]> sigrok.org Git - libsigrok.git/blame_incremental - hardware/asix-sigma/asix-sigma.c
build: Portability fixes.
[libsigrok.git] / hardware / asix-sigma / asix-sigma.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010-2012 Håvard Espeland <gus@ping.uio.no>,
5 * Copyright (C) 2010 Martin Stensgård <mastensg@ping.uio.no>
6 * Copyright (C) 2010 Carl Henrik Lunde <chlunde@ping.uio.no>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
22/*
23 * ASIX SIGMA/SIGMA2 logic analyzer driver
24 */
25
26#include <glib.h>
27#include <glib/gstdio.h>
28#include <ftdi.h>
29#include <string.h>
30#include <unistd.h>
31#include "libsigrok.h"
32#include "libsigrok-internal.h"
33#include "asix-sigma.h"
34
35#define USB_VENDOR 0xa600
36#define USB_PRODUCT 0xa000
37#define USB_DESCRIPTION "ASIX SIGMA"
38#define USB_VENDOR_NAME "ASIX"
39#define USB_MODEL_NAME "SIGMA"
40
41SR_PRIV struct sr_dev_driver asix_sigma_driver_info;
42static struct sr_dev_driver *di = &asix_sigma_driver_info;
43static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data);
44
45/*
46 * The ASIX Sigma supports arbitrary integer frequency divider in
47 * the 50MHz mode. The divider is in range 1...256 , allowing for
48 * very precise sampling rate selection. This driver supports only
49 * a subset of the sampling rates.
50 */
51static const uint64_t samplerates[] = {
52 SR_KHZ(200), /* div=250 */
53 SR_KHZ(250), /* div=200 */
54 SR_KHZ(500), /* div=100 */
55 SR_MHZ(1), /* div=50 */
56 SR_MHZ(5), /* div=10 */
57 SR_MHZ(10), /* div=5 */
58 SR_MHZ(25), /* div=2 */
59 SR_MHZ(50), /* div=1 */
60 SR_MHZ(100), /* Special FW needed */
61 SR_MHZ(200), /* Special FW needed */
62};
63
64/*
65 * Channel numbers seem to go from 1-16, according to this image:
66 * http://tools.asix.net/img/sigma_sigmacab_pins_720.jpg
67 * (the cable has two additional GND pins, and a TI and TO pin)
68 */
69static const char *channel_names[] = {
70 "1", "2", "3", "4", "5", "6", "7", "8",
71 "9", "10", "11", "12", "13", "14", "15", "16",
72};
73
74static const int32_t hwcaps[] = {
75 SR_CONF_LOGIC_ANALYZER,
76 SR_CONF_SAMPLERATE,
77 SR_CONF_TRIGGER_MATCH,
78 SR_CONF_CAPTURE_RATIO,
79 SR_CONF_LIMIT_MSEC,
80};
81
82static const int32_t trigger_matches[] = {
83 SR_TRIGGER_ZERO,
84 SR_TRIGGER_ONE,
85 SR_TRIGGER_RISING,
86 SR_TRIGGER_FALLING,
87};
88
89static const char *sigma_firmware_files[] = {
90 /* 50 MHz, supports 8 bit fractions */
91 FIRMWARE_DIR "/asix-sigma-50.fw",
92 /* 100 MHz */
93 FIRMWARE_DIR "/asix-sigma-100.fw",
94 /* 200 MHz */
95 FIRMWARE_DIR "/asix-sigma-200.fw",
96 /* Synchronous clock from pin */
97 FIRMWARE_DIR "/asix-sigma-50sync.fw",
98 /* Frequency counter */
99 FIRMWARE_DIR "/asix-sigma-phasor.fw",
100};
101
102static int sigma_read(void *buf, size_t size, struct dev_context *devc)
103{
104 int ret;
105
106 ret = ftdi_read_data(&devc->ftdic, (unsigned char *)buf, size);
107 if (ret < 0) {
108 sr_err("ftdi_read_data failed: %s",
109 ftdi_get_error_string(&devc->ftdic));
110 }
111
112 return ret;
113}
114
115static int sigma_write(void *buf, size_t size, struct dev_context *devc)
116{
117 int ret;
118
119 ret = ftdi_write_data(&devc->ftdic, (unsigned char *)buf, size);
120 if (ret < 0) {
121 sr_err("ftdi_write_data failed: %s",
122 ftdi_get_error_string(&devc->ftdic));
123 } else if ((size_t) ret != size) {
124 sr_err("ftdi_write_data did not complete write.");
125 }
126
127 return ret;
128}
129
130static int sigma_write_register(uint8_t reg, uint8_t *data, size_t len,
131 struct dev_context *devc)
132{
133 size_t i;
134 uint8_t buf[len + 2];
135 int idx = 0;
136
137 buf[idx++] = REG_ADDR_LOW | (reg & 0xf);
138 buf[idx++] = REG_ADDR_HIGH | (reg >> 4);
139
140 for (i = 0; i < len; ++i) {
141 buf[idx++] = REG_DATA_LOW | (data[i] & 0xf);
142 buf[idx++] = REG_DATA_HIGH_WRITE | (data[i] >> 4);
143 }
144
145 return sigma_write(buf, idx, devc);
146}
147
148static int sigma_set_register(uint8_t reg, uint8_t value, struct dev_context *devc)
149{
150 return sigma_write_register(reg, &value, 1, devc);
151}
152
153static int sigma_read_register(uint8_t reg, uint8_t *data, size_t len,
154 struct dev_context *devc)
155{
156 uint8_t buf[3];
157
158 buf[0] = REG_ADDR_LOW | (reg & 0xf);
159 buf[1] = REG_ADDR_HIGH | (reg >> 4);
160 buf[2] = REG_READ_ADDR;
161
162 sigma_write(buf, sizeof(buf), devc);
163
164 return sigma_read(data, len, devc);
165}
166
167static uint8_t sigma_get_register(uint8_t reg, struct dev_context *devc)
168{
169 uint8_t value;
170
171 if (1 != sigma_read_register(reg, &value, 1, devc)) {
172 sr_err("sigma_get_register: 1 byte expected");
173 return 0;
174 }
175
176 return value;
177}
178
179static int sigma_read_pos(uint32_t *stoppos, uint32_t *triggerpos,
180 struct dev_context *devc)
181{
182 uint8_t buf[] = {
183 REG_ADDR_LOW | READ_TRIGGER_POS_LOW,
184
185 REG_READ_ADDR | NEXT_REG,
186 REG_READ_ADDR | NEXT_REG,
187 REG_READ_ADDR | NEXT_REG,
188 REG_READ_ADDR | NEXT_REG,
189 REG_READ_ADDR | NEXT_REG,
190 REG_READ_ADDR | NEXT_REG,
191 };
192 uint8_t result[6];
193
194 sigma_write(buf, sizeof(buf), devc);
195
196 sigma_read(result, sizeof(result), devc);
197
198 *triggerpos = result[0] | (result[1] << 8) | (result[2] << 16);
