]> sigrok.org Git - libsigrok.git/blame - src/lcr/es51919.c
Change sr_dev_inst_new() to take no parameters.
[libsigrok.git] / src / lcr / es51919.c
CommitLineData
6bcb3ee8
JH
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <stdint.h>
21#include <string.h>
22#include <math.h>
23#include <glib.h>
24#include "libsigrok.h"
25#include "libsigrok-internal.h"
26
27#define LOG_PREFIX "es51919"
28
29struct dev_buffer {
30 /** Total size of the buffer. */
31 size_t size;
32 /** Amount of data currently in the buffer. */
33 size_t len;
34 /** Offset where the data starts in the buffer. */
35 size_t offset;
36 /** Space for the data. */
37 uint8_t data[];
38};
39
40static struct dev_buffer *dev_buffer_new(size_t size)
41{
42 struct dev_buffer *dbuf;
43
44 if (!(dbuf = g_try_malloc(sizeof(struct dev_buffer) + size))) {
45 sr_err("Dev buffer malloc failed (size=%zu).", size);
46 return NULL;
47 }
48
49 dbuf->size = size;
50 dbuf->len = 0;
51 dbuf->offset = 0;
52
53 return dbuf;
54}
55
56static void dev_buffer_destroy(struct dev_buffer *dbuf)
57{
58 g_free(dbuf);
59}
60
61static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
62 struct sr_dev_inst *sdi)
63{
64 struct sr_serial_dev_inst *serial;
65 int len;
66
67 serial = sdi->conn;
68
69 /* If we already have data, move it to the beginning of the buffer. */
70 if (dbuf->len > 0 && dbuf->offset > 0)
71 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
72
73 dbuf->offset = 0;
74
75 len = dbuf->size - dbuf->len;
76 len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
77 if (len < 0) {
78 sr_err("Serial port read error: %d.", len);
79 return len;
80 }
81
82 dbuf->len += len;
83
84 return SR_OK;
85}
86
87static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
88 gboolean (*packet_valid)(const uint8_t *),
89 size_t packet_size)
90{
91 size_t offset;
92
93 while (dbuf->len >= packet_size) {
94 if (packet_valid(dbuf->data + dbuf->offset)) {
95 offset = dbuf->offset;
96 dbuf->offset += packet_size;
97 dbuf->len -= packet_size;
98 return dbuf->data + offset;
99 }
100 dbuf->offset++;
101 dbuf->len--;
102 }
103
104 return NULL;
105}
106
107struct dev_sample_counter {
108 /** The current number of already received samples. */
109 uint64_t count;
110 /** The current sampling limit (in number of samples). */
111 uint64_t limit;
112};
113
114static void dev_sample_counter_start(struct dev_sample_counter *cnt)
115{
116 cnt->count = 0;
117}
118
119static void dev_sample_counter_inc(struct dev_sample_counter *cnt)
120{
121 cnt->count++;
122}
123
124static void dev_sample_limit_set(struct dev_sample_counter *cnt, uint64_t limit)
125{
126 cnt->limit = limit;
127}
128
129static gboolean dev_sample_limit_reached(struct dev_sample_counter *cnt)
130{
131 if (cnt->limit && cnt->count >= cnt->limit) {
132 sr_info("Requested sample limit reached.");
133 return TRUE;
134 }
135
136 return FALSE;
137}
138
139struct dev_time_counter {
140 /** The starting time of current sampling run. */
141 int64_t starttime;
142 /** The time limit (in milliseconds). */
143 uint64_t limit;
144};
145
146static void dev_time_counter_start(struct dev_time_counter *cnt)
147{
148 cnt->starttime = g_get_monotonic_time();
149}
150
151static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
152{
153 cnt->limit = limit;
154}
155
156static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
157{
158 int64_t time;
159
160 if (cnt->limit) {
161 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
162 if (time > (int64_t)cnt->limit) {
163 sr_info("Requested time limit reached.");
164 return TRUE;
165 }
166 }
167
168 return FALSE;
169}
170
171static void serial_conf_get(GSList *options, const char *def_serialcomm,
