]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
asix-sigma: Read position only in CAPTURE state
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include "libsigrok.h"
31#include "libsigrok-internal.h"
32#include "asix-sigma.h"
33
34#define USB_VENDOR 0xa600
35#define USB_PRODUCT 0xa000
36#define USB_DESCRIPTION "ASIX SIGMA"
37#define USB_VENDOR_NAME "ASIX"
38#define USB_MODEL_NAME "SIGMA"
39#define TRIGGER_TYPE "rf10"
40
41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
42static struct sr_dev_driver *di = &asix_sigma_driver_info;
43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
44
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
51static const uint64_t samplerates[] = {
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
62};
63
64/*
65 * Channel numbers seem to go from 1-16, according to this image:
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
69static const char *channel_names[] = {
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
72};
73
74static const int32_t hwcaps[] = {
75 SR_CONF_LOGIC_ANALYZER,
76 SR_CONF_SAMPLERATE,
77 SR_CONF_TRIGGER_TYPE,
78 SR_CONF_CAPTURE_RATIO,
79 SR_CONF_LIMIT_MSEC,
80 SR_CONF_LIMIT_SAMPLES,
81};
82
83static const char *sigma_firmware_files[] = {
84 /* 50 MHz, supports 8 bit fractions */
85 FIRMWARE_DIR "/asix-sigma-50.fw",
86 /* 100 MHz */
87 FIRMWARE_DIR "/asix-sigma-100.fw",
88 /* 200 MHz */
89 FIRMWARE_DIR "/asix-sigma-200.fw",
90 /* Synchronous clock from pin */
91 FIRMWARE_DIR "/asix-sigma-50sync.fw",
92 /* Frequency counter */
93 FIRMWARE_DIR "/asix-sigma-phasor.fw",
94};
95
96static int sigma_read(void *buf, size_t size, struct dev_context *devc)
97{
98 int ret;
99
100 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
101 if (ret < 0) {
102 sr_err("ftdi_read_data failed: %s",
103 ftdi_get_error_string(&devc->ftdic));
104 }
105
106 return ret;
107}
108
109static int sigma_write(void *buf, size_t size, struct dev_context *devc)
110{
111 int ret;
112
113 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
114 if (ret < 0) {
115 sr_err("ftdi_write_data failed: %s",
116 ftdi_get_error_string(&devc->ftdic));
117 } else if ((size_t) ret != size) {
118 sr_err("ftdi_write_data did not complete write.");
119 }
120
121 return ret;
122}
123
124static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
125 struct dev_context *devc)
126{
127 size_t i;
128 uint8_t buf[len + 2];
129 int idx = 0;
130
131 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
132 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
133
134 for (i = 0; i < len; ++i) {
135 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
136 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
137 }
138
139 return sigma_write(buf, idx, devc);
140}
141
142static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
143{
144 return sigma_write_register(reg, &value, 1, devc);
145}
146
147static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
148 struct dev_context *devc)
149{
150 uint8_t buf[3];
151
152 buf[0] = REG_ADDR_LOW | (reg & 0xf);
153 buf[1] = REG_ADDR_HIGH | (reg >> 4);
154 buf[2] = REG_READ_ADDR;
155
156 sigma_write(buf, sizeof(buf), devc);
157
158 return sigma_read(data, len, devc);
159}
160
161static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
162{
163 uint8_t value;
164
165 if (1 != sigma_read_register(reg, &value, 1, devc)) {
166 sr_err("sigma_get_register: 1 byte expected");
167 return 0;
168 }
169
170 return value;
171}
172
173static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
174 struct dev_context *devc)
175{
176 uint8_t buf[] = {
177 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
178
179 REG_READ_ADDR | NEXT_REG,
180 REG_READ_ADDR | NEXT_REG,
181 REG_READ_ADDR | NEXT_REG,
182 REG_READ_ADDR | NEXT_REG,
183 REG_READ_ADDR | NEXT_REG,
184 REG_READ_ADDR | NEXT_REG,
185 };
186 uint8_t result[6];
187
188 sigma_write(buf, sizeof(buf), devc);
189
190 sigma_read(result, sizeof(result), devc);
191
192 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
193 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
194
195 /* Not really sure why this must be done, but according to spec. */
196 if ((--*stoppos & 0x1ff) == 0x1ff)
197 stoppos -= 64;
198
199 if ((*--triggerpos & 0x1ff) == 0x1ff)
200 triggerpos -= 64;
201
202 return 1;
203}
204
205static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
206 uint8_t *data, struct dev_context *devc)
207{
208 size_t i;
209 uint8_t buf[4096];
210 int idx = 0;
211
212 /* Send the startchunk. Index start with 1. */
213 buf[0] = startchunk >> 8;
214 buf[1] = startchunk & 0xff;
215 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
216
217 /* Read the DRAM. */
