]> sigrok.org Git - libsigrok.git/blame - src/input/vcd.c
input/vcd: detect and skip string data types (value not used)
[libsigrok.git] / src / input / vcd.c
CommitLineData
99eaa206 1/*
50985c20 2 * This file is part of the libsigrok project.
99eaa206 3 *
0157808d 4 * Copyright (C) 2012 Petteri Aimonen <jpa@sr.mail.kapsi.fi>
7db06394 5 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
0ab36d2f 6 * Copyright (C) 2017-2020 Gerhard Sittig <gerhard.sittig@gmx.net>
99eaa206
PA
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
0ab36d2f
GS
22/*
23 * The VCD input module has the following options. See the options[]
24 * declaration near the bottom of the input module's source file.
0157808d 25 *
0ab36d2f
GS
26 * numchannels: Maximum number of sigrok channels to create. VCD signals
27 * are detected in their order of declaration in the VCD file header,
28 * and mapped to sigrok channels.
0157808d 29 *
0ab36d2f
GS
30 * skip: Allows to skip data at the start of the input file. This can
31 * speed up operation on long captures.
32 * Value < 0: Skip until first timestamp that is listed in the file.
33 * (This is the default behaviour.)
34 * Value = 0: Do not skip, instead generate samples beginning from
35 * timestamp 0.
36 * Value > 0: Start at the given timestamp.
0157808d 37 *
0ab36d2f
GS
38 * downsample: Divide the samplerate by the given factor. This can
39 * speed up operation on long captures.
0157808d 40 *
0ab36d2f
GS
41 * compress: Trim idle periods which are longer than this value to span
42 * only this many timescale ticks. This can speed up operation on long
43 * captures (default 0, don't compress).
6b7ace48 44 *
0157808d
PA
45 * Based on Verilog standard IEEE Std 1364-2001 Version C
46 *
47 * Supported features:
48 * - $var with 'wire' and 'reg' types of scalar variables
49 * - $timescale definition for samplerate
50 * - multiple character variable identifiers
0ab36d2f
GS
51 * - same identifer used for multiple signals (identical values)
52 * - vector variables (bit vectors)
53 * - integer variables (analog signals with 0 digits, passed as single
54 * precision float number)
55 * - real variables (analog signals, passed on with single precision,
56 * arbitrary digits value, not user adjustable)
57 * - nested $scope, results in prefixed sigrok channel names
0157808d
PA
58 *
59 * Most important unsupported features:
0ab36d2f
GS
60 * - $dumpvars initial value declaration (is not an issue if generators
61 * provide sample data for the #0 timestamp, otherwise session data
62 * starts from zero values, and catches up when the signal changes its
63 * state to a supported value)
64 *
65 * Implementor's note: This input module specifically does _not_ use
66 * glib routines where they would hurt performance. Lots of memory
67 * allocations increase execution time not by percents but by huge
68 * factors. This motivated this module's custom code for splitting
69 * words on text lines, and pooling previously allocated buffers.
70 *
71 * TODO (in arbitrary order)
72 * - Map VCD scopes to sigrok channel groups?
73 * - Does libsigrok support nested channel groups? Or is this feature
74 * exclusive to Pulseview?
75 * - Check VCD input to VCD output behaviour. Verify that export and
76 * re-import results in identical data (well, VCD's constraints on
77 * timescale values is known to result in differences).
ec302917
GS
78 * - Check the minimum timestamp delta in the input data set, suggest
79 * the downsample=N option to users for reduced resource consumption.
80 * Popular VCD file creation utilities love to specify insanely tiny
81 * timescale values in the pico or even femto seconds range. Which
82 * results in huge sample counts after import, and potentially even
83 * terminates the application due to resource exhaustion. This issue
84 * only will vanish when common libsigrok infrastructure no longer
85 * depends on constant rate streams of samples at discrete points
86 * in time. The current input module implementation has code in place
87 * to gather timestamp statistics, but the most appropriate condition
88 * when to notify users is yet to be found.
0ab36d2f
GS
89 * - Cleanup the implementation.
90 * - Consistent use of the glib API (where appropriate).
91 * - More appropriate variable/function identifiers.