199 *stoppos = result[3] | (result[4] << 8) | (result[5] << 16);
200
201 /* Not really sure why this must be done, but according to spec. */
202 if ((--*stoppos & 0x1ff) == 0x1ff)
203 stoppos -= 64;
204
205 if ((*--triggerpos & 0x1ff) == 0x1ff)
206 triggerpos -= 64;
207
208 return 1;
209}
210
211static int sigma_read_dram(uint16_t startchunk, size_t numchunks,
212 uint8_t *data, struct dev_context *devc)
213{
214 size_t i;
215 uint8_t buf[4096];
216 int idx = 0;
217
218 /* Send the startchunk. Index start with 1. */
219 buf[0] = startchunk >> 8;
220 buf[1] = startchunk & 0xff;
221 sigma_write_register(WRITE_MEMROW, buf, 2, devc);
222
223 /* Read the DRAM. */
224 buf[idx++] = REG_DRAM_BLOCK;
225 buf[idx++] = REG_DRAM_WAIT_ACK;
226
227 for (i = 0; i < numchunks; ++i) {
228 /* Alternate bit to copy from DRAM to cache. */
229 if (i != (numchunks - 1))
230 buf[idx++] = REG_DRAM_BLOCK | (((i + 1) % 2) << 4);
231
232 buf[idx++] = REG_DRAM_BLOCK_DATA | ((i % 2) << 4);
233
234 if (i != (numchunks - 1))
235 buf[idx++] = REG_DRAM_WAIT_ACK;
236 }
237
238 sigma_write(buf, idx, devc);
239
240 return sigma_read(data, numchunks * CHUNK_SIZE, devc);
241}
242
243/* Upload trigger look-up tables to Sigma. */
244static int sigma_write_trigger_lut(struct triggerlut *lut, struct dev_context *devc)
245{
246 int i;
247 uint8_t tmp[2];
248 uint16_t bit;
249
250 /* Transpose the table and send to Sigma. */
251 for (i = 0; i < 16; ++i) {
252 bit = 1 << i;
253
254 tmp[0] = tmp[1] = 0;
255
256 if (lut->m2d[0] & bit)
257 tmp[0] |= 0x01;
258 if (lut->m2d[1] & bit)
259 tmp[0] |= 0x02;
260 if (lut->m2d[2] & bit)
261 tmp[0] |= 0x04;
262 if (lut->m2d[3] & bit)
263 tmp[0] |= 0x08;
264
265 if (lut->m3 & bit)
266 tmp[0] |= 0x10;
267 if (lut->m3s & bit)
268 tmp[0] |= 0x20;
269 if (lut->m4 & bit)
270 tmp[0] |= 0x40;
271
272 if (lut->m0d[0] & bit)
273 tmp[1] |= 0x01;
274 if (lut->m0d[1] & bit)
275 tmp[1] |= 0x02;
276 if (lut->m0d[2] & bit)
277 tmp[1] |= 0x04;
278 if (lut->m0d[3] & bit)
279 tmp[1] |= 0x08;
280
281 if (lut->m1d[0] & bit)
282 tmp[1] |= 0x10;
283 if (lut->m1d[1] & bit)
284 tmp[1] |= 0x20;
285 if (lut->m1d[2] & bit)
286 tmp[1] |= 0x40;
287 if (lut->m1d[3] & bit)
288 tmp[1] |= 0x80;
289
290 sigma_write_register(WRITE_TRIGGER_SELECT0, tmp, sizeof(tmp),
291 devc);
292 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x30 | i, devc);
293 }
294
295 /* Send the parameters */
296 sigma_write_register(WRITE_TRIGGER_SELECT0, (uint8_t *) &lut->params,
297 sizeof(lut->params), devc);
298
299 return SR_OK;
300}
301
302static void clear_helper(void *priv)
303{
304 struct dev_context *devc;
305
306 devc = priv;
307
308 ftdi_deinit(&devc->ftdic);
309}
310
311static int dev_clear(void)
312{
313 return std_dev_clear(di, clear_helper);
314}
315
316static int init(struct sr_context *sr_ctx)
317{
318 return std_init(sr_ctx, di, LOG_PREFIX);
319}
320
321static GSList *scan(GSList *options)
322{
323 struct sr_dev_inst *sdi;
324 struct sr_channel *ch;
325 struct drv_context *drvc;
326 struct dev_context *devc;
327 GSList *devices;
328 struct ftdi_device_list *devlist;
329 char serial_txt[10];
330 uint32_t serial;
331 int ret;
332 unsigned int i;
333
334 (void)options;
335
336 drvc = di->priv;
337
338 devices = NULL;
339
340 if (!(devc = g_try_malloc(sizeof(struct dev_context)))) {
341 sr_err("%s: devc malloc failed", __func__);
342 return NULL;
343 }
344
345 ftdi_init(&devc->ftdic);
346
347 /* Look for SIGMAs. */
348
349 if ((ret = ftdi_usb_find_all(&devc->ftdic, &devlist,
350 USB_VENDOR, USB_PRODUCT)) <= 0) {
351 if (ret < 0)
352 sr_err("ftdi_usb_find_all(): %d", ret);
353 goto free;
354 }
355
356 /* Make sure it's a version 1 or 2 SIGMA. */
357 ftdi_usb_get_strings(&devc->ftdic, devlist->dev, NULL, 0, NULL, 0,
358 serial_txt, sizeof(serial_txt));
359 sscanf(serial_txt, "%x", &serial);
360
361 if (serial < 0xa6010000 || serial > 0xa602ffff) {
362 sr_err("Only SIGMA and SIGMA2 are supported "
363 "in this version of libsigrok.");
364 goto free;
365 }
366
367 sr_info("Found ASIX SIGMA - Serial: %s", serial_txt);
368
369 devc->cur_samplerate = samplerates[0];
370 devc->period_ps = 0;
371 devc->limit_msec = 0;
372 devc->cur_firmware = -1;
373 devc->num_channels = 0;
374 devc->samples_per_event = 0;
375 devc->capture_ratio = 50;
376 devc->use_triggers = 0;
377
378 /* Register SIGMA device. */
379 if (!(sdi = sr_dev_inst_new(0, SR_ST_INITIALIZING, USB_VENDOR_NAME,
380 USB_MODEL_NAME, NULL))) {
381 sr_err("%s: sdi was NULL", __func__);
382 goto free;
383 }
384 sdi->driver = di;
385
386 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
387 ch = sr_channel_new(i, SR_CHANNEL_LOGIC, TRUE,
388 channel_names[i]);
389 if (!ch)
390 return NULL;
391 sdi->channels = g_slist_append(sdi->channels, ch);
392 }
393
394 devices = g_slist_append(devices, sdi);
395 drvc->instances = g_slist_append(drvc->instances, sdi);
396 sdi->priv = devc;
397
398 /* We will open the device again when we need it. */
399 ftdi_list_free(&devlist);
400
401 return devices;
402
403free:
404 ftdi_deinit(&devc->ftdic);
405 g_free(devc);
406 return NULL;
407}
408
409static GSList *dev_list(void)
410{
411 return ((struct drv_context *)(di->priv))->instances;
412}
413
414/*
415 * Configure the FPGA for bitbang mode.