218 buf[idx++] = REG_DRAM_BLOCK;
219 buf[idx++] = REG_DRAM_WAIT_ACK;
220
221 for (i = 0; i < numchunks; ++i) {
222 /* Alternate bit to copy from DRAM to cache. */
223 if (i != (numchunks - 1))
224 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
225
226 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
227
228 if (i != (numchunks - 1))
229 buf[idx++] = REG_DRAM_WAIT_ACK;
230 }
231
232 sigma_write(buf, idx, devc);
233
234 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
235}
236
237/* Upload trigger look-up tables to Sigma. */
238static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
239{
240 int i;
241 uint8_t tmp[2];
242 uint16_t bit;
243
244 /* Transpose the table and send to Sigma. */
245 for (i = 0; i < 16; ++i) {
246 bit = 1 << i;
247
248 tmp[0] = tmp[1] = 0;
249
250 if (lut->m2d[0] & bit)
251 tmp[0] |= 0x01;
252 if (lut->m2d[1] & bit)
253 tmp[0] |= 0x02;
254 if (lut->m2d[2] & bit)
255 tmp[0] |= 0x04;
256 if (lut->m2d[3] & bit)
257 tmp[0] |= 0x08;
258
259 if (lut->m3 & bit)
260 tmp[0] |= 0x10;
261 if (lut->m3s & bit)
262 tmp[0] |= 0x20;
263 if (lut->m4 & bit)
264 tmp[0] |= 0x40;
265
266 if (lut->m0d[0] & bit)
267 tmp[1] |= 0x01;
268 if (lut->m0d[1] & bit)
269 tmp[1] |= 0x02;
270 if (lut->m0d[2] & bit)
271 tmp[1] |= 0x04;
272 if (lut->m0d[3] & bit)
273 tmp[1] |= 0x08;
274
275 if (lut->m1d[0] & bit)
276 tmp[1] |= 0x10;
277 if (lut->m1d[1] & bit)
278 tmp[1] |= 0x20;
279 if (lut->m1d[2] & bit)
280 tmp[1] |= 0x40;
281 if (lut->m1d[3] & bit)
282 tmp[1] |= 0x80;
283
284 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
285 devc);
286 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
287 }
288
289 /* Send the parameters */
290 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
291 sizeof(lut->params), devc);
292
293 return SR_OK;
294}
295
296static void clear_helper(void *priv)
297{
298 struct dev_context *devc;
299
300 devc = priv;
301
302 ftdi_deinit(&devc->ftdic);
303}
304
305static int dev_clear(void)
306{
307 return std_dev_clear(di, clear_helper);
308}
309
310static int init(struct sr_context *sr_ctx)
311{
312 return std_init(sr_ctx, di, LOG_PREFIX);
313}
314
315static GSList *scan(GSList *options)
316{
317 struct sr_dev_inst *sdi;
318 struct sr_channel *ch;
319 struct drv_context *drvc;
320 struct dev_context *devc;
321 GSList *devices;
322 struct ftdi_device_list *devlist;
323 char serial_txt[10];
324 uint32_t serial;
325 int ret;
326 unsigned int i;
327
328 (void)options;
329
330 drvc = di->priv;
331
332 devices = NULL;
333
334 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
335 sr_err("%s: devc malloc failed", __func__);
336 return NULL;
337 }
338
339 ftdi_init(&devc->ftdic);
340
341 /* Look for SIGMAs. */
342
343 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
344 USB_VENDOR, USB_PRODUCT)) <= 0) {
345 if (ret < 0)
346 sr_err("ftdi_usb_find_all(): %d", ret);
347 goto free;
348 }
349
350 /* Make sure it's a version 1 or 2 SIGMA. */
351 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
352 serial_txt, sizeof(serial_txt));
353 sscanf(serial_txt, "%x", &serial);
354
355 if (serial < 0xa6010000 || serial > 0xa602ffff) {
356 sr_err("Only SIGMA and SIGMA2 are supported "
357 "in this version of libsigrok.");
358 goto free;
359 }
360
361 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
362
363 devc->cur_samplerate = 0;
364 devc->period_ps = 0;
365 devc->limit_msec = 0;
366 devc->cur_firmware = -1;
367 devc->num_channels = 0;
368 devc->samples_per_event = 0;
369 devc->capture_ratio = 50;
370 devc->use_triggers = 0;
371
372 /* Register SIGMA device. */
373 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
374 USB_MODEL_NAME, NULL))) {
375 sr_err("%s: sdi was NULL", __func__);
376 goto free;
377 }
378 sdi->driver = di;
379
380 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
381 ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
382 channel_names[i]);
383 if (!ch)
384 return NULL;
385 sdi->channels = g_slist_append(sdi->channels, ch);
386 }
387
388 devices = g_slist_append(devices, sdi);
389 drvc->instances = g_slist_append(drvc->instances, sdi);
390 sdi->priv = devc;
391
392 /* We will open the device again when we need it. */
393 ftdi_list_free(&devlist);
394
395 return devices;
396
397free:
398 ftdi_deinit(&devc->ftdic);
399 g_free(devc);
400 return NULL;
401}
402
403static GSList *dev_list(void)
404{
405 return ((struct drv_context *)(di->priv))->instances;
406}
407
408/*
409 * Configure the FPGA for bitbang mode.
410 * This sequence is documented in section 2. of the ASIX Sigma programming
411 * manual. This sequence is necessary to configure the FPGA in the Sigma
412 * into Bitbang mode, in which it can be programmed with the firmware.
