize = 0;
348 while ((c = getc(f)) != EOF) {
349 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
350 compressed_buf[csize++] = c ^ imm;
351 }
352 fclose(f);
353
354 fwsize = buffer_size;
355 ret = uncompress(firmware, &fwsize, compressed_buf, csize);
356 if (ret < 0) {
357 g_free(compressed_buf);
358 g_free(firmware);
359 sr_warn("Could not unpack Sigma firmware. (Error %d)\n", ret);
360 return SR_ERR;
361 }
362
363 g_free(compressed_buf);
364
365 *buf_size = fwsize * 2 * 8;
366
367 *buf = p = (unsigned char *)g_try_malloc(*buf_size);
368 if (!p) {
369 sr_err("asix: %s: buf/p malloc failed", __func__);
370 g_free(compressed_buf);
371 g_free(firmware);
372 return SR_ERR_MALLOC;
373 }
374
375 for (i = 0; i < fwsize; ++i) {
376 for (bit = 7; bit >= 0; --bit) {
377 v = firmware[i] & 1 << bit ? 0x40 : 0x00;
378 p[offset++] = v | 0x01;
379 p[offset++] = v;
380 }
381 }
382
383 g_free(firmware);
384
385 if (offset != *buf_size) {
386 g_free(*buf);
387 sr_warn("Error reading firmware %s "
388 "offset=%ld, file_size=%ld, buf_size=%zd\n",
389 filename, offset, file_size, *buf_size);
390
391 return SR_ERR;
392 }
393
394 return SR_OK;
395}
396
397static int hw_init(const char *deviceinfo)
398{
399 struct sr_device_instance *sdi;
400 struct sigma *sigma;
401
402 /* Avoid compiler warnings. */
403 deviceinfo = deviceinfo;
404
405 if (!(sigma = g_try_malloc(sizeof(struct sigma)))) {
406 sr_err("asix: %s: sigma malloc failed", __func__);
407 return 0; /* FIXME: Should be SR_ERR_MALLOC. */
408 }
409
410 ftdi_init(&sigma->ftdic);
411
412 /* Look for SIGMAs. */
413 if (ftdi_usb_open_desc(&sigma->ftdic, USB_VENDOR, USB_PRODUCT,
414 USB_DESCRIPTION, NULL) < 0)
415 goto free;
416
417 sigma->cur_samplerate = 0;
418 sigma->limit_msec = 0;
419 sigma->cur_firmware = -1;
420 sigma->num_probes = 0;
421 sigma->samples_per_event = 0;
422 sigma->capture_ratio = 50;
423 sigma->use_triggers = 0;
424
425 /* Register SIGMA device. */
426 sdi = sr_device_instance_new(0, SR_ST_INITIALIZING,
427 USB_VENDOR_NAME, USB_MODEL_NAME, USB_MODEL_VERSION);
428 if (!sdi)
429 goto free;
430
431 sdi->priv = sigma;
432
433 device_instances = g_slist_append(device_instances, sdi);
434
435 /* We will open the device again when we need it. */
436 ftdi_usb_close(&sigma->ftdic);
437
438 return 1;
439free:
440 g_free(sigma);
441 return 0;
442}
443
444static int upload_firmware(int firmware_idx, struct sigma *sigma)
445{
446 int ret;
447 unsigned char *buf;
448 unsigned char pins;
449 size_t buf_size;
450 unsigned char result[32];
451 char firmware_path[128];
452
453 /* Make sure it's an ASIX SIGMA. */
454 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
455 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
456 sr_warn("ftdi_usb_open failed: %s",
457 ftdi_get_error_string(&sigma->ftdic));
458 return 0;
459 }
460
461 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0xdf, BITMODE_BITBANG)) < 0) {
462 sr_warn("ftdi_set_bitmode failed: %s",
463 ftdi_get_error_string(&sigma->ftdic));
464 return 0;
465 }
466
467 /* Four times the speed of sigmalogan - Works well. */
468 if ((ret = ftdi_set_baudrate(&sigma->ftdic, 750000)) < 0) {
469 sr_warn("ftdi_set_baudrate failed: %s",
470 ftdi_get_error_string(&sigma->ftdic));
471 return 0;
472 }
473
474 /* Force the FPGA to reboot. */
475 sigma_write(suicide, sizeof(suicide), sigma);
476 sigma_write(suicide, sizeof(suicide), sigma);