416 * This sequence is documented in section 2. of the ASIX Sigma programming
417 * manual. This sequence is necessary to configure the FPGA in the Sigma
418 * into Bitbang mode, in which it can be programmed with the firmware.
419 */
420static int sigma_fpga_init_bitbang(struct dev_context *devc)
421{
422 uint8_t suicide[] = {
423 0x84, 0x84, 0x88, 0x84, 0x88, 0x84, 0x88, 0x84,
424 };
425 uint8_t init_array[] = {
426 0x01, 0x03, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01,
427 0x01, 0x01,
428 };
429 int i, ret, timeout = 10000;
430 uint8_t data;
431
432 /* Section 2. part 1), do the FPGA suicide. */
433 sigma_write(suicide, sizeof(suicide), devc);
434 sigma_write(suicide, sizeof(suicide), devc);
435 sigma_write(suicide, sizeof(suicide), devc);
436 sigma_write(suicide, sizeof(suicide), devc);
437
438 /* Section 2. part 2), do pulse on D1. */
439 sigma_write(init_array, sizeof(init_array), devc);
440 ftdi_usb_purge_buffers(&devc->ftdic);
441
442 /* Wait until the FPGA asserts D6/INIT_B. */
443 for (i = 0; i < timeout; i++) {
444 ret = sigma_read(&data, 1, devc);
445 if (ret < 0)
446 return ret;
447 /* Test if pin D6 got asserted. */
448 if (data & (1 << 5))
449 return 0;
450 /* The D6 was not asserted yet, wait a bit. */
451 usleep(10000);
452 }
453
454 return SR_ERR_TIMEOUT;
455}
456
457/*
458 * Configure the FPGA for logic-analyzer mode.
459 */
460static int sigma_fpga_init_la(struct dev_context *devc)
461{
462 /* Initialize the logic analyzer mode. */
463 uint8_t logic_mode_start[] = {
464 REG_ADDR_LOW | (READ_ID & 0xf),
465 REG_ADDR_HIGH | (READ_ID >> 8),
466 REG_READ_ADDR, /* Read ID register. */
467
468 REG_ADDR_LOW | (WRITE_TEST & 0xf),
469 REG_DATA_LOW | 0x5,
470 REG_DATA_HIGH_WRITE | 0x5,
471 REG_READ_ADDR, /* Read scratch register. */
472
473 REG_DATA_LOW | 0xa,
474 REG_DATA_HIGH_WRITE | 0xa,
475 REG_READ_ADDR, /* Read scratch register. */
476
477 REG_ADDR_LOW | (WRITE_MODE & 0xf),
478 REG_DATA_LOW | 0x0,
479 REG_DATA_HIGH_WRITE | 0x8,
480 };
481
482 uint8_t result[3];
483 int ret;
484
485 /* Initialize the logic analyzer mode. */
486 sigma_write(logic_mode_start, sizeof(logic_mode_start), devc);
487
488 /* Expect a 3 byte reply since we issued three READ requests. */
489 ret = sigma_read(result, 3, devc);
490 if (ret != 3)
491 goto err;
492
493 if (result[0] != 0xa6 || result[1] != 0x55 || result[2] != 0xaa)
494 goto err;
495
496 return SR_OK;
497err:
498 sr_err("Configuration failed. Invalid reply received.");
499 return SR_ERR;
500}
501
502/*
503 * Read the firmware from a file and transform it into a series of bitbang
504 * pulses used to program the FPGA. Note that the *bb_cmd must be free()'d
505 * by the caller of this function.
506 */
507static int sigma_fw_2_bitbang(const char *filename,
508 uint8_t **bb_cmd, gsize *bb_cmd_size)
509{
510 GMappedFile *file;
511 GError *error;
512 gsize i, file_size, bb_size;
513 gchar *firmware;
514 uint8_t *bb_stream, *bbs;
515 uint32_t imm;
516 int bit, v;
517 int ret = SR_OK;
518
519 /*
520 * Map the file and make the mapped buffer writable.
521 * NOTE: Using writable=TRUE does _NOT_ mean that file that is mapped
522 * will be modified. It will not be modified until someone uses
523 * g_file_set_contents() on it.
524 */
525 error = NULL;
526 file = g_mapped_file_new(filename, TRUE, &error);
527 g_assert_no_error(error);
528
529 file_size = g_mapped_file_get_length(file);
530 firmware = g_mapped_file_get_contents(file);
531 g_assert(firmware);
532
533 /* Weird magic transformation below, I have no idea what it does. */
534 imm = 0x3f6df2ab;
535 for (i = 0; i < file_size; i++) {
536 imm = (imm + 0xa853753) % 177 + (imm * 0x8034052);
537 firmware[i] ^= imm & 0xff;
538 }
539
540 /*
541 * Now that the firmware is "transformed", we will transcribe the
542 * firmware blob into a sequence of toggles of the Dx wires. This
543 * sequence will be fed directly into the Sigma, which must be in
544 * the FPGA bitbang programming mode.