413 */
414static int sigma_fpga_init_bitbang(struct dev_context *devc)
415{
416 uint8_t suicide[] = {
417 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
418 };
419 uint8_t init_array[] = {
420 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
421 0x01, 0x01,
422 };
423 int i, ret, timeout = 10000;
424 uint8_t data;
425
426 /* Section 2. part 1), do the FPGA suicide. */
427 sigma_write(suicide, sizeof(suicide), devc);
428 sigma_write(suicide, sizeof(suicide), devc);
429 sigma_write(suicide, sizeof(suicide), devc);
430 sigma_write(suicide, sizeof(suicide), devc);
431
432 /* Section 2. part 2), do pulse on D1. */
433 sigma_write(init_array, sizeof(init_array), devc);
434 ftdi_usb_purge_buffers(&devc->ftdic);
435
436 /* Wait until the FPGA asserts D6/INIT_B. */
437 for (i = 0; i < timeout; i++) {
438 ret = sigma_read(&data, 1, devc);
439 if (ret < 0)
440 return ret;
441 /* Test if pin D6 got asserted. */
442 if (data & (1 << 5))
443 return 0;
444 /* The D6 was not asserted yet, wait a bit. */
445 usleep(10000);
446 }
447
448 return SR_ERR_TIMEOUT;
449}
450
451/*
452 * Configure the FPGA for logic-analyzer mode.
453 */
454static int sigma_fpga_init_la(struct dev_context *devc)
455{
456 /* Initialize the logic analyzer mode. */
457 uint8_t logic_mode_start[] = {
458 REG_ADDR_LOW | (READ_ID & 0xf),
459 REG_ADDR_HIGH | (READ_ID >> 8),
460 REG_READ_ADDR, /* Read ID register. */
461
462 REG_ADDR_LOW | (WRITE_TEST & 0xf),
463 REG_DATA_LOW | 0x5,
464 REG_DATA_HIGH_WRITE | 0x5,
465 REG_READ_ADDR, /* Read scratch register. */
466
467 REG_DATA_LOW | 0xa,
468 REG_DATA_HIGH_WRITE | 0xa,
469 REG_READ_ADDR, /* Read scratch register. */
470
471 REG_ADDR_LOW | (WRITE_MODE & 0xf),
472 REG_DATA_LOW | 0x0,
473 REG_DATA_HIGH_WRITE | 0x8,
474 };
475
476 uint8_t result[3];
477 int ret;
478
479 /* Initialize the logic analyzer mode. */
480 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
481
482 /* Expect a 3 byte reply since we issued three READ requests. */
483 ret = sigma_read(result, 3, devc);
484 if (ret != 3)
485 goto err;
486
487 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
488 goto err;
489
490 return SR_OK;
491err:
492 sr_err("Configuration failed. Invalid reply received.");
493 return SR_ERR;
494}
495
496/*
497 * Read the firmware from a file and transform it into a series of bitbang
498 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
499 * by the caller of this function.
500 */
501static int sigma_fw_2_bitbang(const char *filename,
502 uint8_t **bb_cmd, gsize *bb_cmd_size)
503{
504 GMappedFile *file;
505 GError *error;
506 gsize i, file_size, bb_size;
507 gchar *firmware;
508 uint8_t *bb_stream, *bbs;
509 uint32_t imm;
510 int bit, v;
511 int ret = SR_OK;
512
513 /*
514 * Map the file and make the mapped buffer writable.
515 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
516 * will be modified. It will not be modified until someone uses
517 * g_file_set_contents() on it.
518 */
519 error = NULL;
520 file = g_mapped_file_new(filename, TRUE, &error);
521 g_assert_no_error(error);
522
523 file_size = g_mapped_file_get_length(file);
524 firmware = g_mapped_file_get_contents(file);
525 g_assert(firmware);
526
527 /* Weird magic transformation below, I have no idea what it does. */
528 imm = 0x3f6df2ab;
529 for (i = 0; i < file_size; i++) {
530 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
531 firmware[i] ^= imm & 0xff;
532 }
533
534 /*
535 * Now that the firmware is "transformed", we will transcribe the
536 * firmware blob into a sequence of toggles of the Dx wires. This
537 * sequence will be fed directly into the Sigma, which must be in
538 * the FPGA bitbang programming mode.
539 */
540
541 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
542 bb_size = file_size * 8 * 2;
543 bb_stream = (uint8_t *)g_try_malloc(bb_size);
544 if (!bb_stream) {
545 sr_err("%s: Failed to allocate bitbang stream", __func__);
546 ret = SR_ERR_MALLOC;
547 goto exit;
548 }
549
550 bbs = bb_stream;
551 for (i = 0; i < file_size; i++) {
552 for (bit = 7; bit >= 0; bit--) {
553 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
554 *bbs++ = v | 0x01;
555 *bbs++ = v;
556 }
557 }
558
559 /* The transformation completed successfully, return the result. */
560 *bb_cmd = bb_stream;
561 *bb_cmd_size = bb_size;
562
563exit:
564 g_mapped_file_unref(file);
565 return ret;
566}
567
568static int upload_firmware(int firmware_idx, struct dev_context *devc)
569{
570 int ret;
571 unsigned char *buf;
572 unsigned char pins;
573 size_t buf_size;
574 const char *firmware = sigma_firmware_files[firmware_idx];
575 struct ftdi_context *ftdic = &devc->ftdic;
576
577 /* Make sure it's an ASIX SIGMA. */
578 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
579 USB_DESCRIPTION, NULL);
580 if (ret < 0) {
581 sr_err("ftdi_usb_open failed: %s",
582 ftdi_get_error_string(ftdic));