477 sigma_write(suicide, sizeof(suicide), sigma);
478 sigma_write(suicide, sizeof(suicide), sigma);
479
480 /* Prepare to upload firmware (FPGA specific). */
481 sigma_write(init, sizeof(init), sigma);
482
483 ftdi_usb_purge_buffers(&sigma->ftdic);
484
485 /* Wait until the FPGA asserts INIT_B. */
486 while (1) {
487 ret = sigma_read(result, 1, sigma);
488 if (result[0] & 0x20)
489 break;
490 }
491
492 /* Prepare firmware. */
493 snprintf(firmware_path, sizeof(firmware_path), "%s/%s", FIRMWARE_DIR,
494 firmware_files[firmware_idx]);
495
496 if ((ret = bin2bitbang(firmware_path, &buf, &buf_size)) != SR_OK) {
497 sr_warn("An error occured while reading the firmware: %s",
498 firmware_path);
499 return ret;
500 }
501
502 /* Upload firmare. */
503 sigma_write(buf, buf_size, sigma);
504
505 g_free(buf);
506
507 if ((ret = ftdi_set_bitmode(&sigma->ftdic, 0x00, BITMODE_RESET)) < 0) {
508 sr_warn("ftdi_set_bitmode failed: %s",
509 ftdi_get_error_string(&sigma->ftdic));
510 return SR_ERR;
511 }
512
513 ftdi_usb_purge_buffers(&sigma->ftdic);
514
515 /* Discard garbage. */
516 while (1 == sigma_read(&pins, 1, sigma))
517 ;
518
519 /* Initialize the logic analyzer mode. */
520 sigma_write(logic_mode_start, sizeof(logic_mode_start), sigma);
521
522 /* Expect a 3 byte reply. */
523 ret = sigma_read(result, 3, sigma);
524 if (ret != 3 ||
525 result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa) {
526 sr_warn("Configuration failed. Invalid reply received.");
527 return SR_ERR;
528 }
529
530 sigma->cur_firmware = firmware_idx;
531
532 return SR_OK;
533}
534
535static int hw_opendev(int device_index)
536{
537 struct sr_device_instance *sdi;
538 struct sigma *sigma;
539 int ret;
540
541 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
542 return SR_ERR;
543
544 sigma = sdi->priv;
545
546 /* Make sure it's an ASIX SIGMA. */
547 if ((ret = ftdi_usb_open_desc(&sigma->ftdic,
548 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
549
550 sr_warn("ftdi_usb_open failed: %s",
551 ftdi_get_error_string(&sigma->ftdic));
552
553 return 0;
554 }
555
556 sdi->status = SR_ST_ACTIVE;
557
558 return SR_OK;
559}
560
561static int set_samplerate(struct sr_device_instance *sdi,
562 uint64_t samplerate)
563{
564 int i, ret;
565 struct sigma *sigma = sdi->priv;
566
567 for (i = 0; supported_samplerates[i]; i++) {
568 if (supported_samplerates[i] == samplerate)
569 break;
570 }
571 if (supported_samplerates[i] == 0)
572 return SR_ERR_SAMPLERATE;
573
574 if (samplerate <= SR_MHZ(50)) {
575 ret = upload_firmware(0, sigma);
576 sigma->num_probes = 16;
577 }
578 if (samplerate == SR_MHZ(100)) {
579 ret = upload_firmware(1, sigma);
580 sigma->num_probes = 8;
581 }
582 else if (samplerate == SR_MHZ(200)) {
583 ret = upload_firmware(2, sigma);
584 sigma->num_probes = 4;
585 }
586
587 sigma->cur_samplerate = samplerate;
588 sigma->samples_per_event = 16 / sigma->num_probes;
589 sigma->state.state = SIGMA_IDLE;
590
591 sr_info("Firmware uploaded");
592
593 return ret;
594}
595
596/*
597 * In 100 and 200 MHz mode, only a single pin rising/falling can be
598 * set as trigger. In other modes, two rising/falling triggers can be set,
599 * in addition to value/mask trigger for any number of probes.
600 *
601 * The Sigma supports complex triggers using boolean expressions, but this
602 * has not been implemented yet.