172 const char **conn, const char **serialcomm)
173{
174 struct sr_config *src;
175 GSList *l;
176
177 *conn = *serialcomm = NULL;
178 for (l = options; l; l = l->next) {
179 src = l->data;
180 switch (src->key) {
181 case SR_CONF_CONN:
182 *conn = g_variant_get_string(src->data, NULL);
183 break;
184 case SR_CONF_SERIALCOMM:
185 *serialcomm = g_variant_get_string(src->data, NULL);
186 break;
187 }
188 }
189
190 if (*serialcomm == NULL)
191 *serialcomm = def_serialcomm;
192}
193
194static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
195 const char *def_serialcomm)
196
197{
198 const char *conn, *serialcomm;
199
200 serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
201
202 if (!conn)
203 return NULL;
204
205 return sr_serial_dev_inst_new(conn, serialcomm);
206}
207
208static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
209 uint8_t *buf, size_t buflen,
210 size_t packet_size,
211 packet_valid_callback is_valid,
212 uint64_t timeout_ms, int baudrate)
213{
214 size_t len, dropped;
215 int ret;
216
217 if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
218 return ret;
219
220 serial_flush(serial);
221
222 len = buflen;
223 ret = serial_stream_detect(serial, buf, &len, packet_size,
224 is_valid, timeout_ms, baudrate);
225
226 serial_close(serial);
227
228 if (ret != SR_OK)
229 return ret;
230
231 /*
232 * If we dropped more than two packets worth of data, something is
233 * wrong. We shouldn't quit however, since the dropped bytes might be
234 * just zeroes at the beginning of the stream. Those can occur as a
235 * combination of the nonstandard cable that ships with some devices
236 * and the serial port or USB to serial adapter.
237 */
238 dropped = len - packet_size;
239 if (dropped > 2 * packet_size)
240 sr_warn("Had to drop too much data.");
241
242 return SR_OK;
243}
244
245static int serial_stream_check(struct sr_serial_dev_inst *serial,
246 size_t packet_size,
247 packet_valid_callback is_valid,
248 uint64_t timeout_ms, int baudrate)
249{
250 uint8_t buf[128];
251
252 return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
253 is_valid, timeout_ms, baudrate);
254}
255
256struct std_opt_desc {
257 const uint32_t *scanopts;
258 const int num_scanopts;
259 const uint32_t *devopts;
260 const int num_devopts;
261};
262
263static int std_config_list(uint32_t key, GVariant **data,
264 const struct std_opt_desc *d)
265{
266 switch (key) {
267 case SR_CONF_SCAN_OPTIONS:
268 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
269 d->scanopts, d->num_scanopts, sizeof(uint32_t));
270 break;
271 case SR_CONF_DEVICE_OPTIONS:
272 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
273 d->devopts, d->num_devopts, sizeof(uint32_t));
274 break;
275 default:
276 return SR_ERR_NA;
277 }
278
279 return SR_OK;
280}
281
282static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
283{
284 struct sr_datafeed_packet packet;
285 struct sr_datafeed_meta meta;
286
287 memset(&meta, 0, sizeof(meta));
288
289 packet.type = SR_DF_META;
290 packet.payload = &meta;
291
292 meta.config = g_slist_append(meta.config, cfg);
293
294 return sr_session_send(sdi, &packet);
295}
296
a42a39ac
JH
297static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
298 GVariant *var)
299{
300 struct sr_config *cfg;
301 int ret;
302
303 cfg = sr_config_new(key, var);
304 if (!cfg)
305 return SR_ERR;
306
307 ret = send_config_update(sdi, cfg);
308 sr_config_free(cfg);
309
310 return ret;
311
312}
313
6bcb3ee8
JH
314/*
315 * Cyrustek ES51919 LCR chipset host protocol.
316 *
317 * Public official documentation does not contain the protocol
318 * description, so this is all based on reverse engineering.