583 return 0;
584 }
585
586 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
587 if (ret < 0) {
588 sr_err("ftdi_set_bitmode failed: %s",
589 ftdi_get_error_string(ftdic));
590 return 0;
591 }
592
593 /* Four times the speed of sigmalogan - Works well. */
594 ret = ftdi_set_baudrate(ftdic, 750000);
595 if (ret < 0) {
596 sr_err("ftdi_set_baudrate failed: %s",
597 ftdi_get_error_string(ftdic));
598 return 0;
599 }
600
601 /* Initialize the FPGA for firmware upload. */
602 ret = sigma_fpga_init_bitbang(devc);
603 if (ret)
604 return ret;
605
606 /* Prepare firmware. */
607 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
608 if (ret != SR_OK) {
609 sr_err("An error occured while reading the firmware: %s",
610 firmware);
611 return ret;
612 }
613
614 /* Upload firmare. */
615 sr_info("Uploading firmware file '%s'.", firmware);
616 sigma_write(buf, buf_size, devc);
617
618 g_free(buf);
619
620 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
621 if (ret < 0) {
622 sr_err("ftdi_set_bitmode failed: %s",
623 ftdi_get_error_string(ftdic));
624 return SR_ERR;
625 }
626
627 ftdi_usb_purge_buffers(ftdic);
628
629 /* Discard garbage. */
630 while (sigma_read(&pins, 1, devc) == 1)
631 ;
632
633 /* Initialize the FPGA for logic-analyzer mode. */
634 ret = sigma_fpga_init_la(devc);
635 if (ret != SR_OK)
636 return ret;
637
638 devc->cur_firmware = firmware_idx;
639
640 sr_info("Firmware uploaded.");
641
642 return SR_OK;
643}
644
645static int dev_open(struct sr_dev_inst *sdi)
646{
647 struct dev_context *devc;
648 int ret;
649
650 devc = sdi->priv;
651
652 /* Make sure it's an ASIX SIGMA. */
653 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
654 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
655
656 sr_err("ftdi_usb_open failed: %s",
657 ftdi_get_error_string(&devc->ftdic));
658
659 return 0;
660 }
661
662 sdi->status = SR_ST_ACTIVE;
663
664 return SR_OK;
665}
666
667static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
668{
669 struct dev_context *devc;
670 unsigned int i;
671 int ret;
672
673 devc = sdi->priv;
674 ret = SR_OK;
675
676 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
677 if (samplerates[i] == samplerate)
678 break;
679 }
680 if (samplerates[i] == 0)
681 return SR_ERR_SAMPLERATE;
682
683 if (samplerate <= SR_MHZ(50)) {
684 ret = upload_firmware(0, devc);
685 devc->num_channels = 16;
686 }
687 if (samplerate == SR_MHZ(100)) {
688 ret = upload_firmware(1, devc);
689 devc->num_channels = 8;
690 }
691 else if (samplerate == SR_MHZ(200)) {
692 ret = upload_firmware(2, devc);
693 devc->num_channels = 4;
694 }
695
696 devc->cur_samplerate = samplerate;
697 devc->period_ps = 1000000000000ULL / samplerate;
698 devc->samples_per_event = 16 / devc->num_channels;
699 devc->state.state = SIGMA_IDLE;
700
701 return ret;
702}
703
704/*
705 * In 100 and 200 MHz mode, only a single pin rising/falling can be
706 * set as trigger. In other modes, two rising/falling triggers can be set,
707 * in addition to value/mask trigger for any number of channels.
708 *
709 * The Sigma supports complex triggers using boolean expressions, but this
710 * has not been implemented yet.
711 */
712static int configure_channels(const struct sr_dev_inst *sdi)
713{
714 struct dev_context *devc = sdi->priv;
715 const struct sr_channel *ch;
716 const GSList *l;
717 int trigger_set = 0;
718 int channelbit;
719
720 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
721
722 for (l = sdi->channels; l; l = l->next) {
723 ch = (struct sr_channel *)l->data;
724 channelbit = 1 << (ch->index);
725
726 if (!ch->enabled || !ch->trigger)
727 continue;
728
729 if (devc->cur_samplerate >= SR_MHZ(100)) {
730 /* Fast trigger support. */
731 if (trigger_set) {
732 sr_err("Only a single pin trigger in 100 and "
733 "200MHz mode is supported.");
734 return SR_ERR;
735 }
736 if (ch->trigger[0] == 'f')
737 devc->trigger.fallingmask |= channelbit;
738 else if (ch->trigger[0] == 'r')
739 devc->trigger.risingmask |= channelbit;
740 else {
741 sr_err("Only rising/falling trigger in 100 "
742 "and 200MHz mode is supported.");
743 return SR_ERR;
744 }
745
746 ++trigger_set;
747 } else {
748 /* Simple trigger support (event). */
749 if (ch->trigger[0] == '1') {
750 devc->trigger.simplevalue |= channelbit;
751 devc->trigger.simplemask |= channelbit;
752 }
753 else if (ch->trigger[0] == '0') {
754 devc->trigger.simplevalue &= ~channelbit;
755 devc->trigger.simplemask |= channelbit;
756 }
757 else if (ch->trigger[0] == 'f') {
758 devc->trigger.fallingmask |= channelbit;
759 ++trigger_set;
760 }
761 else if (ch->trigger[0] == 'r') {
762 devc->trigger.risingmask |= channelbit;
763 ++trigger_set;
764 }
765
766 /*
767 * Actually, Sigma supports 2 rising/falling triggers,
768 * but they are ORed and the current trigger syntax
769 * does not permit ORed triggers.