545 */
546
547 /* Each bit of firmware is transcribed as two toggles of Dx wires. */
548 bb_size = file_size * 8 * 2;
549 bb_stream = (uint8_t *)g_try_malloc(bb_size);
550 if (!bb_stream) {
551 sr_err("%s: Failed to allocate bitbang stream", __func__);
552 ret = SR_ERR_MALLOC;
553 goto exit;
554 }
555
556 bbs = bb_stream;
557 for (i = 0; i < file_size; i++) {
558 for (bit = 7; bit >= 0; bit--) {
559 v = (firmware[i] & (1 << bit)) ? 0x40 : 0x00;
560 *bbs++ = v | 0x01;
561 *bbs++ = v;
562 }
563 }
564
565 /* The transformation completed successfully, return the result. */
566 *bb_cmd = bb_stream;
567 *bb_cmd_size = bb_size;
568
569exit:
570 g_mapped_file_unref(file);
571 return ret;
572}
573
574static int upload_firmware(int firmware_idx, struct dev_context *devc)
575{
576 int ret;
577 unsigned char *buf;
578 unsigned char pins;
579 size_t buf_size;
580 const char *firmware = sigma_firmware_files[firmware_idx];
581 struct ftdi_context *ftdic = &devc->ftdic;
582
583 /* Make sure it's an ASIX SIGMA. */
584 ret = ftdi_usb_open_desc(ftdic, USB_VENDOR, USB_PRODUCT,
585 USB_DESCRIPTION, NULL);
586 if (ret < 0) {
587 sr_err("ftdi_usb_open failed: %s",
588 ftdi_get_error_string(ftdic));
589 return 0;
590 }
591
592 ret = ftdi_set_bitmode(ftdic, 0xdf, BITMODE_BITBANG);
593 if (ret < 0) {
594 sr_err("ftdi_set_bitmode failed: %s",
595 ftdi_get_error_string(ftdic));
596 return 0;
597 }
598
599 /* Four times the speed of sigmalogan - Works well. */
600 ret = ftdi_set_baudrate(ftdic, 750000);
601 if (ret < 0) {
602 sr_err("ftdi_set_baudrate failed: %s",
603 ftdi_get_error_string(ftdic));
604 return 0;
605 }
606
607 /* Initialize the FPGA for firmware upload. */
608 ret = sigma_fpga_init_bitbang(devc);
609 if (ret)
610 return ret;
611
612 /* Prepare firmware. */
613 ret = sigma_fw_2_bitbang(firmware, &buf, &buf_size);
614 if (ret != SR_OK) {
615 sr_err("An error occured while reading the firmware: %s",
616 firmware);
617 return ret;
618 }
619
620 /* Upload firmare. */
621 sr_info("Uploading firmware file '%s'.", firmware);
622 sigma_write(buf, buf_size, devc);
623
624 g_free(buf);
625
626 ret = ftdi_set_bitmode(ftdic, 0x00, BITMODE_RESET);
627 if (ret < 0) {
628 sr_err("ftdi_set_bitmode failed: %s",
629 ftdi_get_error_string(ftdic));
630 return SR_ERR;
631 }
632
633 ftdi_usb_purge_buffers(ftdic);
634
635 /* Discard garbage. */
636 while (sigma_read(&pins, 1, devc) == 1)
637 ;
638
639 /* Initialize the FPGA for logic-analyzer mode. */
640 ret = sigma_fpga_init_la(devc);
641 if (ret != SR_OK)
642 return ret;
643
644 devc->cur_firmware = firmware_idx;
645
646 sr_info("Firmware uploaded.");
647
648 return SR_OK;
649}
650
651static int dev_open(struct sr_dev_inst *sdi)
652{
653 struct dev_context *devc;
654 int ret;
655
656 devc = sdi->priv;
657
658 /* Make sure it's an ASIX SIGMA. */
659 if ((ret = ftdi_usb_open_desc(&devc->ftdic,
660 USB_VENDOR, USB_PRODUCT, USB_DESCRIPTION, NULL)) < 0) {
661
662 sr_err("ftdi_usb_open failed: %s",
663 ftdi_get_error_string(&devc->ftdic));
664
665 return 0;
666 }
667
668 sdi->status = SR_ST_ACTIVE;
669
670 return SR_OK;
671}
672
673static int set_samplerate(const struct sr_dev_inst *sdi, uint64_t samplerate)
674{
675 struct dev_context *devc;
676 unsigned int i;
677 int ret;
678
679 devc = sdi->priv;
680 ret = SR_OK;
681
682 for (i = 0; i < ARRAY_SIZE(samplerates); i++) {
683 if (samplerates[i] == samplerate)
684 break;
685 }
686 if (samplerates[i] == 0)
687 return SR_ERR_SAMPLERATE;
688
689 if (samplerate <= SR_MHZ(50)) {
690 ret = upload_firmware(0, devc);
691 devc->num_channels = 16;
692 } else if (samplerate == SR_MHZ(100)) {
693 ret = upload_firmware(1, devc);
694 devc->num_channels = 8;
695 } else if (samplerate == SR_MHZ(200)) {
696 ret = upload_firmware(2, devc);
697 devc->num_channels = 4;
698 }
699
700 if (ret == SR_OK) {
701 devc->cur_samplerate = samplerate;
702 devc->period_ps = 1000000000000ULL / samplerate;
703 devc->samples_per_event = 16 / devc->num_channels;
704 devc->state.state = SIGMA_IDLE;
705 }
706
707 return ret;
708}
709
710/*
711 * In 100 and 200 MHz mode, only a single pin rising/falling can be
712 * set as trigger. In other modes, two rising/falling triggers can be set,
713 * in addition to value/mask trigger for any number of channels.
714 *
715 * The Sigma supports complex triggers using boolean expressions, but this
716 * has not been implemented yet.
717 */
718static int convert_trigger(const struct sr_dev_inst *sdi)
719{
720 struct dev_context *devc;
721 struct sr_trigger *trigger;
722 struct sr_trigger_stage *stage;
723 struct sr_trigger_match *match;
724 const GSList *l, *m;
725 int channelbit, trigger_set;
726
727 devc = sdi->priv;
728 memset(&devc->trigger, 0, sizeof(struct sigma_trigger));
729 if (!(trigger = sr_session_trigger_get(sdi->session)))
730 return SR_OK;
731
732 trigger_set = 0;
733 for (l = trigger->stages; l; l = l->next) {
734 stage = l->data;
735 for (m = stage->matches; m; m = m->next) {
736 match = m->data;
737 if (!match->channel->enabled)
738 /* Ignore disabled channels with a trigger. */
739 continue;
740 channelbit = 1 << (match->channel->index);
741 if (devc->cur_samplerate >= SR_MHZ(100)) {
742 /* Fast trigger support. */
743 if (trigger_set) {
744 sr_err("Only a single pin trigger is "
745 "supported in 100 and 200MHz mode.");
746 return SR_ERR;
747 }
748 if (match->match == SR_TRIGGER_FALLING)
749 devc->trigger.fallingmask |= channelbit;
750 else if (match->match == SR_TRIGGER_RISING)
751 devc->trigger.risingmask |= channelbit;
752 else {
753 sr_err("Only rising/falling trigger is "
754 "supported in 100 and 200MHz mode.");
755 return SR_ERR;
756 }
757
758 ++trigger_set;
759 } else {
760 /* Simple trigger support (event). */
761 if (match->match == SR_TRIGGER_ONE) {
762 devc->trigger.simplevalue |= channelbit;
763 devc->trigger.simplemask |= channelbit;
764 }
765 else if (match->match == SR_TRIGGER_ZERO) {
766 devc->trigger.simplevalue &= ~channelbit;
767 devc->trigger.simplemask |= channelbit;
768 }
769 else if (match->match == SR_TRIGGER_FALLING) {
770 devc->trigger.fallingmask |= channelbit;
771 ++trigger_set;
772 }
773 else if (match->match == SR_TRIGGER_RISING) {
774 devc->trigger.risingmask |= channelbit;
775 ++trigger_set;
776 }
777
778 /*
779 * Actually, Sigma supports 2 rising/falling triggers,
780 * but they are ORed and the current trigger syntax
781 * does not permit ORed triggers.