603 */
604static int configure_probes(struct sr_device_instance *sdi, GSList *probes)
605{
606 struct sigma *sigma = sdi->priv;
607 struct sr_probe *probe;
608 GSList *l;
609 int trigger_set = 0;
610 int probebit;
611
612 memset(&sigma->trigger, 0, sizeof(struct sigma_trigger));
613
614 for (l = probes; l; l = l->next) {
615 probe = (struct sr_probe *)l->data;
616 probebit = 1 << (probe->index - 1);
617
618 if (!probe->enabled || !probe->trigger)
619 continue;
620
621 if (sigma->cur_samplerate >= SR_MHZ(100)) {
622 /* Fast trigger support. */
623 if (trigger_set) {
624 sr_warn("ASIX SIGMA only supports a single "
625 "pin trigger in 100 and 200MHz mode.");
626 return SR_ERR;
627 }
628 if (probe->trigger[0] == 'f')
629 sigma->trigger.fallingmask |= probebit;
630 else if (probe->trigger[0] == 'r')
631 sigma->trigger.risingmask |= probebit;
632 else {
633 sr_warn("ASIX SIGMA only supports "
634 "rising/falling trigger in 100 "
635 "and 200MHz mode.");
636 return SR_ERR;
637 }
638
639 ++trigger_set;
640 } else {
641 /* Simple trigger support (event). */
642 if (probe->trigger[0] == '1') {
643 sigma->trigger.simplevalue |= probebit;
644 sigma->trigger.simplemask |= probebit;
645 }
646 else if (probe->trigger[0] == '0') {
647 sigma->trigger.simplevalue &= ~probebit;
648 sigma->trigger.simplemask |= probebit;
649 }
650 else if (probe->trigger[0] == 'f') {
651 sigma->trigger.fallingmask |= probebit;
652 ++trigger_set;
653 }
654 else if (probe->trigger[0] == 'r') {
655 sigma->trigger.risingmask |= probebit;
656 ++trigger_set;
657 }
658
659 /*
660 * Actually, Sigma supports 2 rising/falling triggers,
661 * but they are ORed and the current trigger syntax
662 * does not permit ORed triggers.
663 */
664 if (trigger_set > 1) {
665 sr_warn("ASIX SIGMA only supports 1 rising/"
666 "falling triggers.");
667 return SR_ERR;
668 }
669 }
670
671 if (trigger_set)
672 sigma->use_triggers = 1;
673 }
674
675 return SR_OK;
676}
677
678static int hw_closedev(int device_index)
679{
680 struct sr_device_instance *sdi;
681 struct sigma *sigma;
682
683 if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
684 sr_err("asix: %s: sdi was NULL", __func__);
685 return SR_ERR; /* TODO: SR_ERR_ARG? */
686 }
687
688 if (!(sigma = sdi->priv)) {
689 sr_err("asix: %s: sdi->priv was NULL", __func__);
690 return SR_ERR; /* TODO: SR_ERR_ARG? */
691 }
692
693 /* TODO */
694 if (sdi->status == SR_ST_ACTIVE)
695 ftdi_usb_close(&sigma->ftdic);
696
697 sdi->status = SR_ST_INACTIVE;
698
699 return SR_OK;
700}
701
702static void hw_cleanup(void)
703{
704 GSList *l;
705 struct sr_device_instance *sdi;
706
707 /* Properly close all devices. */
708 for (l = device_instances; l; l = l->next) {
709 sdi = l->data;
710 if (sdi->priv != NULL)
711 free(sdi->priv);
712 sr_device_instance_free(sdi);
713 }
714 g_slist_free(device_instances);
715 device_instances = NULL;
716}
717
718static void *hw_get_device_info(int device_index, int device_info_id)
719{
720 struct sr_device_instance *sdi;
721 struct sigma *sigma;
722 void *info = NULL;
723
724 if (!(sdi = sr_get_device_instance(device_instances, device_index))) {
725 fprintf(stderr, "It's NULL.\n");
726 return NULL;
727 }
728
729 sigma = sdi->priv;
730
731 switch (device_info_id) {
732 case SR_DI_INSTANCE:
733 info = sdi;
734 break;
735 case SR_DI_NUM_PROBES:
736 info = GINT_TO_POINTER(16);
737 break;
738 case SR_DI_SAMPLERATES:
739 info = &samplerates;
740 break;
741 case SR_DI_TRIGGER_TYPES:
742 info = (char *)TRIGGER_TYPES;
743 break;
744 case SR_DI_CUR_SAMPLERATE:
745 info = &sigma->cur_samplerate;
746 break;
747 }
748
749 return info;
750}
751