92 * - More robust handling of multi-word input phrases and chunked
93 * input buffers? This implementation assumes that e.g. b[01]+
94 * patterns are complete when they start, and the signal identifier
95 * is available as well. Which may be true assuming that input data
96 * comes in complete text lines.
97 * - See if other input modules have learned lessons that we could
98 * benefit from here as well? Pointless BOM (done), line oriented
99 * processing with EOL variants and with optional last EOL, module
100 * state reset and file re-read (stable channels list), buffered
101 * session feed, synchronized feed for mixed signal sources, digits
102 * or formats support for analog input, single vs double precision,
103 * etc.
104 * - Re-consider logging. Verbosity levels should be acceptable,
105 * but volume is an issue. Drop duplicates, and drop messages from
106 * known good code paths.
0157808d
PA
107 */
108
6ec6c43b 109#include <config.h>
0ab36d2f 110
99eaa206 111#include <glib.h>
c1aae900 112#include <libsigrok/libsigrok.h>
99eaa206 113#include "libsigrok-internal.h"
0ab36d2f
GS
114#include <stdio.h>
115#include <stdlib.h>
116#include <string.h>
99eaa206 117
3544f848 118#define LOG_PREFIX "input/vcd"
99eaa206 119
9a4fd01a 120#define CHUNK_SIZE (4 * 1024 * 1024)
0ab36d2f 121#define SCOPE_SEP '.'
e4c8a4d7
BV
122
123struct context {
0ab36d2f
GS
124 struct vcd_user_opt {
125 size_t maxchannels; /* sigrok channels (output) */
126 uint64_t downsample;
127 uint64_t compress;
128 uint64_t skip_starttime;
129 gboolean skip_specified;
130 } options;
131 gboolean use_skip;
c10ef17c 132 gboolean started;
7db06394 133 gboolean got_header;
f9bc17d4 134 uint64_t prev_timestamp;
e4c8a4d7 135 uint64_t samplerate;
0ab36d2f
GS
136 size_t vcdsignals; /* VCD signals (input) */
137 GSList *ignored_signals;
138 gboolean data_after_timestamp;
139 gboolean ignore_end_keyword;
7db06394 140 gboolean skip_until_end;
ba7dd8bb 141 GSList *channels;
0ab36d2f
GS
142 size_t unit_size;
143 size_t logic_count;
144 size_t analog_count;
145 uint8_t *current_logic;
146 float *current_floats;
147 struct {
148 size_t max_bits;
149 size_t unit_size;
150 uint8_t *value;
151 size_t sig_count;
152 } conv_bits;
153 GString *scope_prefix;
154 struct feed_queue_logic *feed_logic;
155 struct split_state {
156 size_t alloced;
157 char **words;
158 gboolean in_use;
159 } split;
ec302917
GS
160 struct ts_stats {
161 size_t total_ts_seen;
162 uint64_t last_ts_value;
163 uint64_t last_ts_delta;
164 size_t min_count;
165 struct {
166 uint64_t delta;
167 size_t count;
168 } min_items[2];
169 uint32_t early_check_shift;
170 size_t early_last_emitted;
171 } ts_stats;
0ab36d2f
GS
172 struct vcd_prev {
173 GSList *sr_channels;
174 GSList *sr_groups;
175 } prev;
e4c8a4d7
BV
176};
177
ba7dd8bb 178struct vcd_channel {
0ab36d2f
GS
179 char *name;
180 char *identifier;
181 size_t size;
182 enum sr_channeltype type;
183 size_t array_index;
184 size_t byte_idx;
185 uint8_t bit_mask;
186 char *base_name;
187 size_t range_lower, range_upper;
188 int submit_digits;
189 struct feed_queue_analog *feed_analog;
e4c8a4d7
BV
190};
191
0ab36d2f
GS
192static void free_channel(void *data)
193{
194 struct vcd_channel *vcd_ch;
195
196 vcd_ch = data;
197 if (!vcd_ch)
198 return;
199
200 g_free(vcd_ch->name);
201 g_free(vcd_ch->identifier);
202 g_free(vcd_ch->base_name);
203 feed_queue_analog_free(vcd_ch->feed_analog);
204
205 g_free(vcd_ch);
206}
207
208/* TODO Drop the local decl when this has become a common helper. */
209void sr_channel_group_free(struct sr_channel_group *cg);
210
211/* Wrapper for GDestroyNotify compatibility. */
212static void cg_free(void *p)
213{
214 sr_channel_group_free(p);
215}
216
ec302917
GS
217/*
218 * Another timestamp delta was observed, update statistics: Update the
219 * sorted list of minimum values, and increment the occurance counter.