782 */
783 if (trigger_set > 1) {
784 sr_err("Only 1 rising/falling trigger "
785 "is supported.");
786 return SR_ERR;
787 }
788 }
789 }
790 }
791
792
793 return SR_OK;
794}
795
796static int dev_close(struct sr_dev_inst *sdi)
797{
798 struct dev_context *devc;
799
800 devc = sdi->priv;
801
802 /* TODO */
803 if (sdi->status == SR_ST_ACTIVE)
804 ftdi_usb_close(&devc->ftdic);
805
806 sdi->status = SR_ST_INACTIVE;
807
808 return SR_OK;
809}
810
811static int cleanup(void)
812{
813 return dev_clear();
814}
815
816static int config_get(int id, GVariant **data, const struct sr_dev_inst *sdi,
817 const struct sr_channel_group *cg)
818{
819 struct dev_context *devc;
820
821 (void)cg;
822
823 if (!sdi)
824 return SR_ERR;
825 devc = sdi->priv;
826
827 switch (id) {
828 case SR_CONF_SAMPLERATE:
829 *data = g_variant_new_uint64(devc->cur_samplerate);
830 break;
831 case SR_CONF_LIMIT_MSEC:
832 *data = g_variant_new_uint64(devc->limit_msec);
833 break;
834 case SR_CONF_CAPTURE_RATIO:
835 *data = g_variant_new_uint64(devc->capture_ratio);
836 break;
837 default:
838 return SR_ERR_NA;
839 }
840
841 return SR_OK;
842}
843
844static int config_set(int id, GVariant *data, const struct sr_dev_inst *sdi,
845 const struct sr_channel_group *cg)
846{
847 struct dev_context *devc;
848 uint64_t tmp;
849 int ret;
850
851 (void)cg;
852
853 if (sdi->status != SR_ST_ACTIVE)
854 return SR_ERR_DEV_CLOSED;
855
856 devc = sdi->priv;
857
858 ret = SR_OK;
859 switch (id) {
860 case SR_CONF_SAMPLERATE:
861 ret = set_samplerate(sdi, g_variant_get_uint64(data));
862 break;
863 case SR_CONF_LIMIT_MSEC:
864 tmp = g_variant_get_uint64(data);
865 if (tmp > 0)
866 devc->limit_msec = g_variant_get_uint64(data);
867 else
868 ret = SR_ERR;
869 break;
870 case SR_CONF_LIMIT_SAMPLES:
871 tmp = g_variant_get_uint64(data);
872 devc->limit_msec = tmp * 1000 / devc->cur_samplerate;
873 break;
874 case SR_CONF_CAPTURE_RATIO:
875 tmp = g_variant_get_uint64(data);
876 if (tmp <= 100)
877 devc->capture_ratio = tmp;
878 else
879 ret = SR_ERR;
880 break;
881 default:
882 ret = SR_ERR_NA;
883 }
884
885 return ret;
886}
887
888static int config_list(int key, GVariant **data, const struct sr_dev_inst *sdi,
889 const struct sr_channel_group *cg)
890{
891 GVariant *gvar;
892 GVariantBuilder gvb;
893
894 (void)sdi;
895 (void)cg;
896
897 switch (key) {
898 case SR_CONF_DEVICE_OPTIONS:
899 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
900 hwcaps, ARRAY_SIZE(hwcaps), sizeof(int32_t));
901 break;
902 case SR_CONF_SAMPLERATE:
903 g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
904 gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"), samplerates,
905 ARRAY_SIZE(samplerates), sizeof(uint64_t));
906 g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
907 *data = g_variant_builder_end(&gvb);
908 break;
909 case SR_CONF_TRIGGER_MATCH:
910 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_INT32,
911 trigger_matches, ARRAY_SIZE(trigger_matches),
912 sizeof(int32_t));
913 break;
914 default:
915 return SR_ERR_NA;
916 }
917
918 return SR_OK;
919}
920
921/* Software trigger to determine exact trigger position. */
922static int get_trigger_offset(uint8_t *samples, uint16_t last_sample,
923 struct sigma_trigger *t)
924{
925 int i;
926 uint16_t sample = 0;
927
928 for (i = 0; i < 8; ++i) {
929 if (i > 0)
930 last_sample = sample;
931 sample = samples[2 * i] | (samples[2 * i + 1] << 8);
932
933 /* Simple triggers. */
934 if ((sample & t->simplemask) != t->simplevalue)
935 continue;
936
937 /* Rising edge. */
938 if (((last_sample & t->risingmask) != 0) ||
939 ((sample & t->risingmask) != t->risingmask))
940 continue;
941
942 /* Falling edge. */
943 if ((last_sample & t->fallingmask) != t->fallingmask ||
944 (sample & t->fallingmask) != 0)
945 continue;
946
947 break;
948 }
949
950 /* If we did not match, return original trigger pos. */
951 return i & 0x7;
952}
953
954
955/*
956 * Return the timestamp of "DRAM cluster".
957 */
958static uint16_t sigma_dram_cluster_ts(struct sigma_dram_cluster *cluster)
959{
960 return (cluster->timestamp_hi << 8) | cluster->timestamp_lo;
961}
962
963static void sigma_decode_dram_cluster(struct sigma_dram_cluster *dram_cluster,
964 unsigned int events_in_cluster,
965 unsigned int triggered,
966 struct sr_dev_inst *sdi)
967{
968 struct dev_context *devc = sdi->priv;
969 struct sigma_state *ss = &devc->state;
970 struct sr_datafeed_packet packet;
971 struct sr_datafeed_logic logic;
972 uint16_t tsdiff, ts;
973 uint8_t samples[2048];
974 unsigned int i;
975
976 ts = sigma_dram_cluster_ts(dram_cluster);
977 tsdiff = ts - ss->lastts;
978 ss->lastts = ts;
979
980 packet.type = SR_DF_LOGIC;
981 packet.payload = &logic;
982 logic.unitsize = 2;
983 logic.data = samples;
984
985 /*
986 * First of all, send Sigrok a copy of the last sample from
987 * previous cluster as many times as needed to make up for
988 * the differential characteristics of data we get from the
989 * Sigma. Sigrok needs one sample of data per period.
990 *
991 * One DRAM cluster contains a timestamp and seven samples,
992 * the units of timestamp are "devc->period_ps" , the first
993 * sample in the cluster happens at the time of the timestamp
994 * and the remaining samples happen at timestamp +1...+6 .
995 */
996 for (ts = 0; ts < tsdiff - (EVENTS_PER_CLUSTER - 1); ts++) {
997 i = ts % 1024;
998 samples[2 * i + 0] = ss->lastsample & 0xff;
999 samples[2 * i + 1] = ss->lastsample >> 8;
1000
1001 /*
1002 * If we have 1024 samples ready or we're at the
1003 * end of submitting the padding samples, submit
1004 * the packet to Sigrok.
1005 */
1006 if ((i == 1023) || (ts == (tsdiff - EVENTS_PER_CLUSTER))) {
1007 logic.length = (i + 1) * logic.unitsize;
1008 sr_session_send(sdi, &packet);
1009 }
1010 }
1011
1012 /*
1013 * Parse the samples in current cluster and prepare them
1014 * to be submitted to Sigrok.