752static int hw_get_status(int device_index)
753{
754 struct sr_device_instance *sdi;
755
756 sdi = sr_get_device_instance(device_instances, device_index);
757 if (sdi)
758 return sdi->status;
759 else
760 return SR_ST_NOT_FOUND;
761}
762
763static int *hw_get_capabilities(void)
764{
765 return capabilities;
766}
767
768static int hw_set_configuration(int device_index, int capability, void *value)
769{
770 struct sr_device_instance *sdi;
771 struct sigma *sigma;
772 int ret;
773
774 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
775 return SR_ERR;
776
777 sigma = sdi->priv;
778
779 if (capability == SR_HWCAP_SAMPLERATE) {
780 ret = set_samplerate(sdi, *(uint64_t*) value);
781 } else if (capability == SR_HWCAP_PROBECONFIG) {
782 ret = configure_probes(sdi, value);
783 } else if (capability == SR_HWCAP_LIMIT_MSEC) {
784 sigma->limit_msec = *(uint64_t*) value;
785 if (sigma->limit_msec > 0)
786 ret = SR_OK;
787 else
788 ret = SR_ERR;
789 } else if (capability == SR_HWCAP_CAPTURE_RATIO) {
790 sigma->capture_ratio = *(uint64_t*) value;
791 if (sigma->capture_ratio < 0 || sigma->capture_ratio > 100)
792 ret = SR_ERR;
793 else
794 ret = SR_OK;
795 } else {
796 ret = SR_ERR;
797 }
798
799 return ret;
800}
801
802/* Software trigger to determine exact trigger position. */
803static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
804 struct sigma_trigger *t)
805{
806 int i;
807
808 for (i = 0; i < 8; ++i) {
809 if (i > 0)
810 last_sample = samples[i-1];
811
812 /* Simple triggers. */
813 if ((samples[i] & t->simplemask) != t->simplevalue)
814 continue;
815
816 /* Rising edge. */
817 if ((last_sample & t->risingmask) != 0 || (samples[i] &
818 t->risingmask) != t->risingmask)
819 continue;
820
821 /* Falling edge. */
822 if ((last_sample & t->fallingmask) != t->fallingmask ||
823 (samples[i] & t->fallingmask) != 0)
824 continue;
825
826 break;
827 }
828
829 /* If we did not match, return original trigger pos. */
830 return i & 0x7;
831}
832
833/*
834 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
835 * Each event is 20ns apart, and can contain multiple samples.
836 *
837 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
838 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
839 * For 50 MHz and below, events contain one sample for each channel,
840 * spread 20 ns apart.
841 */
842static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
843 uint16_t *lastsample, int triggerpos,
844 uint16_t limit_chunk, void *user_data)
845{
846 struct sr_device_instance *sdi = user_data;
847 struct sigma *sigma = sdi->priv;
848 uint16_t tsdiff, ts;
849 uint16_t samples[65536 * sigma->samples_per_event];
850 struct sr_datafeed_packet packet;
851 int i, j, k, l, numpad, tosend;
852 size_t n = 0, sent = 0;
853 int clustersize = EVENTS_PER_CLUSTER * sigma->samples_per_event;
854 uint16_t *event;
855 uint16_t cur_sample;
856 int triggerts = -1;
857
858 /* Check if trigger is in this chunk. */
859 if (triggerpos != -1) {
860 if (sigma->cur_samplerate <= SR_MHZ(50))
861 triggerpos -= EVENTS_PER_CLUSTER - 1;
862
863 if (triggerpos < 0)
864 triggerpos = 0;
865
866 /* Find in which cluster the trigger occured. */
867 triggerts = triggerpos / 7;
868 }
869
870 /* For each ts. */
871 for (i = 0; i < 64; ++i) {
872 ts = *(uint16_t *) &buf[i * 16];
873 tsdiff = ts - *lastts;
874 *lastts = ts;
875
876 /* Decode partial chunk. */
877 if (limit_chunk && ts > limit_chunk)
878 return SR_OK;
879
880 /* Pad last sample up to current point. */
881 numpad = tsdiff * sigma->samples_per_event - clustersize;
882 if (numpad > 0) {
883 for (j = 0; j < numpad; ++j)