770 */
771 if (trigger_set > 1) {
772 sr_err("Only 1 rising/falling trigger "
773 "is supported.");
774 return SR_ERR;
775 }
776 }
777
778 if (trigger_set)
779 devc->use_triggers = 1;
780 }
781
782 return SR_OK;
783}
784
785static int dev_close(struct sr_dev_inst *sdi)
786{
787 struct dev_context *devc;
788
789 devc = sdi->priv;
790
791 /* TODO */
792 if (sdi->status == SR_ST_ACTIVE)
793 ftdi_usb_close(&devc->ftdic);
794
795 sdi->status = SR_ST_INACTIVE;
796
797 return SR_OK;
798}
799
800static int cleanup(void)
801{
802 return dev_clear();
803}
804
805static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
806 const struct sr_channel_group *cg)
807{
808 struct dev_context *devc;
809
810 (void)cg;
811
812 switch (id) {
813 case SR_CONF_SAMPLERATE:
814 if (sdi) {
815 devc = sdi->priv;
816 *data = g_variant_new_uint64(devc->cur_samplerate);
817 } else
818 return SR_ERR;
819 break;
820 default:
821 return SR_ERR_NA;
822 }
823
824 return SR_OK;
825}
826
827static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
828 const struct sr_channel_group *cg)
829{
830 struct dev_context *devc;
831 uint64_t num_samples;
832 int ret;
833
834 (void)cg;
835
836 if (sdi->status != SR_ST_ACTIVE)
837 return SR_ERR_DEV_CLOSED;
838
839 devc = sdi->priv;
840
841 switch (id) {
842 case SR_CONF_SAMPLERATE:
843 ret = set_samplerate(sdi, g_variant_get_uint64(data));
844 break;
845 case SR_CONF_LIMIT_MSEC:
846 devc->limit_msec = g_variant_get_uint64(data);
847 if (devc->limit_msec > 0)
848 ret = SR_OK;
849 else
850 ret = SR_ERR;
851 break;
852 case SR_CONF_LIMIT_SAMPLES:
853 num_samples = g_variant_get_uint64(data);
854 devc->limit_msec = num_samples * 1000 / devc->cur_samplerate;
855 break;
856 case SR_CONF_CAPTURE_RATIO:
857 devc->capture_ratio = g_variant_get_uint64(data);
858 if (devc->capture_ratio < 0 || devc->capture_ratio > 100)
859 ret = SR_ERR;
860 else
861 ret = SR_OK;
862 break;
863 default:
864 ret = SR_ERR_NA;
865 }
866
867 return ret;
868}
869
870static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
871 const struct sr_channel_group *cg)
872{
873 GVariant *gvar;
874 GVariantBuilder gvb;
875
876 (void)sdi;
877 (void)cg;
878
879 switch (key) {
880 case SR_CONF_DEVICE_OPTIONS:
881 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
882 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
883 break;
884 case SR_CONF_SAMPLERATE:
885 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
886 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
887 ARRAY_SIZE(samplerates), sizeof(uint64_t));
888 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
889 *data = g_variant_builder_end(&gvb);
890 break;
891 case SR_CONF_TRIGGER_TYPE:
892 *data = g_variant_new_string(TRIGGER_TYPE);
893 break;
894 default:
895 return SR_ERR_NA;
896 }
897
898 return SR_OK;
899}
900
901/* Software trigger to determine exact trigger position. */
902static int get_trigger_offset(uint16_t *samples, uint16_t last_sample,
903 struct sigma_trigger *t)
904{
905 int i;
906
907 for (i = 0; i < 8; ++i) {
908 if (i > 0)
909 last_sample = samples[i-1];
910
911 /* Simple triggers. */
912 if ((samples[i] & t->simplemask) != t->simplevalue)
913 continue;
914
915 /* Rising edge. */
916 if ((last_sample & t->risingmask) != 0 || (samples[i] &
917 t->risingmask) != t->risingmask)
918 continue;
919
920 /* Falling edge. */
921 if ((last_sample & t->fallingmask) != t->fallingmask ||
922 (samples[i] & t->fallingmask) != 0)
923 continue;
924
925 break;
926 }
927
928 /* If we did not match, return original trigger pos. */
929 return i & 0x7;
930}
931
932/*
933 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
934 * Each event is 20ns apart, and can contain multiple samples.
935 *
936 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
937 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
938 * For 50 MHz and below, events contain one sample for each channel,
939 * spread 20 ns apart.