1015 */
1016 for (i = 0; i < events_in_cluster; i++) {
1017 samples[2 * i + 1] = dram_cluster->samples[i].sample_lo;
1018 samples[2 * i + 0] = dram_cluster->samples[i].sample_hi;
1019 }
1020
1021 /* Send data up to trigger point (if triggered). */
1022 int trigger_offset = 0;
1023 if (triggered) {
1024 /*
1025 * Trigger is not always accurate to sample because of
1026 * pipeline delay. However, it always triggers before
1027 * the actual event. We therefore look at the next
1028 * samples to pinpoint the exact position of the trigger.
1029 */
1030 trigger_offset = get_trigger_offset(samples,
1031 ss->lastsample, &devc->trigger);
1032
1033 if (trigger_offset > 0) {
1034 packet.type = SR_DF_LOGIC;
1035 logic.length = trigger_offset * logic.unitsize;
1036 sr_session_send(sdi, &packet);
1037 events_in_cluster -= trigger_offset;
1038 }
1039
1040 /* Only send trigger if explicitly enabled. */
1041 if (devc->use_triggers) {
1042 packet.type = SR_DF_TRIGGER;
1043 sr_session_send(sdi, &packet);
1044 }
1045 }
1046
1047 if (events_in_cluster > 0) {
1048 packet.type = SR_DF_LOGIC;
1049 logic.length = events_in_cluster * logic.unitsize;
1050 logic.data = samples + (trigger_offset * logic.unitsize);
1051 sr_session_send(sdi, &packet);
1052 }
1053
1054 ss->lastsample =
1055 samples[2 * (events_in_cluster - 1) + 0] |
1056 (samples[2 * (events_in_cluster - 1) + 1] << 8);
1057
1058}
1059
1060/*
1061 * Decode chunk of 1024 bytes, 64 clusters, 7 events per cluster.
1062 * Each event is 20ns apart, and can contain multiple samples.
1063 *
1064 * For 200 MHz, events contain 4 samples for each channel, spread 5 ns apart.
1065 * For 100 MHz, events contain 2 samples for each channel, spread 10 ns apart.
1066 * For 50 MHz and below, events contain one sample for each channel,
1067 * spread 20 ns apart.
1068 */
1069static int decode_chunk_ts(struct sigma_dram_line *dram_line,
1070 uint16_t events_in_line,
1071 uint32_t trigger_event,
1072 struct sr_dev_inst *sdi)
1073{
1074 struct sigma_dram_cluster *dram_cluster;
1075 struct dev_context *devc = sdi->priv;
1076 unsigned int clusters_in_line =
1077 (events_in_line + (EVENTS_PER_CLUSTER - 1)) / EVENTS_PER_CLUSTER;
1078 unsigned int events_in_cluster;
1079 unsigned int i;
1080 uint32_t trigger_cluster = ~0, triggered = 0;
1081
1082 /* Check if trigger is in this chunk. */
1083 if (trigger_event < (64 * 7)) {
1084 if (devc->cur_samplerate <= SR_MHZ(50)) {
1085 trigger_event -= MIN(EVENTS_PER_CLUSTER - 1,
1086 trigger_event);
1087 }
1088
1089 /* Find in which cluster the trigger occured. */
1090 trigger_cluster = trigger_event / EVENTS_PER_CLUSTER;
1091 }
1092
1093 /* For each full DRAM cluster. */
1094 for (i = 0; i < clusters_in_line; i++) {
1095 dram_cluster = &dram_line->cluster[i];
1096
1097 /* The last cluster might not be full. */
1098 if ((i == clusters_in_line - 1) &&
1099 (events_in_line % EVENTS_PER_CLUSTER)) {
1100 events_in_cluster = events_in_line % EVENTS_PER_CLUSTER;
1101 } else {
1102 events_in_cluster = EVENTS_PER_CLUSTER;
1103 }
1104
1105 triggered = (i == trigger_cluster);
1106 sigma_decode_dram_cluster(dram_cluster, events_in_cluster,
1107 triggered, sdi);
1108 }
1109
1110 return SR_OK;
1111}
1112
1113static int download_capture(struct sr_dev_inst *sdi)
1114{
1115 struct dev_context *devc = sdi->priv;
1116 const uint32_t chunks_per_read = 32;
1117 struct sigma_dram_line *dram_line;
1118 int bufsz;
1119 uint32_t stoppos, triggerpos;
1120 struct sr_datafeed_packet packet;
1121 uint8_t modestatus;
1122
1123 uint32_t i;
1124 uint32_t dl_lines_total, dl_lines_curr, dl_lines_done;
1125 uint32_t dl_events_in_line = 64 * 7;
1126 uint32_t trg_line = ~0, trg_event = ~0;
1127
1128 dram_line = g_try_malloc0(chunks_per_read * sizeof(*dram_line));
1129 if (!dram_line)
1130 return FALSE;
1131
1132 sr_info("Downloading sample data.");
1133
1134 /* Stop acquisition. */
1135 sigma_set_register(WRITE_MODE, 0x11, devc);
1136
1137 /* Set SDRAM Read Enable. */
1138 sigma_set_register(WRITE_MODE, 0x02, devc);
1139
1140 /* Get the current position. */
1141 sigma_read_pos(&stoppos, &triggerpos, devc);
1142
1143 /* Check if trigger has fired. */
1144 modestatus = sigma_get_register(READ_MODE, devc);
1145 if (modestatus & 0x20) {
1146 trg_line = triggerpos >> 9;
1147 trg_event = triggerpos & 0x1ff;
1148 }
1149
1150 /*
1151 * Determine how many 1024b "DRAM lines" do we need to read from the
1152 * Sigma so we have a complete set of samples. Note that the last
1153 * line can be only partial, containing less than 64 clusters.
1154 */
1155 dl_lines_total = (stoppos >> 9) + 1;
1156
1157 dl_lines_done = 0;
1158
1159 while (dl_lines_total > dl_lines_done) {
1160 /* We can download only up-to 32 DRAM lines in one go! */
1161 dl_lines_curr = MIN(chunks_per_read, dl_lines_total);
1162
1163 bufsz = sigma_read_dram(dl_lines_done, dl_lines_curr,
1164 (uint8_t *)dram_line, devc);
1165 /* TODO: Check bufsz. For now, just avoid compiler warnings. */
1166 (void)bufsz;
1167
1168 /* This is the first DRAM line, so find the initial timestamp. */
1169 if (dl_lines_done == 0) {
1170 devc->state.lastts =
1171 sigma_dram_cluster_ts(&dram_line[0].cluster[0]);
1172 devc->state.lastsample = 0;
1173 }
1174
1175 for (i = 0; i < dl_lines_curr; i++) {
1176 uint32_t trigger_event = ~0;
1177 /* The last "DRAM line" can be only partially full. */
1178 if (dl_lines_done + i == dl_lines_total - 1)
1179 dl_events_in_line = stoppos & 0x1ff;
1180
1181 /* Test if the trigger happened on this line. */
1182 if (dl_lines_done + i == trg_line)
1183 trigger_event = trg_event;
1184
1185 decode_chunk_ts(dram_line + i, dl_events_in_line,
1186 trigger_event, sdi);
1187 }
1188
1189 dl_lines_done += dl_lines_curr;
1190 }
1191
1192 /* All done. */
1193 packet.type = SR_DF_END;
1194 sr_session_send(sdi, &packet);
1195
1196 dev_acquisition_stop(sdi, sdi);
1197
1198 g_free(dram_line);
1199
1200 return TRUE;
1201}
1202
1203/*
1204 * Handle the Sigma when in CAPTURE mode. This function checks:
1205 * - Sampling time ended
1206 * - DRAM capacity overflow
1207 * This function triggers download of the samples from Sigma
1208 * in case either of the above conditions is true.