884 samples[j] = *lastsample;
885
886 n = numpad;
887 }
888
889 /* Send samples between previous and this timestamp to sigrok. */
890 sent = 0;
891 while (sent < n) {
892 tosend = MIN(2048, n - sent);
893
894 packet.type = SR_DF_LOGIC;
895 packet.length = tosend * sizeof(uint16_t);
896 packet.unitsize = 2;
897 packet.payload = samples + sent;
898 sr_session_bus(sigma->session_id, &packet);
899
900 sent += tosend;
901 }
902 n = 0;
903
904 event = (uint16_t *) &buf[i * 16 + 2];
905 cur_sample = 0;
906
907 /* For each event in cluster. */
908 for (j = 0; j < 7; ++j) {
909
910 /* For each sample in event. */
911 for (k = 0; k < sigma->samples_per_event; ++k) {
912 cur_sample = 0;
913
914 /* For each probe. */
915 for (l = 0; l < sigma->num_probes; ++l)
916 cur_sample |= (!!(event[j] & (1 << (l *
917 sigma->samples_per_event
918 + k))))
919 << l;
920
921 samples[n++] = cur_sample;
922 }
923 }
924
925 /* Send data up to trigger point (if triggered). */
926 sent = 0;
927 if (i == triggerts) {
928 /*
929 * Trigger is not always accurate to sample because of
930 * pipeline delay. However, it always triggers before
931 * the actual event. We therefore look at the next
932 * samples to pinpoint the exact position of the trigger.
933 */
934 tosend = get_trigger_offset(samples, *lastsample,
935 &sigma->trigger);
936
937 if (tosend > 0) {
938 packet.type = SR_DF_LOGIC;
939 packet.length = tosend * sizeof(uint16_t);
940 packet.unitsize = 2;
941 packet.payload = samples;
942 sr_session_bus(sigma->session_id, &packet);
943
944 sent += tosend;
945 }
946
947 /* Only send trigger if explicitly enabled. */
948 if (sigma->use_triggers) {
949 packet.type = SR_DF_TRIGGER;
950 packet.length = 0;
951 packet.payload = 0;
952 sr_session_bus(sigma->session_id, &packet);
953 }
954 }
955
956 /* Send rest of the chunk to sigrok. */
957 tosend = n - sent;
958
959 if (tosend > 0) {
960 packet.type = SR_DF_LOGIC;
961 packet.length = tosend * sizeof(uint16_t);
962 packet.unitsize = 2;
963 packet.payload = samples + sent;
964 sr_session_bus(sigma->session_id, &packet);
965 }
966
967 *lastsample = samples[n - 1];
968 }
969
970 return SR_OK;
971}
972
973static int receive_data(int fd, int revents, void *user_data)
974{
975 struct sr_device_instance *sdi = user_data;
976 struct sigma *sigma = sdi->priv;
977 struct sr_datafeed_packet packet;
978 const int chunks_per_read = 32;
979 unsigned char buf[chunks_per_read * CHUNK_SIZE];
980 int bufsz, numchunks, i, newchunks;
981 uint64_t running_msec;
982 struct timeval tv;
983
984 fd = fd;
985 revents = revents;
986
987 numchunks = (sigma->state.stoppos + 511) / 512;
988
989 if (sigma->state.state == SIGMA_IDLE)
990 return FALSE;
991
992 if (sigma->state.state == SIGMA_CAPTURE) {
993
994 /* Check if the timer has expired, or memory is full. */
995 gettimeofday(&tv, 0);
996 running_msec = (tv.tv_sec - sigma->start_tv.tv_sec) * 1000 +
997 (tv.tv_usec - sigma->start_tv.tv_usec) / 1000;
998
999 if (running_msec < sigma->limit_msec && numchunks < 32767)
1000 return FALSE;
1001
1002 hw_stop_acquisition(sdi->index, user_data);
1003
1004 return FALSE;
1005
1006 } else if (sigma->state.state == SIGMA_DOWNLOAD) {
1007 if (sigma->state.chunks_downloaded >= numchunks) {
1008 /* End of samples. */
1009 packet.type = SR_DF_END;
1010 packet.length = 0;
1011 sr_session_bus(sigma->session_id, &packet);
1012
1013 sigma->state.state = SIGMA_IDLE;
1014
1015 return TRUE;
1016 }
1017
1018 newchunks = MIN(chunks_per_read,
1019 numchunks - sigma->state.chunks_downloaded);
1020
1021 sr_info("Downloading sample data: %.0f %%",
1022 100.0 * sigma->state.chunks_downloaded / numchunks);