940 */
941static int decode_chunk_ts(uint8_t *buf, uint16_t *lastts,
942 uint16_t *lastsample, int triggerpos,
943 uint16_t limit_chunk, void *cb_data)
944{
945 struct sr_dev_inst *sdi = cb_data;
946 struct dev_context *devc = sdi->priv;
947 uint16_t tsdiff, ts;
948 uint16_t samples[65536 * devc->samples_per_event];
949 struct sr_datafeed_packet packet;
950 struct sr_datafeed_logic logic;
951 int i, j, k, l, numpad, tosend;
952 size_t n = 0, sent = 0;
953 int clustersize = EVENTS_PER_CLUSTER * devc->samples_per_event;
954 uint16_t *event;
955 uint16_t cur_sample;
956 int triggerts = -1;
957
958 /* Check if trigger is in this chunk. */
959 if (triggerpos != -1) {
960 if (devc->cur_samplerate <= SR_MHZ(50))
961 triggerpos -= EVENTS_PER_CLUSTER - 1;
962
963 if (triggerpos < 0)
964 triggerpos = 0;
965
966 /* Find in which cluster the trigger occured. */
967 triggerts = triggerpos / 7;
968 }
969
970 /* For each ts. */
971 for (i = 0; i < 64; ++i) {
972 ts = *(uint16_t *) &buf[i * 16];
973 tsdiff = ts - *lastts;
974 *lastts = ts;
975
976 /* Decode partial chunk. */
977 if (limit_chunk && ts > limit_chunk)
978 return SR_OK;
979
980 /* Pad last sample up to current point. */
981 numpad = tsdiff * devc->samples_per_event - clustersize;
982 if (numpad > 0) {
983 for (j = 0; j < numpad; ++j)
984 samples[j] = *lastsample;
985
986 n = numpad;
987 }
988
989 /* Send samples between previous and this timestamp to sigrok. */
990 sent = 0;
991 while (sent < n) {
992 tosend = MIN(2048, n - sent);
993
994 packet.type = SR_DF_LOGIC;
995 packet.payload = &logic;
996 logic.length = tosend * sizeof(uint16_t);
997 logic.unitsize = 2;
998 logic.data = samples + sent;
999 sr_session_send(devc->cb_data, &packet);
1000
1001 sent += tosend;
1002 }
1003 n = 0;
1004
1005 event = (uint16_t *) &buf[i * 16 + 2];
1006 cur_sample = 0;
1007
1008 /* For each event in cluster. */
1009 for (j = 0; j < 7; ++j) {
1010
1011 /* For each sample in event. */
1012 for (k = 0; k < devc->samples_per_event; ++k) {
1013 cur_sample = 0;
1014
1015 /* For each channel. */
1016 for (l = 0; l < devc->num_channels; ++l)
1017 cur_sample |= (!!(event[j] & (1 << (l *
1018 devc->samples_per_event + k)))) << l;
1019
1020 samples[n++] = cur_sample;
1021 }
1022 }
1023
1024 /* Send data up to trigger point (if triggered). */
1025 sent = 0;
1026 if (i == triggerts) {
1027 /*
1028 * Trigger is not always accurate to sample because of
1029 * pipeline delay. However, it always triggers before
1030 * the actual event. We therefore look at the next
1031 * samples to pinpoint the exact position of the trigger.
1032 */
1033 tosend = get_trigger_offset(samples, *lastsample,
1034 &devc->trigger);
1035
1036 if (tosend > 0) {
1037 packet.type = SR_DF_LOGIC;
1038 packet.payload = &logic;
1039 logic.length = tosend * sizeof(uint16_t);
1040 logic.unitsize = 2;
1041 logic.data = samples;
1042 sr_session_send(devc->cb_data, &packet);
1043
1044 sent += tosend;
1045 }
1046
1047 /* Only send trigger if explicitly enabled. */
1048 if (devc->use_triggers) {
1049 packet.type = SR_DF_TRIGGER;
1050 sr_session_send(devc->cb_data, &packet);
1051 }
1052 }
1053
1054 /* Send rest of the chunk to sigrok. */
1055 tosend = n - sent;
1056
1057 if (tosend > 0) {
1058 packet.type = SR_DF_LOGIC;
1059 packet.payload = &logic;
1060 logic.length = tosend * sizeof(uint16_t);
1061 logic.unitsize = 2;
1062 logic.data = samples + sent;
1063 sr_session_send(devc->cb_data, &packet);
1064 }
1065
1066 *lastsample = samples[n - 1];
1067 }
1068
1069 return SR_OK;
1070}
1071
1072static void download_capture(struct sr_dev_inst *sdi)
1073{
1074 struct dev_context *devc;
1075 const int chunks_per_read = 32;
1076 unsigned char buf[chunks_per_read * CHUNK_SIZE];
1077 int bufsz, i, numchunks, newchunks;
1078
1079 sr_info("Downloading sample data.");
1080
1081 devc = sdi->priv;
1082 devc->state.chunks_downloaded = 0;
1083 numchunks = (devc->state.stoppos + 511) / 512;
1084 newchunks = MIN(chunks_per_read, numchunks - devc->state.chunks_downloaded);
1085
1086 bufsz = sigma_read_dram(devc->state.chunks_downloaded, newchunks, buf, devc);
1087 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1088 (void)bufsz;
1089
1090 /* Find first ts. */
1091 if (devc->state.chunks_downloaded == 0) {
1092 devc->state.lastts = RL16(buf) - 1;
1093 devc->state.lastsample = 0;
1094 }
1095
1096 /* Decode chunks and send them to sigrok. */
1097 for (i = 0; i < newchunks; ++i) {
1098 int limit_chunk = 0;
1099
1100 /* The last chunk may potentially be only in part. */
1101 if (devc->state.chunks_downloaded == numchunks - 1) {
1102 /* Find the last valid timestamp */
1103 limit_chunk = devc->state.stoppos % 512 + devc->state.lastts;