1209 */
1210static int sigma_capture_mode(struct sr_dev_inst *sdi)
1211{
1212 struct dev_context *devc = sdi->priv;
1213
1214 uint64_t running_msec;
1215 struct timeval tv;
1216
1217 uint32_t stoppos, triggerpos;
1218
1219 /* Check if the selected sampling duration passed. */
1220 gettimeofday(&tv, 0);
1221 running_msec = (tv.tv_sec - devc->start_tv.tv_sec) * 1000 +
1222 (tv.tv_usec - devc->start_tv.tv_usec) / 1000;
1223 if (running_msec >= devc->limit_msec)
1224 return download_capture(sdi);
1225
1226 /* Get the position in DRAM to which the FPGA is writing now. */
1227 sigma_read_pos(&stoppos, &triggerpos, devc);
1228 /* Test if DRAM is full and if so, download the data. */
1229 if ((stoppos >> 9) == 32767)
1230 return download_capture(sdi);
1231
1232 return TRUE;
1233}
1234
1235static int receive_data(int fd, int revents, void *cb_data)
1236{
1237 struct sr_dev_inst *sdi;
1238 struct dev_context *devc;
1239
1240 (void)fd;
1241 (void)revents;
1242
1243 sdi = cb_data;
1244 devc = sdi->priv;
1245
1246 if (devc->state.state == SIGMA_IDLE)
1247 return TRUE;
1248
1249 if (devc->state.state == SIGMA_CAPTURE)
1250 return sigma_capture_mode(sdi);
1251
1252 return TRUE;
1253}
1254
1255/* Build a LUT entry used by the trigger functions. */
1256static void build_lut_entry(uint16_t value, uint16_t mask, uint16_t *entry)
1257{
1258 int i, j, k, bit;
1259
1260 /* For each quad channel. */
1261 for (i = 0; i < 4; ++i) {
1262 entry[i] = 0xffff;
1263
1264 /* For each bit in LUT. */
1265 for (j = 0; j < 16; ++j)
1266
1267 /* For each channel in quad. */
1268 for (k = 0; k < 4; ++k) {
1269 bit = 1 << (i * 4 + k);
1270
1271 /* Set bit in entry */
1272 if ((mask & bit) &&
1273 ((!(value & bit)) !=
1274 (!(j & (1 << k)))))
1275 entry[i] &= ~(1 << j);
1276 }
1277 }
1278}
1279
1280/* Add a logical function to LUT mask. */
1281static void add_trigger_function(enum triggerop oper, enum triggerfunc func,
1282 int index, int neg, uint16_t *mask)
1283{
1284 int i, j;
1285 int x[2][2], tmp, a, b, aset, bset, rset;
1286
1287 memset(x, 0, 4 * sizeof(int));
1288
1289 /* Trigger detect condition. */
1290 switch (oper) {
1291 case OP_LEVEL:
1292 x[0][1] = 1;
1293 x[1][1] = 1;
1294 break;
1295 case OP_NOT:
1296 x[0][0] = 1;
1297 x[1][0] = 1;
1298 break;
1299 case OP_RISE:
1300 x[0][1] = 1;
1301 break;
1302 case OP_FALL:
1303 x[1][0] = 1;
1304 break;
1305 case OP_RISEFALL:
1306 x[0][1] = 1;
1307 x[1][0] = 1;
1308 break;
1309 case OP_NOTRISE:
1310 x[1][1] = 1;
1311 x[0][0] = 1;
1312 x[1][0] = 1;
1313 break;
1314 case OP_NOTFALL:
1315 x[1][1] = 1;
1316 x[0][0] = 1;
1317 x[0][1] = 1;
1318 break;
1319 case OP_NOTRISEFALL:
1320 x[1][1] = 1;
1321 x[0][0] = 1;
1322 break;
1323 }
1324
1325 /* Transpose if neg is set. */
1326 if (neg) {
1327 for (i = 0; i < 2; ++i) {
1328 for (j = 0; j < 2; ++j) {
1329 tmp = x[i][j];
1330 x[i][j] = x[1-i][1-j];
1331 x[1-i][1-j] = tmp;
1332 }
1333 }
1334 }
1335
1336 /* Update mask with function. */
1337 for (i = 0; i < 16; ++i) {
1338 a = (i >> (2 * index + 0)) & 1;
1339 b = (i >> (2 * index + 1)) & 1;
1340
1341 aset = (*mask >> i) & 1;
1342 bset = x[b][a];
1343
1344 if (func == FUNC_AND || func == FUNC_NAND)
1345 rset = aset & bset;
1346 else if (func == FUNC_OR || func == FUNC_NOR)
1347 rset = aset | bset;
1348 else if (func == FUNC_XOR || func == FUNC_NXOR)
1349 rset = aset ^ bset;
1350
1351 if (func == FUNC_NAND || func == FUNC_NOR || func == FUNC_NXOR)
1352 rset = !rset;
1353
1354 *mask &= ~(1 << i);
1355
1356 if (rset)
1357 *mask |= 1 << i;
1358 }
1359}
1360
1361/*
1362 * Build trigger LUTs used by 50 MHz and lower sample rates for supporting
1363 * simple pin change and state triggers. Only two transitions (rise/fall) can be
1364 * set at any time, but a full mask and value can be set (0/1).