1023
1024 bufsz = sigma_read_dram(sigma->state.chunks_downloaded,
1025 newchunks, buf, sigma);
1026
1027 /* Find first ts. */
1028 if (sigma->state.chunks_downloaded == 0) {
1029 sigma->state.lastts = *(uint16_t *) buf - 1;
1030 sigma->state.lastsample = 0;
1031 }
1032
1033 /* Decode chunks and send them to sigrok. */
1034 for (i = 0; i < newchunks; ++i) {
1035 int limit_chunk = 0;
1036
1037 /* The last chunk may potentially be only in part. */
1038 if (sigma->state.chunks_downloaded == numchunks - 1)
1039 {
1040 /* Find the last valid timestamp */
1041 limit_chunk = sigma->state.stoppos % 512 + sigma->state.lastts;
1042 }
1043
1044 if (sigma->state.chunks_downloaded + i == sigma->state.triggerchunk)
1045 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1046 &sigma->state.lastts,
1047 &sigma->state.lastsample,
1048 sigma->state.triggerpos & 0x1ff,
1049 limit_chunk, user_data);
1050 else
1051 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1052 &sigma->state.lastts,
1053 &sigma->state.lastsample,
1054 -1, limit_chunk, user_data);
1055
1056 ++sigma->state.chunks_downloaded;
1057 }
1058 }
1059
1060 return TRUE;
1061}
1062
1063/* Build a LUT entry used by the trigger functions. */
1064static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1065{
1066 int i, j, k, bit;
1067
1068 /* For each quad probe. */
1069 for (i = 0; i < 4; ++i) {
1070 entry[i] = 0xffff;
1071
1072 /* For each bit in LUT. */
1073 for (j = 0; j < 16; ++j)
1074
1075 /* For each probe in quad. */
1076 for (k = 0; k < 4; ++k) {
1077 bit = 1 << (i * 4 + k);
1078
1079 /* Set bit in entry */
1080 if ((mask & bit) &&
1081 ((!(value & bit)) !=
1082 (!(j & (1 << k)))))
1083 entry[i] &= ~(1 << j);
1084 }
1085 }
1086}
1087
1088/* Add a logical function to LUT mask. */
1089static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1090 int index, int neg, uint16_t *mask)
1091{
1092 int i, j;
1093 int x[2][2], tmp, a, b, aset, bset, rset;
1094
1095 memset(x, 0, 4 * sizeof(int));
1096
1097 /* Trigger detect condition. */
1098 switch (oper) {
1099 case OP_LEVEL:
1100 x[0][1] = 1;
1101 x[1][1] = 1;
1102 break;
1103 case OP_NOT:
1104 x[0][0] = 1;
1105 x[1][0] = 1;
1106 break;
1107 case OP_RISE:
1108 x[0][1] = 1;
1109 break;
1110 case OP_FALL:
1111 x[1][0] = 1;
1112 break;
1113 case OP_RISEFALL:
1114 x[0][1] = 1;
1115 x[1][0] = 1;
1116 break;
1117 case OP_NOTRISE:
1118 x[1][1] = 1;
1119 x[0][0] = 1;
1120 x[1][0] = 1;
1121 break;
1122 case OP_NOTFALL:
1123 x[1][1] = 1;
1124 x[0][0] = 1;
1125 x[0][1] = 1;
1126 break;
1127 case OP_NOTRISEFALL:
1128 x[1][1] = 1;
1129 x[0][0] = 1;
1130 break;
1131 }
1132
1133 /* Transpose if neg is set. */
1134 if (neg) {
1135 for (i = 0; i < 2; ++i)
1136 for (j = 0; j < 2; ++j) {
1137 tmp = x[i][j];
1138 x[i][j] = x[1-i][1-j];
1139 x[1-i][1-j] = tmp;
1140 }
1141 }
1142
1143 /* Update mask with function. */
1144 for (i = 0; i < 16; ++i) {
1145 a = (i >> (2 * index + 0)) & 1;
1146 b = (i >> (2 * index + 1)) & 1;
1147
1148 aset = (*mask >> i) & 1;
1149 bset = x[b][a];
1150
1151 if (func == FUNC_AND || func == FUNC_NAND)
1152 rset = aset & bset;
1153 else if (func == FUNC_OR || func == FUNC_NOR)
1154 rset = aset | bset;
1155 else if (func == FUNC_XOR || func == FUNC_NXOR)
1156 rset = aset ^ bset;
1157
1158 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1159 rset = !rset;
1160
1161 *mask &= ~(1 << i);
1162
1163 if (rset)
1164 *mask |= 1 << i;
1165 }
1166}
1167
1168/*
1169 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1170 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1171 * set at any time, but a full mask and value can be set (0/1).