319 *
320 * Packet structure (17 bytes):
321 *
322 * 0x00: header1 ?? (0x00)
323 * 0x01: header2 ?? (0x0d)
324 *
325 * 0x02: flags
326 * bit 0 = hold enabled
327 * bit 1 = reference shown (in delta mode)
328 * bit 2 = delta mode
329 * bit 3 = calibration mode
330 * bit 4 = sorting mode
331 * bit 5 = LCR mode
332 * bit 6 = auto mode
333 * bit 7 = parallel measurement (vs. serial)
334 *
335 * 0x03: config
336 * bit 0-4 = ??? (0x10)
337 * bit 5-7 = test frequency
338 * 0 = 100 Hz
339 * 1 = 120 Hz
340 * 2 = 1 kHz
341 * 3 = 10 kHz
342 * 4 = 100 kHz
343 * 5 = 0 Hz (DC)
344 *
345 * 0x04: tolerance (sorting mode)
346 * 0 = not set
347 * 3 = +-0.25%
348 * 4 = +-0.5%
349 * 5 = +-1%
350 * 6 = +-2%
351 * 7 = +-5%
352 * 8 = +-10%
353 * 9 = +-20%
354 * 10 = -20+80%
355 *
356 * 0x05-0x09: primary measurement
357 * 0x05: measured quantity
358 * 1 = inductance
359 * 2 = capacitance
360 * 3 = resistance
361 * 4 = DC resistance
362 * 0x06: measurement MSB (0x4e20 = 20000 = outside limits)
363 * 0x07: measurement LSB
364 * 0x08: measurement info
365 * bit 0-2 = decimal point multiplier (10^-val)
366 * bit 3-7 = unit
367 * 0 = no unit
368 * 1 = Ohm
369 * 2 = kOhm
370 * 3 = MOhm
371 * 5 = uH
372 * 6 = mH
373 * 7 = H
374 * 8 = kH
375 * 9 = pF
376 * 10 = nF
377 * 11 = uF
378 * 12 = mF
379 * 13 = %
380 * 14 = degree
381 * 0x09: measurement status
382 * bit 0-3 = status
383 * 0 = normal (measurement shown)
384 * 1 = blank (nothing shown)
385 * 2 = lines ("----")
99d090d8 386 * 3 = outside limits ("OL")
6bcb3ee8
JH
387 * 7 = pass ("PASS")
388 * 8 = fail ("FAIL")
389 * 9 = open ("OPEn")
390 * 10 = shorted ("Srt")
391 * bit 4-6 = ??? (maybe part of same field with 0-3)
392 * bit 7 = ??? (some independent flag)
393 *
394 * 0x0a-0x0e: secondary measurement
395 * 0x0a: measured quantity
396 * 0 = none
397 * 1 = dissipation factor
398 * 2 = quality factor
399 * 3 = parallel AC resistance / ESR
400 * 4 = phase angle
401 * 0x0b-0x0e: like primary measurement
402 *
403 * 0x0f: footer1 (0x0d) ?
404 * 0x10: footer2 (0x0a) ?
405 */
406
407#define PACKET_SIZE 17
408
409static const uint64_t frequencies[] = {
410 100, 120, 1000, 10000, 100000, 0,
411};
412
a42a39ac
JH
413enum { QUANT_AUTO = 5, };
414
415static const char *const quantities1[] = {
416 "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "RESISTANCE", "AUTO",
417};
418
419static const char *const list_quantities1[] = {
420 "NONE", "INDUCTANCE", "CAPACITANCE", "RESISTANCE", "AUTO",
421};
422
423static const char *const quantities2[] = {
424 "NONE", "DISSIPATION", "QUALITY", "RESISTANCE", "ANGLE", "AUTO",
425};
426
427enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
428
429static const char *const models[] = {
430 "NONE", "PARALLEL", "SERIES", "AUTO",
431};
432
6bcb3ee8
JH
433/** Private, per-device-instance driver context. */
434struct dev_context {
435 /** Opaque pointer passed in by the frontend. */
436 void *cb_data;
437
438 /** The number of samples. */
439 struct dev_sample_counter sample_count;
440
441 /** The time limit counter. */
442 struct dev_time_counter time_count;
443
444 /** Data buffer. */
445 struct dev_buffer *buf;
446
447 /** The frequency of the test signal (index to frequencies[]). */
448 unsigned int freq;
a42a39ac
JH
449
450 /** Measured primary quantity (index to quantities1[]). */
451 unsigned int quant1;
452
453 /** Measured secondary quantity (index to quantities2[]). */
454 unsigned int quant2;
455
456 /** Equivalent circuit model (index to models[]). */
457 unsigned int model;
6bcb3ee8
JH
458};
459
a42a39ac 460static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
6bcb3ee8 461{
a42a39ac
JH
462 return is_secondary ? pkt + 10 : pkt + 5;
463}
464
465static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
466{
467 const uint8_t *buf;
468
469 buf = pkt_to_buf(pkt, is_secondary);
470
6bcb3ee8
JH
471 switch (is_secondary << 8 | buf[0]) {
472 case 0x001:
c7c8994c
JH
473 return is_parallel ?