1365 */
1366static int build_basic_trigger(struct triggerlut *lut, struct dev_context *devc)
1367{
1368 int i,j;
1369 uint16_t masks[2] = { 0, 0 };
1370
1371 memset(lut, 0, sizeof(struct triggerlut));
1372
1373 /* Contant for simple triggers. */
1374 lut->m4 = 0xa000;
1375
1376 /* Value/mask trigger support. */
1377 build_lut_entry(devc->trigger.simplevalue, devc->trigger.simplemask,
1378 lut->m2d);
1379
1380 /* Rise/fall trigger support. */
1381 for (i = 0, j = 0; i < 16; ++i) {
1382 if (devc->trigger.risingmask & (1 << i) ||
1383 devc->trigger.fallingmask & (1 << i))
1384 masks[j++] = 1 << i;
1385 }
1386
1387 build_lut_entry(masks[0], masks[0], lut->m0d);
1388 build_lut_entry(masks[1], masks[1], lut->m1d);
1389
1390 /* Add glue logic */
1391 if (masks[0] || masks[1]) {
1392 /* Transition trigger. */
1393 if (masks[0] & devc->trigger.risingmask)
1394 add_trigger_function(OP_RISE, FUNC_OR, 0, 0, &lut->m3);
1395 if (masks[0] & devc->trigger.fallingmask)
1396 add_trigger_function(OP_FALL, FUNC_OR, 0, 0, &lut->m3);
1397 if (masks[1] & devc->trigger.risingmask)
1398 add_trigger_function(OP_RISE, FUNC_OR, 1, 0, &lut->m3);
1399 if (masks[1] & devc->trigger.fallingmask)
1400 add_trigger_function(OP_FALL, FUNC_OR, 1, 0, &lut->m3);
1401 } else {
1402 /* Only value/mask trigger. */
1403 lut->m3 = 0xffff;
1404 }
1405
1406 /* Triggertype: event. */
1407 lut->params.selres = 3;
1408
1409 return SR_OK;
1410}
1411
1412static int dev_acquisition_start(const struct sr_dev_inst *sdi, void *cb_data)
1413{
1414 struct dev_context *devc;
1415 struct clockselect_50 clockselect;
1416 int frac, triggerpin, ret;
1417 uint8_t triggerselect = 0;
1418 struct triggerinout triggerinout_conf;
1419 struct triggerlut lut;
1420
1421 if (sdi->status != SR_ST_ACTIVE)
1422 return SR_ERR_DEV_CLOSED;
1423
1424 devc = sdi->priv;
1425
1426 if (convert_trigger(sdi) != SR_OK) {
1427 sr_err("Failed to configure triggers.");
1428 return SR_ERR;
1429 }
1430
1431 /* If the samplerate has not been set, default to 200 kHz. */
1432 if (devc->cur_firmware == -1) {
1433 if ((ret = set_samplerate(sdi, SR_KHZ(200))) != SR_OK)
1434 return ret;
1435 }
1436
1437 /* Enter trigger programming mode. */
1438 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x20, devc);
1439
1440 /* 100 and 200 MHz mode. */
1441 if (devc->cur_samplerate >= SR_MHZ(100)) {
1442 sigma_set_register(WRITE_TRIGGER_SELECT1, 0x81, devc);
1443
1444 /* Find which pin to trigger on from mask. */
1445 for (triggerpin = 0; triggerpin < 8; ++triggerpin)
1446 if ((devc->trigger.risingmask | devc->trigger.fallingmask) &
1447 (1 << triggerpin))
1448 break;
1449
1450 /* Set trigger pin and light LED on trigger. */
1451 triggerselect = (1 << LEDSEL1) | (triggerpin & 0x7);
1452
1453 /* Default rising edge. */
1454 if (devc->trigger.fallingmask)
1455 triggerselect |= 1 << 3;
1456
1457 /* All other modes. */
1458 } else if (devc->cur_samplerate <= SR_MHZ(50)) {
1459 build_basic_trigger(&lut, devc);
1460
1461 sigma_write_trigger_lut(&lut, devc);
1462
1463 triggerselect = (1 << LEDSEL1) | (1 << LEDSEL0);
1464 }
1465
1466 /* Setup trigger in and out pins to default values. */
1467 memset(&triggerinout_conf, 0, sizeof(struct triggerinout));
1468 triggerinout_conf.trgout_bytrigger = 1;
1469 triggerinout_conf.trgout_enable = 1;
1470
1471 sigma_write_register(WRITE_TRIGGER_OPTION,
1472 (uint8_t *) &triggerinout_conf,
1473 sizeof(struct triggerinout), devc);
1474
1475 /* Go back to normal mode. */
1476 sigma_set_register(WRITE_TRIGGER_SELECT1, triggerselect, devc);
1477
1478 /* Set clock select register. */
1479 if (devc->cur_samplerate == SR_MHZ(200))
1480 /* Enable 4 channels. */
1481 sigma_set_register(WRITE_CLOCK_SELECT, 0xf0, devc);
1482 else if (devc->cur_samplerate == SR_MHZ(100))
1483 /* Enable 8 channels. */
1484 sigma_set_register(WRITE_CLOCK_SELECT, 0x00, devc);
1485 else {
1486 /*
1487 * 50 MHz mode (or fraction thereof). Any fraction down to
1488 * 50 MHz / 256 can be used, but is not supported by sigrok API.
1489 */
1490 frac = SR_MHZ(50) / devc->cur_samplerate - 1;
1491
1492 clockselect.async = 0;
1493 clockselect.fraction = frac;
1494 clockselect.disabled_channels = 0;
1495
1496 sigma_write_register(WRITE_CLOCK_SELECT,
1497 (uint8_t *) &clockselect,
1498 sizeof(clockselect), devc);
1499 }
1500
1501 /* Setup maximum post trigger time. */
1502 sigma_set_register(WRITE_POST_TRIGGER,
1503 (devc->capture_ratio * 255) / 100, devc);
1504
1505 /* Start acqusition. */
1506 gettimeofday(&devc->start_tv, 0);
1507 sigma_set_register(WRITE_MODE, 0x0d, devc);
1508
1509 devc->cb_data = cb_data;
1510
1511 /* Send header packet to the session bus. */
1512 std_session_send_df_header(sdi, LOG_PREFIX);
1513
1514 /* Add capture source. */
1515 sr_session_source_add(sdi->session, 0, G_IO_IN, 10, receive_data, (void *)sdi);
1516
1517 devc->state.state = SIGMA_CAPTURE;
1518
1519 return SR_OK;
1520}
1521
1522static int dev_acquisition_stop(struct sr_dev_inst *sdi, void *cb_data)
1523{
1524 struct dev_context *devc;
1525
1526 (void)cb_data;
1527
1528 devc = sdi->priv;
1529 devc->state.state = SIGMA_IDLE;
1530
1531 sr_session_source_remove(sdi->session, 0);
1532
1533 return SR_OK;
1534}
1535
1536SR_PRIV struct sr_dev_driver asix_sigma_driver_info = {
1537 .name = "asix-sigma",
1538 .longname = "ASIX SIGMA/SIGMA2",
1539 .api_version = 1,
1540 .init = init,
1541 .cleanup = cleanup,
1542 .scan = scan,
1543 .dev_list = dev_list,
1544 .dev_clear = dev_clear,
1545 .config_get = config_get,
1546 .config_set = config_set,
1547 .config_list = config_list,
1548 .dev_open = dev_open,
1549 .dev_close = dev_close,
1550 .dev_acquisition_start = dev_acquisition_start,
1551 .dev_acquisition_stop = dev_acquisition_stop,
1552 .priv = NULL,
1553};