1172 */
1173static int build_basic_trigger(struct triggerlut *lut, struct sigma *sigma)
1174{
1175 int i,j;
1176 uint16_t masks[2] = { 0, 0 };
1177
1178 memset(lut, 0, sizeof(struct triggerlut));
1179
1180 /* Contant for simple triggers. */
1181 lut->m4 = 0xa000;
1182
1183 /* Value/mask trigger support. */
1184 build_lut_entry(sigma->trigger.simplevalue, sigma->trigger.simplemask,
1185 lut->m2d);
1186
1187 /* Rise/fall trigger support. */
1188 for (i = 0, j = 0; i < 16; ++i) {
1189 if (sigma->trigger.risingmask & (1 << i) ||
1190 sigma->trigger.fallingmask & (1 << i))
1191 masks[j++] = 1 << i;
1192 }
1193
1194 build_lut_entry(masks[0], masks[0], lut->m0d);
1195 build_lut_entry(masks[1], masks[1], lut->m1d);
1196
1197 /* Add glue logic */
1198 if (masks[0] || masks[1]) {
1199 /* Transition trigger. */
1200 if (masks[0] & sigma->trigger.risingmask)
1201 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1202 if (masks[0] & sigma->trigger.fallingmask)
1203 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1204 if (masks[1] & sigma->trigger.risingmask)
1205 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1206 if (masks[1] & sigma->trigger.fallingmask)
1207 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1208 } else {
1209 /* Only value/mask trigger. */
1210 lut->m3 = 0xffff;
1211 }
1212
1213 /* Triggertype: event. */
1214 lut->params.selres = 3;
1215
1216 return SR_OK;
1217}
1218
1219static int hw_start_acquisition(int device_index, gpointer session_device_id)
1220{
1221 struct sr_device_instance *sdi;
1222 struct sigma *sigma;
1223 struct sr_datafeed_packet packet;
1224 struct sr_datafeed_header header;
1225 struct clockselect_50 clockselect;
1226 int frac, triggerpin, ret;
1227 uint8_t triggerselect;
1228 struct triggerinout triggerinout_conf;
1229 struct triggerlut lut;
1230
1231 session_device_id = session_device_id;
1232
1233 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1234 return SR_ERR;
1235
1236 sigma = sdi->priv;
1237
1238 /* If the samplerate has not been set, default to 200 KHz. */
1239 if (sigma->cur_firmware == -1) {
1240 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1241 return ret;
1242 }
1243
1244 /* Enter trigger programming mode. */
1245 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, sigma);
1246
1247 /* 100 and 200 MHz mode. */
1248 if (sigma->cur_samplerate >= SR_MHZ(100)) {
1249 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, sigma);
1250
1251 /* Find which pin to trigger on from mask. */
1252 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1253 if ((sigma->trigger.risingmask | sigma->trigger.fallingmask) &
1254 (1 << triggerpin))
1255 break;
1256
1257 /* Set trigger pin and light LED on trigger. */
1258 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1259
1260 /* Default rising edge. */
1261 if (sigma->trigger.fallingmask)
1262 triggerselect |= 1 << 3;
1263
1264 /* All other modes. */
1265 } else if (sigma->cur_samplerate <= SR_MHZ(50)) {
1266 build_basic_trigger(&lut, sigma);
1267
1268 sigma_write_trigger_lut(&lut, sigma);
1269
1270 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1271 }
1272
1273 /* Setup trigger in and out pins to default values. */
1274 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1275 triggerinout_conf.trgout_bytrigger = 1;
1276 triggerinout_conf.trgout_enable = 1;
1277
1278 sigma_write_register(WRITE_TRIGGER_OPTION,