474 SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
6bcb3ee8
JH
475 case 0x002:
476 return is_parallel ?
c7c8994c 477 SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
6bcb3ee8
JH
478 case 0x003:
479 case 0x103:
480 return is_parallel ?
c7c8994c 481 SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
6bcb3ee8
JH
482 case 0x004:
483 return SR_MQ_RESISTANCE;
484 case 0x100:
485 return SR_MQ_DIFFERENCE;
486 case 0x101:
487 return SR_MQ_DISSIPATION_FACTOR;
488 case 0x102:
489 return SR_MQ_QUALITY_FACTOR;
490 case 0x104:
491 return SR_MQ_PHASE_ANGLE;
492 }
493
494 sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
495
496 return -1;
497}
498
499static float parse_value(const uint8_t *buf)
500{
501 static const float decimals[] = {
502 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7
503 };
504 int16_t val;
505
506 val = (buf[1] << 8) | buf[2];
507 return (float)val * decimals[buf[3] & 7];
508}
509
510static void parse_measurement(const uint8_t *pkt, float *floatval,
511 struct sr_datafeed_analog *analog,
512 int is_secondary)
513{
514 static const struct {
515 int unit;
516 float mult;
517 } units[] = {
518 { SR_UNIT_UNITLESS, 1 }, /* no unit */
519 { SR_UNIT_OHM, 1 }, /* Ohm */
520 { SR_UNIT_OHM, 1e3 }, /* kOhm */
521 { SR_UNIT_OHM, 1e6 }, /* MOhm */
522 { -1, 0 }, /* ??? */
523 { SR_UNIT_HENRY, 1e-6 }, /* uH */
524 { SR_UNIT_HENRY, 1e-3 }, /* mH */
525 { SR_UNIT_HENRY, 1 }, /* H */
526 { SR_UNIT_HENRY, 1e3 }, /* kH */
527 { SR_UNIT_FARAD, 1e-12 }, /* pF */
528 { SR_UNIT_FARAD, 1e-9 }, /* nF */
529 { SR_UNIT_FARAD, 1e-6 }, /* uF */
530 { SR_UNIT_FARAD, 1e-3 }, /* mF */
531 { SR_UNIT_PERCENTAGE, 1 }, /* % */
532 { SR_UNIT_DEGREE, 1 } /* degree */
533 };
534 const uint8_t *buf;
535 int state;
536
a42a39ac 537 buf = pkt_to_buf(pkt, is_secondary);
6bcb3ee8
JH
538
539 analog->mq = -1;
540 analog->mqflags = 0;
541
542 state = buf[4] & 0xf;
543
544 if (state != 0 && state != 3)
545 return;
546
547 if (pkt[2] & 0x18) {
548 /* Calibration and Sorting modes not supported. */
549 return;
550 }
551
552 if (!is_secondary) {
553 if (pkt[2] & 0x01)
554 analog->mqflags |= SR_MQFLAG_HOLD;
555 if (pkt[2] & 0x02)
556 analog->mqflags |= SR_MQFLAG_REFERENCE;
6bcb3ee8
JH
557 } else {
558 if (pkt[2] & 0x04)
559 analog->mqflags |= SR_MQFLAG_RELATIVE;
560 }
561
a42a39ac 562 if ((analog->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) < 0)
6bcb3ee8
JH
563 return;
564
565 if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
566 sr_err("Unknown unit %u.", buf[3] >> 3);
567 analog->mq = -1;
568 return;
569 }
570
571 analog->unit = units[buf[3] >> 3].unit;
572
573 *floatval = parse_value(buf);
574 *floatval *= (state == 0) ? units[buf[3] >> 3].mult : INFINITY;
575}
576
a42a39ac 577static unsigned int parse_freq(const uint8_t *pkt)
6bcb3ee8
JH
578{
579 unsigned int freq;
580
581 freq = pkt[3] >> 5;
582
583 if (freq >= ARRAY_SIZE(frequencies)) {
584 sr_err("Unknown frequency %u.", freq);
585 freq = ARRAY_SIZE(frequencies) - 1;
586 }
587
588 return freq;
589}
590
a42a39ac
JH
591static unsigned int parse_quant(const uint8_t *pkt, int is_secondary)
592{
593 const uint8_t *buf;
594
595 if (pkt[2] & 0x20)
596 return QUANT_AUTO;
597
598 buf = pkt_to_buf(pkt, is_secondary);
599
600 return buf[0];
601}
602
603static unsigned int parse_model(const uint8_t *pkt)
604{
605 if (pkt[2] & 0x40)
606 return MODEL_AUTO;
607 else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
608 return MODEL_NONE;
609 else if (pkt[2] & 0x80)
610 return MODEL_PAR;
611 else
612 return MODEL_SER;
613
614}
615
6bcb3ee8
JH
616static gboolean packet_valid(const uint8_t *pkt)
617{
618 /*
619 * If the first two bytes of the packet are indeed a constant
620 * header, they should be checked too. Since we don't know it
621 * for sure, we'll just check the last two for now since they
622 * seem to be constant just like in the other Cyrustek chipset
623 * protocols.