220 * Returns the position of the item's statistics slot, or returns a huge
221 * invalid index when the current delta is larger than previously found
222 * values.
223 */
224static size_t ts_stats_update_min(struct ts_stats *stats, uint64_t delta)
225{
226 size_t idx, copy_idx;
227
228 /* Advance over previously recorded values which are smaller. */
229 idx = 0;
230 while (idx < stats->min_count && stats->min_items[idx].delta < delta)
231 idx++;
232 if (idx == ARRAY_SIZE(stats->min_items))
233 return idx;
234
235 /* Found the exact value that previously was registered? */
236 if (stats->min_items[idx].delta == delta) {
237 stats->min_items[idx].count++;
238 return idx;
239 }
240
241 /* Allocate another slot, bubble up larger values as needed. */
242 if (stats->min_count < ARRAY_SIZE(stats->min_items))
243 stats->min_count++;
244 for (copy_idx = stats->min_count - 1; copy_idx > idx; copy_idx--)
245 stats->min_items[copy_idx] = stats->min_items[copy_idx - 1];
246
247 /* Start tracking this value in the found or freed slot. */
248 memset(&stats->min_items[idx], 0, sizeof(stats->min_items[idx]));
249 stats->min_items[idx].delta = delta;
250 stats->min_items[idx].count++;
251
252 return idx;
253}
254
255/*
256 * Intermediate check for extreme oversampling in the input data. Rate
257 * limited emission of warnings to avoid noise, "late" emission of the
258 * first potential message to avoid false positives, yet need to emit
259 * the messages early (*way* before EOF) to raise awareness.
260 *
261 * TODO
262 * Tune the limits, improve perception and usefulness of these checks.
263 * Need to start emitting messages soon enough to be seen by users. Yet
264 * avoid unnecessary messages for valid input's idle/quiet phases. Slow
265 * input transitions are perfectly legal before bursty phases are seen
266 * in the input data. Needs the check become an option, on by default,
267 * but suppressable by users?
268 */
269static void ts_stats_check_early(struct ts_stats *stats)
270{
271 static const struct {
272 uint64_t delta;
273 size_t count;
274 } *cp, check_points[] = {
275 { 100, 1000000, }, /* Still x100 after 1mio transitions. */
276 { 1000, 100000, }, /* Still x1k after 100k transitions. */
277 { 10000, 10000, }, /* Still x10k after 10k transitions. */
278 { 1000000, 2500, }, /* Still x1m after 2.5k transitions. */
279 };
280
281 size_t cp_idx;
282 uint64_t seen_delta, check_delta;
283 size_t seen_count;
284
285 /* Get the current minimum's value and count. */
286 if (!stats->min_count)
287 return;
288 seen_delta = stats->min_items[0].delta;
289 seen_count = stats->min_items[0].count;
290
291 /* Emit at most one weak message per import. */
292 if (stats->early_last_emitted)
293 return;
294
295 /* Check arbitrary marks, emit rate limited warnings. */
296 (void)seen_count;
297 check_delta = seen_delta >> stats->early_check_shift;
298 for (cp_idx = 0; cp_idx < ARRAY_SIZE(check_points); cp_idx++) {
299 cp = &check_points[cp_idx];
300 /* No other match can happen below. Done iterating. */
301 if (stats->total_ts_seen > cp->count)
302 return;
303 /* Advance to the next checkpoint description. */
304 if (stats->total_ts_seen != cp->count)
305 continue;
306 /* First occurance of that timestamp count. Check the value. */
968b1a23 307 sr_dbg("TS early chk: total %zu, min delta %" PRIu64 " / %" PRIu64 ".",
ec302917
GS
308 cp->count, seen_delta, check_delta);
309 if (check_delta < cp->delta)
310 return;
311 sr_warn("Low change rate? (weak estimate, min TS delta %" PRIu64 " after %zu timestamps)",
312 seen_delta, stats->total_ts_seen);
313 sr_warn("Consider using the downsample=N option, or increasing its value.");