1279 (uint8_t *) &triggerinout_conf,
1280 sizeof(struct triggerinout), sigma);
1281
1282 /* Go back to normal mode. */
1283 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, sigma);
1284
1285 /* Set clock select register. */
1286 if (sigma->cur_samplerate == SR_MHZ(200))
1287 /* Enable 4 probes. */
1288 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, sigma);
1289 else if (sigma->cur_samplerate == SR_MHZ(100))
1290 /* Enable 8 probes. */
1291 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, sigma);
1292 else {
1293 /*
1294 * 50 MHz mode (or fraction thereof). Any fraction down to
1295 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1296 */
1297 frac = SR_MHZ(50) / sigma->cur_samplerate - 1;
1298
1299 clockselect.async = 0;
1300 clockselect.fraction = frac;
1301 clockselect.disabled_probes = 0;
1302
1303 sigma_write_register(WRITE_CLOCK_SELECT,
1304 (uint8_t *) &clockselect,
1305 sizeof(clockselect), sigma);
1306 }
1307
1308 /* Setup maximum post trigger time. */
1309 sigma_set_register(WRITE_POST_TRIGGER,
1310 (sigma->capture_ratio * 255) / 100, sigma);
1311
1312 /* Start acqusition. */
1313 gettimeofday(&sigma->start_tv, 0);
1314 sigma_set_register(WRITE_MODE, 0x0d, sigma);
1315
1316 sigma->session_id = session_device_id;
1317
1318 /* Send header packet to the session bus. */
1319 packet.type = SR_DF_HEADER;
1320 packet.length = sizeof(struct sr_datafeed_header);
1321 packet.payload = &header;
1322 header.feed_version = 1;
1323 gettimeofday(&header.starttime, NULL);
1324 header.samplerate = sigma->cur_samplerate;
1325 header.protocol_id = SR_PROTO_RAW;
1326 header.num_logic_probes = sigma->num_probes;
1327 header.num_analog_probes = 0;
1328 sr_session_bus(session_device_id, &packet);
1329
1330 /* Add capture source. */
1331 sr_source_add(0, G_IO_IN, 10, receive_data, sdi);
1332
1333 sigma->state.state = SIGMA_CAPTURE;
1334
1335 return SR_OK;
1336}
1337
1338static void hw_stop_acquisition(int device_index, gpointer session_device_id)
1339{
1340 struct sr_device_instance *sdi;
1341 struct sigma *sigma;
1342 uint8_t modestatus;
1343
1344 if (!(sdi = sr_get_device_instance(device_instances, device_index)))
1345 return;
1346
1347 sigma = sdi->priv;
1348
1349 session_device_id = session_device_id;
1350
1351 /* Stop acquisition. */
1352 sigma_set_register(WRITE_MODE, 0x11, sigma);
1353
1354 /* Set SDRAM Read Enable. */
1355 sigma_set_register(WRITE_MODE, 0x02, sigma);
1356
1357 /* Get the current position. */
1358 sigma_read_pos(&sigma->state.stoppos, &sigma->state.triggerpos, sigma);
1359
1360 /* Check if trigger has fired. */
1361 modestatus = sigma_get_register(READ_MODE, sigma);
1362 if (modestatus & 0x20) {
1363 sigma->state.triggerchunk = sigma->state.triggerpos / 512;
1364
1365 } else
1366 sigma->state.triggerchunk = -1;
1367
1368 sigma->state.chunks_downloaded = 0;
1369
1370 sigma->state.state = SIGMA_DOWNLOAD;
1371}
1372
1373struct sr_device_plugin asix_sigma_plugin_info = {
1374 .name = "asix-sigma",
1375 .longname = "ASIX SIGMA",
1376 .api_version = 1,
1377 .init = hw_init,
1378 .cleanup = hw_cleanup,
1379 .opendev = hw_opendev,
1380 .closedev = hw_closedev,
1381 .get_device_info = hw_get_device_info,
1382 .get_status = hw_get_status,
1383 .get_capabilities = hw_get_capabilities,
1384 .set_configuration = hw_set_configuration,
1385 .start_acquisition = hw_start_acquisition,
1386 .stop_acquisition = hw_stop_acquisition,
1387};