1104 }
1105
1106 if (devc->state.chunks_downloaded + i == devc->state.triggerchunk)
1107 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1108 &devc->state.lastts,
1109 &devc->state.lastsample,
1110 devc->state.triggerpos & 0x1ff,
1111 limit_chunk, sdi);
1112 else
1113 decode_chunk_ts(buf + (i * CHUNK_SIZE),
1114 &devc->state.lastts,
1115 &devc->state.lastsample,
1116 -1, limit_chunk, sdi);
1117
1118 ++devc->state.chunks_downloaded;
1119 }
1120
1121}
1122
1123static int receive_data(int fd, int revents, void *cb_data)
1124{
1125 struct sr_dev_inst *sdi;
1126 struct dev_context *devc;
1127 struct sr_datafeed_packet packet;
1128 uint64_t running_msec;
1129 struct timeval tv;
1130 int numchunks;
1131 uint8_t modestatus;
1132
1133 (void)fd;
1134 (void)revents;
1135
1136 sdi = cb_data;
1137 devc = sdi->priv;
1138
1139 if (devc->state.state == SIGMA_IDLE)
1140 return TRUE;
1141
1142 if (devc->state.state == SIGMA_CAPTURE) {
1143 /* Get the current position. */
1144 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos,
1145 devc);
1146
1147 numchunks = (devc->state.stoppos + 511) / 512;
1148
1149 /* Check if the timer has expired, or memory is full. */
1150 gettimeofday(&tv, 0);
1151 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1152 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1153
1154 if (running_msec < devc->limit_msec && numchunks < 32767)
1155 /* Still capturing. */
1156 return TRUE;
1157
1158 /* Stop acquisition. */
1159 sigma_set_register(WRITE_MODE, 0x11, devc);
1160
1161 /* Set SDRAM Read Enable. */
1162 sigma_set_register(WRITE_MODE, 0x02, devc);
1163
1164 /* Get the current position. */
1165 sigma_read_pos(&devc->state.stoppos, &devc->state.triggerpos, devc);
1166
1167 /* Check if trigger has fired. */
1168 modestatus = sigma_get_register(READ_MODE, devc);
1169 if (modestatus & 0x20)
1170 devc->state.triggerchunk = devc->state.triggerpos / 512;
1171 else
1172 devc->state.triggerchunk = -1;
1173
1174 /* Transfer captured data from device. */
1175 download_capture(sdi);
1176
1177 /* All done. */
1178 packet.type = SR_DF_END;
1179 sr_session_send(sdi, &packet);
1180
1181 dev_acquisition_stop(sdi, sdi);
1182 }
1183
1184 return TRUE;
1185}
1186
1187/* Build a LUT entry used by the trigger functions. */
1188static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1189{
1190 int i, j, k, bit;
1191
1192 /* For each quad channel. */
1193 for (i = 0; i < 4; ++i) {
1194 entry[i] = 0xffff;
1195
1196 /* For each bit in LUT. */
1197 for (j = 0; j < 16; ++j)
1198
1199 /* For each channel in quad. */
1200 for (k = 0; k < 4; ++k) {
1201 bit = 1 << (i * 4 + k);
1202
1203 /* Set bit in entry */
1204 if ((mask & bit) &&
1205 ((!(value & bit)) !=
1206 (!(j & (1 << k)))))
1207 entry[i] &= ~(1 << j);
1208 }
1209 }
1210}
1211
1212/* Add a logical function to LUT mask. */
1213static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1214 int index, int neg, uint16_t *mask)
1215{
1216 int i, j;
1217 int x[2][2], tmp, a, b, aset, bset, rset;
1218
1219 memset(x, 0, 4 * sizeof(int));
1220
1221 /* Trigger detect condition. */
1222 switch (oper) {
1223 case OP_LEVEL:
1224 x[0][1] = 1;
1225 x[1][1] = 1;
1226 break;
1227 case OP_NOT:
1228 x[0][0] = 1;
1229 x[1][0] = 1;
1230 break;
1231 case OP_RISE:
1232 x[0][1] = 1;
1233 break;
1234 case OP_FALL:
1235 x[1][0] = 1;
1236 break;
1237 case OP_RISEFALL:
1238 x[0][1] = 1;
1239 x[1][0] = 1;
1240 break;
1241 case OP_NOTRISE:
1242 x[1][1] = 1;
1243 x[0][0] = 1;
1244 x[1][0] = 1;
1245 break;
1246 case OP_NOTFALL:
1247 x[1][1] = 1;
1248 x[0][0] = 1;
1249 x[0][1] = 1;
1250 break;
1251 case OP_NOTRISEFALL:
1252 x[1][1] = 1;
1253 x[0][0] = 1;
1254 break;
1255 }
1256
1257 /* Transpose if neg is set. */
1258 if (neg) {
1259 for (i = 0; i < 2; ++i) {
1260 for (j = 0; j < 2; ++j) {
1261 tmp = x[i][j];
1262 x[i][j] = x[1-i][1-j];
1263 x[1-i][1-j] = tmp;
1264 }
1265 }
1266 }
1267
1268 /* Update mask with function. */
1269 for (i = 0; i < 16; ++i) {
1270 a = (i >> (2 * index + 0)) & 1;
1271 b = (i >> (2 * index + 1)) & 1;
1272
1273 aset = (*mask >> i) & 1;
1274 bset = x[b][a];
1275
1276 if (func == FUNC_AND || func == FUNC_NAND)
1277 rset = aset & bset;
1278 else if (func == FUNC_OR || func == FUNC_NOR)
1279 rset = aset | bset;
1280 else if (func == FUNC_XOR || func == FUNC_NXOR)
1281 rset = aset ^ bset;
1282
1283 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1284 rset = !rset;
1285
1286 *mask &= ~(1 << i);
1287
1288 if (rset)
1289 *mask |= 1 << i;
1290 }
1291}
1292
1293/*
1294 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1295 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1296 * set at any time, but a full mask and value can be set (0/1).