314 stats->early_last_emitted = stats->total_ts_seen;
315 return;
316 }
317}
318
319/* Reset the internal state of the timestamp tracker. */
320static int ts_stats_prep(struct context *inc)
321{
322 struct ts_stats *stats;
323 uint64_t down_sample_value;
324 uint32_t down_sample_shift;
325
326 stats = &inc->ts_stats;
327 memset(stats, 0, sizeof(*stats));
328
329 down_sample_value = inc->options.downsample;
330 down_sample_shift = 0;
331 while (down_sample_value >= 2) {
332 down_sample_shift++;
333 down_sample_value /= 2;
334 }
335 stats->early_check_shift = down_sample_shift;
336
337 return SR_OK;
338}
339
340/* Inspect another timestamp that was received. */
341static int ts_stats_check(struct ts_stats *stats, uint64_t curr_ts)
342{
343 uint64_t last_ts, delta;
344
345 last_ts = stats->last_ts_value;
346 stats->last_ts_value = curr_ts;
347 stats->total_ts_seen++;
348 if (stats->total_ts_seen < 2)
349 return SR_OK;
350
351 delta = curr_ts - last_ts;
352 stats->last_ts_delta = delta;
353 (void)ts_stats_update_min(stats, delta);
354
355 ts_stats_check_early(stats);
356
357 return SR_OK;
358}
359
360/* Postprocess internal timestamp tracker state. */
361static int ts_stats_post(struct context *inc, gboolean ignore_terminal)
362{
363 struct ts_stats *stats;
364 size_t min_idx;
365 uint64_t delta, over_sample, over_sample_scaled, suggest_factor;
366 enum sr_loglevel log_level;
367 gboolean is_suspicious, has_downsample;
368
369 stats = &inc->ts_stats;
370
371 /*
372 * Lookup the smallest timestamp delta which was found during
373 * data import. Ignore the last delta if its timestamp was never
374 * followed by data, and this was the only occurance. Absence of
375 * result data is non-fatal here -- this code exclusively serves
376 * to raise users' awareness of potential pitfalls, but does not
377 * change behaviour of data processing.
378 *
379 * TODO Also filter by occurance count? To not emit warnings when
380 * captured signals only change slowly by design. Only warn when
381 * the sample rate and samples count product exceeds a threshold?
382 * See below for the necessity (and potential) to adjust the log
383 * message's severity and content.
384 */
385 min_idx = 0;
386 if (ignore_terminal) do {
387 if (min_idx >= stats->min_count)
388 break;
389 delta = stats->last_ts_delta;
390 if (stats->min_items[min_idx].delta != delta)
391 break;
392 if (stats->min_items[min_idx].count != 1)
393 break;
394 min_idx++;
395 } while (0);
396 if (min_idx >= stats->min_count)
397 return SR_OK;
398
399 /*
400 * TODO Refine the condition whether to notify the user, and
401 * which severity to use after having inspected all input data.
402 * Any detail could get involved which previously was gathered
403 * during data processing: total sample count, channel count
404 * including their data type and bits width, the oversampling
405 * factor (minimum observed "change rate"), or any combination
406 * thereof. The current check is rather simple (unconditional
407 * warning for ratios starting at 100, regardless of sample or
408 * channel count).
409 */
410 over_sample = stats->min_items[min_idx].delta;
411 over_sample_scaled = over_sample / inc->options.downsample;
412 sr_dbg("TS post stats: oversample unscaled %" PRIu64 ", scaled %" PRIu64,
413 over_sample, over_sample_scaled);
414 if (over_sample_scaled < 10) {
415 sr_dbg("TS post stats: Low oversampling ratio, good.");
416 return SR_OK;
417 }
418
419 /*
420 * Avoid constructing the message from several tiny pieces by
421 * design, because this would be hard on translators. Stick with
422 * complete sentences instead, and accept the redundancy in the
423 * user's interest.