624 */
625 if (pkt[15] == 0xd && pkt[16] == 0xa)
626 return TRUE;
627
628 return FALSE;
629}
630
a42a39ac
JH
631static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
632 GVariant *var)
6bcb3ee8 633{
6bcb3ee8 634 struct dev_context *devc;
6bcb3ee8
JH
635
636 devc = sdi->priv;
637
a42a39ac
JH
638 return send_config_update_key(devc->cb_data, key, var);
639}
6bcb3ee8 640
a42a39ac
JH
641static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
642{
643 return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
644 g_variant_new_uint64(frequencies[freq]));
645}
6bcb3ee8 646
a42a39ac
JH
647static int send_quant1_update(struct sr_dev_inst *sdi, unsigned int quant)
648{
649 return do_config_update(sdi, SR_CONF_MEASURED_QUANTITY,
650 g_variant_new_string(quantities1[quant]));
651}
6bcb3ee8 652
a42a39ac
JH
653static int send_quant2_update(struct sr_dev_inst *sdi, unsigned int quant)
654{
655 return do_config_update(sdi, SR_CONF_MEASURED_2ND_QUANTITY,
656 g_variant_new_string(quantities2[quant]));
657}
658
659static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
660{
661 return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
662 g_variant_new_string(models[model]));
6bcb3ee8
JH
663}
664
665static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
666{
667 struct sr_datafeed_packet packet;
668 struct sr_datafeed_analog analog;
669 struct dev_context *devc;
a42a39ac 670 unsigned int val;
6bcb3ee8
JH
671 float floatval;
672 int count;
673
674 devc = sdi->priv;
675
a42a39ac
JH
676 val = parse_freq(pkt);
677 if (val != devc->freq) {
678 if (send_freq_update(sdi, val) == SR_OK)
679 devc->freq = val;
680 else
681 return;
682 }
683
684 val = parse_quant(pkt, 0);
685 if (val != devc->quant1) {
686 if (send_quant1_update(sdi, val) == SR_OK)
687 devc->quant1 = val;
688 else
689 return;
690 }
691
692 val = parse_quant(pkt, 1);
693 if (val != devc->quant2) {
694 if (send_quant2_update(sdi, val) == SR_OK)
695 devc->quant2 = val;
696 else
697 return;
698 }
699
700 val = parse_model(pkt);
701 if (val != devc->model) {
702 if (send_model_update(sdi, val) == SR_OK)
703 devc->model = val;
6bcb3ee8
JH
704 else
705 return;
706 }
707
708 count = 0;
709
710 memset(&analog, 0, sizeof(analog));
711
712 analog.num_samples = 1;
713 analog.data = &floatval;
714
715 packet.type = SR_DF_ANALOG;
716 packet.payload = &analog;
717
718 analog.channels = g_slist_append(NULL, sdi->channels->data);
719
720 parse_measurement(pkt, &floatval, &analog, 0);
721 if (analog.mq >= 0) {
722 if (sr_session_send(devc->cb_data, &packet) == SR_OK)
723 count++;
724 }
725
726 analog.channels = g_slist_append(NULL, sdi->channels->next->data);
727
728 parse_measurement(pkt, &floatval, &analog, 1);
729 if (analog.mq >= 0) {
730 if (sr_session_send(devc->cb_data, &packet) == SR_OK)
731 count++;
732 }
733
734 if (count > 0)
735 dev_sample_counter_inc(&devc->sample_count);
736}
737
738static int handle_new_data(struct sr_dev_inst *sdi)
739{
740 struct dev_context *devc;
741 uint8_t *pkt;
742 int ret;
743
744 devc = sdi->priv;
745
746 ret = dev_buffer_fill_serial(devc->buf, sdi);
747 if (ret < 0)
748 return ret;
749
750 while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
751 PACKET_SIZE)))
752 handle_packet(sdi, pkt);
753
754 return SR_OK;
755}
756
757static int receive_data(int fd, int revents, void *cb_data)
758{
759 struct sr_dev_inst *sdi;
760 struct dev_context *devc;