1297 */
1298static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1299{
1300 int i,j;
1301 uint16_t masks[2] = { 0, 0 };
1302
1303 memset(lut, 0, sizeof(struct triggerlut));
1304
1305 /* Contant for simple triggers. */
1306 lut->m4 = 0xa000;
1307
1308 /* Value/mask trigger support. */
1309 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1310 lut->m2d);
1311
1312 /* Rise/fall trigger support. */
1313 for (i = 0, j = 0; i < 16; ++i) {
1314 if (devc->trigger.risingmask & (1 << i) ||
1315 devc->trigger.fallingmask & (1 << i))
1316 masks[j++] = 1 << i;
1317 }
1318
1319 build_lut_entry(masks[0], masks[0], lut->m0d);
1320 build_lut_entry(masks[1], masks[1], lut->m1d);
1321
1322 /* Add glue logic */
1323 if (masks[0] || masks[1]) {
1324 /* Transition trigger. */
1325 if (masks[0] & devc->trigger.risingmask)
1326 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1327 if (masks[0] & devc->trigger.fallingmask)
1328 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1329 if (masks[1] & devc->trigger.risingmask)
1330 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1331 if (masks[1] & devc->trigger.fallingmask)
1332 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1333 } else {
1334 /* Only value/mask trigger. */
1335 lut->m3 = 0xffff;
1336 }
1337
1338 /* Triggertype: event. */
1339 lut->params.selres = 3;
1340
1341 return SR_OK;
1342}
1343
1344static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1345{
1346 struct dev_context *devc;
1347 struct clockselect_50 clockselect;
1348 int frac, triggerpin, ret;
1349 uint8_t triggerselect = 0;
1350 struct triggerinout triggerinout_conf;
1351 struct triggerlut lut;
1352
1353 if (sdi->status != SR_ST_ACTIVE)
1354 return SR_ERR_DEV_CLOSED;
1355
1356 devc = sdi->priv;
1357
1358 if (configure_channels(sdi) != SR_OK) {
1359 sr_err("Failed to configure channels.");
1360 return SR_ERR;
1361 }
1362
1363 /* If the samplerate has not been set, default to 200 kHz. */
1364 if (devc->cur_firmware == -1) {
1365 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1366 return ret;
1367 }
1368
1369 /* Enter trigger programming mode. */
1370 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1371
1372 /* 100 and 200 MHz mode. */
1373 if (devc->cur_samplerate >= SR_MHZ(100)) {
1374 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1375
1376 /* Find which pin to trigger on from mask. */
1377 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1378 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1379 (1 << triggerpin))
1380 break;
1381
1382 /* Set trigger pin and light LED on trigger. */
1383 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1384
1385 /* Default rising edge. */
1386 if (devc->trigger.fallingmask)
1387 triggerselect |= 1 << 3;
1388
1389 /* All other modes. */
1390 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1391 build_basic_trigger(&lut, devc);
1392
1393 sigma_write_trigger_lut(&lut, devc);
1394
1395 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1396 }
1397
1398 /* Setup trigger in and out pins to default values. */
1399 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1400 triggerinout_conf.trgout_bytrigger = 1;
1401 triggerinout_conf.trgout_enable = 1;
1402
1403 sigma_write_register(WRITE_TRIGGER_OPTION,
1404 (uint8_t *) &triggerinout_conf,
1405 sizeof(struct triggerinout), devc);
1406
1407 /* Go back to normal mode. */
1408 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1409
1410 /* Set clock select register. */
1411 if (devc->cur_samplerate == SR_MHZ(200))
1412 /* Enable 4 channels. */
1413 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1414 else if (devc->cur_samplerate == SR_MHZ(100))
1415 /* Enable 8 channels. */
1416 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1417 else {
1418 /*
1419 * 50 MHz mode (or fraction thereof). Any fraction down to
1420 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1421 */
1422 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1423
1424 clockselect.async = 0;
1425 clockselect.fraction = frac;
1426 clockselect.disabled_channels = 0;
1427
1428 sigma_write_register(WRITE_CLOCK_SELECT,
1429 (uint8_t *) &clockselect,
1430 sizeof(clockselect), devc);
1431 }
1432
1433 /* Setup maximum post trigger time. */
1434 sigma_set_register(WRITE_POST_TRIGGER,
1435 (devc->capture_ratio * 255) / 100, devc);
1436
1437 /* Start acqusition. */
1438 gettimeofday(&devc->start_tv, 0);
1439 sigma_set_register(WRITE_MODE, 0x0d, devc);
1440
1441 devc->cb_data = cb_data;
1442
1443 /* Send header packet to the session bus. */
1444 std_session_send_df_header(cb_data, LOG_PREFIX);
1445
1446 /* Add capture source. */
1447 sr_source_add(0, G_IO_IN, 10, receive_data, (void *)sdi);
1448
1449 devc->state.state = SIGMA_CAPTURE;
1450
1451 return SR_OK;
1452}
1453
1454static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1455{
1456 struct dev_context *devc;
1457
1458 (void)cb_data;
1459
1460 devc = sdi->priv;
1461 devc->state.state = SIGMA_IDLE;
1462
1463 sr_source_remove(0);
1464
1465 return SR_OK;
1466}
1467
1468SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1469 .name = "asix-sigma",
1470 .longname = "ASIX SIGMA/SIGMA2",
1471 .api_version = 1,
1472 .init = init,
1473 .cleanup = cleanup,
1474 .scan = scan,
1475 .dev_list = dev_list,
1476 .dev_clear = dev_clear,
1477 .config_get = config_get,
1478 .config_set = config_set,
1479 .config_list = config_list,
1480 .dev_open = dev_open,
1481 .dev_close = dev_close,
1482 .dev_acquisition_start = dev_acquisition_start,
1483 .dev_acquisition_stop = dev_acquisition_stop,
1484 .priv = NULL,
1485};