761
762 (void)fd;
763
764 if (!(sdi = cb_data))
765 return TRUE;
766
767 if (!(devc = sdi->priv))
768 return TRUE;
769
770 if (revents == G_IO_IN) {
771 /* Serial data arrived. */
772 handle_new_data(sdi);
773 }
774
775 if (dev_sample_limit_reached(&devc->sample_count) ||
776 dev_time_limit_reached(&devc->time_count))
777 sdi->driver->dev_acquisition_stop(sdi, cb_data);
778
779 return TRUE;
780}
781
782static int add_channel(struct sr_dev_inst *sdi, const char *name)
783{
784 struct sr_channel *ch;
785
786 if (!(ch = sr_channel_new(0, SR_CHANNEL_ANALOG, TRUE, name)))
787 return SR_ERR;
788
789 sdi->channels = g_slist_append(sdi->channels, ch);
790
791 return SR_OK;
792}
793
794static const char *const channel_names[] = { "P1", "P2" };
795
796static int setup_channels(struct sr_dev_inst *sdi)
797{
798 unsigned int i;
799 int ret;
800
801 ret = SR_ERR_BUG;
802
803 for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
804 ret = add_channel(sdi, channel_names[i]);
805 if (ret != SR_OK)
806 break;
807 }
808
809 return ret;
810}
811
812SR_PRIV void es51919_serial_clean(void *priv)
813{
814 struct dev_context *devc;
815
816 if (!(devc = priv))
817 return;
818
819 dev_buffer_destroy(devc->buf);
820 g_free(devc);
821}
822
823SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
824 const char *vendor,
825 const char *model)
826{
827 struct sr_serial_dev_inst *serial;
828 struct sr_dev_inst *sdi;
829 struct dev_context *devc;
830 int ret;
831
832 serial = NULL;
833 sdi = NULL;
834 devc = NULL;
835
836 if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
837 goto scan_cleanup;
838
839 ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
840 3000, 9600);
841 if (ret != SR_OK)
842 goto scan_cleanup;
843
844 sr_info("Found device on port %s.", serial->port);
845
0af636be
UH
846 sdi = sr_dev_inst_new();
847 sdi->status = SR_ST_INACTIVE;
848 sdi->vendor = g_strdup(vendor);
849 sdi->model = g_strdup(model);
6bcb3ee8
JH
850
851 if (!(devc = g_try_malloc0(sizeof(struct dev_context)))) {
852 sr_err("Device context malloc failed.");
853 goto scan_cleanup;
854 }
855
856 if (!(devc->buf = dev_buffer_new(PACKET_SIZE * 8)))
857 goto scan_cleanup;
858
6bcb3ee8
JH
859 sdi->inst_type = SR_INST_SERIAL;
860 sdi->conn = serial;
861
862 sdi->priv = devc;
863
864 if (setup_channels(sdi) != SR_OK)
865 goto scan_cleanup;
866
867 return sdi;
868
869scan_cleanup:
870 es51919_serial_clean(devc);
871 if (sdi)
872 sr_dev_inst_free(sdi);
873 if (serial)
874 sr_serial_dev_inst_free(serial);
875
876 return NULL;
877}
878
879SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
880 const struct sr_dev_inst *sdi,
881 const struct sr_channel_group *cg)
882{
883 struct dev_context *devc;
884
885 (void)cg;
886
887 if (!(devc = sdi->priv))
888 return SR_ERR_BUG;
889
890 switch (key) {
891 case SR_CONF_OUTPUT_FREQUENCY:
892 *data = g_variant_new_uint64(frequencies[devc->freq]);
893 break;
a42a39ac
JH
894 case SR_CONF_MEASURED_QUANTITY:
895 *data = g_variant_new_string(quantities1[devc->quant1]);
896 break;
897 case SR_CONF_MEASURED_2ND_QUANTITY:
898 *data = g_variant_new_string(quantities2[devc->quant2]);
899 break;
900 case SR_CONF_EQUIV_CIRCUIT_MODEL:
901 *data = g_variant_new_string(models[devc->model]);
902 break;
6bcb3ee8
JH
903 default:
904 sr_spew("%s: Unsupported key %u", __func__, key);
905 return SR_ERR_NA;
906 }
907
908 return SR_OK;
909}
910
911SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
912 const struct sr_dev_inst *sdi,
913 const struct sr_channel_group *cg)
914{
915 struct dev_context *devc;
916 uint64_t val;
917
918 (void)cg;
919
920 if (!(devc = sdi->priv))
921 return SR_ERR_BUG;
922
923 switch (key) {
924 case SR_CONF_LIMIT_MSEC:
925 val = g_variant_get_uint64(data);
926 dev_time_limit_set(&devc->time_count, val);
927 sr_dbg("Setting time limit to %" PRIu64 ".", val);
928 break;
929 case SR_CONF_LIMIT_SAMPLES:
930 val = g_variant_get_uint64(data);
931 dev_sample_limit_set(&devc->sample_count, val);
932 sr_dbg("Setting sample limit to %" PRIu64 ".", val);
933 break;
934 default:
935 sr_spew("%s: Unsupported key %u", __func__, key);
936 return SR_ERR_NA;
937 }
938
939 return SR_OK;
940}
941
942static const uint32_t scanopts[] = {
943 SR_CONF_CONN,
944 SR_CONF_SERIALCOMM,
945};
946
947static const uint32_t devopts[] = {
b9a348f5 948 SR_CONF_LCRMETER,
6bcb3ee8
JH
949 SR_CONF_CONTINUOUS,
950 SR_CONF_LIMIT_SAMPLES | SR_CONF_SET,
951 SR_CONF_LIMIT_MSEC | SR_CONF_SET,
952 SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
a42a39ac
JH
953 SR_CONF_MEASURED_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
954 SR_CONF_MEASURED_2ND_QUANTITY | SR_CONF_GET | SR_CONF_LIST,
955 SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
6bcb3ee8
JH
956};
957
958static const struct std_opt_desc opts = {
959 scanopts, ARRAY_SIZE(scanopts),
960 devopts, ARRAY_SIZE(devopts),
961};
962
963SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
964 const struct sr_dev_inst *sdi,
965 const struct sr_channel_group *cg)
966{
967 (void)sdi;
968 (void)cg;
969
970 if (std_config_list(key, data, &opts) == SR_OK)
971 return SR_OK;
972
973 switch (key) {
974 case SR_CONF_OUTPUT_FREQUENCY:
975 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT64,
976 frequencies, ARRAY_SIZE(frequencies), sizeof(uint64_t));
977 break;
a42a39ac
JH
978 case SR_CONF_MEASURED_QUANTITY:
979 *data = g_variant_new_strv(list_quantities1,
980 ARRAY_SIZE(list_quantities1));
981 break;
982 case SR_CONF_MEASURED_2ND_QUANTITY:
983 *data = g_variant_new_strv(quantities2,
984 ARRAY_SIZE(quantities2));
985 break;
986 case SR_CONF_EQUIV_CIRCUIT_MODEL:
987 *data = g_variant_new_strv(models, ARRAY_SIZE(models));
988 break;
6bcb3ee8
JH
989 default:
990 sr_spew("%s: Unsupported key %u", __func__, key);
991 return SR_ERR_NA;
992 }
993
994 return SR_OK;
995}
996
997SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi,
998 void *cb_data)
999{
1000 struct dev_context *devc;
1001 struct sr_serial_dev_inst *serial;
1002
1003 if (sdi->status != SR_ST_ACTIVE)
1004 return SR_ERR_DEV_CLOSED;
1005
1006 if (!(devc = sdi->priv))
1007 return SR_ERR_BUG;
1008
1009 devc->cb_data = cb_data;
1010
1011 dev_sample_counter_start(&devc->sample_count);
1012 dev_time_counter_start(&devc->time_count);
1013
1014 /* Send header packet to the session bus. */
1015 std_session_send_df_header(cb_data, LOG_PREFIX);
1016
1017 /* Poll every 50ms, or whenever some data comes in. */
1018 serial = sdi->conn;
1019 serial_source_add(sdi->session, serial, G_IO_IN, 50,
1020 receive_data, (void *)sdi);
1021
1022 return SR_OK;
1023}
1024
1025SR_PRIV int es51919_serial_acquisition_stop(struct sr_dev_inst *sdi,
1026 void *cb_data)
1027{
1028 return std_serial_dev_acquisition_stop(sdi, cb_data,
1029 std_serial_dev_close, sdi->conn, LOG_PREFIX);
1030}