424 */
425 log_level = (over_sample_scaled > 20) ? SR_LOG_WARN : SR_LOG_INFO;
426 is_suspicious = over_sample_scaled > 20;
427 if (is_suspicious) {
428 sr_log(log_level, LOG_PREFIX ": "
429 "Suspiciously low overall change rate (total min TS delta %" PRIu64 ").",
430 over_sample_scaled);
431 } else {
432 sr_log(log_level, LOG_PREFIX ": "
433 "Low overall change rate (total min TS delta %" PRIu64 ").",
434 over_sample_scaled);
435 }
436 has_downsample = inc->options.downsample > 1;
437 suggest_factor = inc->options.downsample;
438 while (over_sample_scaled >= 10) {
439 suggest_factor *= 10;
440 over_sample_scaled /= 10;
441 }
442 if (has_downsample) {
443 sr_log(log_level, LOG_PREFIX ": "
444 "Suggest higher downsample value, like %" PRIu64 ".",
445 suggest_factor);
446 } else {
447 sr_log(log_level, LOG_PREFIX ": "
448 "Suggest to downsample, value like %" PRIu64 ".",
449 suggest_factor);
450 }
451
452 return SR_OK;
453}
454
0ab36d2f
GS
455static void check_remove_bom(GString *buf)
456{
457 static const char *bom_text = "\xef\xbb\xbf";
458
459 if (buf->len < strlen(bom_text))
460 return;
461 if (strncmp(buf->str, bom_text, strlen(bom_text)) != 0)
462 return;
463 g_string_erase(buf, 0, strlen(bom_text));
464}
465
e4c8a4d7 466/*
7db06394 467 * Reads a single VCD section from input file and parses it to name/contents.
d9251a2c 468 * e.g. $timescale 1ps $end => "timescale" "1ps"
99eaa206 469 */
0ab36d2f 470static gboolean parse_section(GString *buf, char **name, char **contents)
99eaa206 471{
0ab36d2f
GS
472 static const char *end_text = "$end";
473
99eaa206 474 gboolean status;
0ab36d2f
GS
475 size_t pos, len;
476 const char *grab_start, *grab_end;
477 GString *sname, *scontent;
7db06394 478
0ab36d2f 479 /* Preset falsy return values. Gets updated below. */
7db06394
BV
480 *name = *contents = NULL;
481 status = FALSE;
1f706c21 482
7db06394 483 /* Skip any initial white-space. */
0ab36d2f 484 pos = 0;
7db06394
BV
485 while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
486 pos++;
cd1b0e8f 487
99eaa206 488 /* Section tag should start with $. */
7db06394 489 if (buf->str[pos++] != '$')
99eaa206 490 return FALSE;
cd1b0e8f 491
7db06394 492 /* Read the section tag. */
0ab36d2f 493 grab_start = &buf->str[pos];
7db06394 494 while (pos < buf->len && !g_ascii_isspace(buf->str[pos]))
0ab36d2f
GS
495 pos++;
496 grab_end = &buf->str[pos];
497 sname = g_string_new_len(grab_start, grab_end - grab_start);
7db06394
BV
498
499 /* Skip whitespace before content. */
500 while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
501 pos++;
502
0ab36d2f
GS
503 /* Read the content up to the '$end' marker. */
504 scontent = g_string_sized_new(128);
505 grab_start = &buf->str[pos];
506 grab_end = g_strstr_len(grab_start, buf->len - pos, end_text);
507 if (grab_end) {
508 /* Advance 'pos' to after '$end' and more whitespace. */
509 pos = grab_end - buf->str;
510 pos += strlen(end_text);
7db06394
BV
511 while (pos < buf->len && g_ascii_isspace(buf->str[pos]))
512 pos++;
0ab36d2f
GS
513
514 /* Grab the (trimmed) content text. */
515 while (grab_end > grab_start && g_ascii_isspace(grab_end[-1]))
516 grab_end--;
517 len = grab_end - grab_start;
518 g_string_append_len(scontent, grab_start, len);
519 if (sname->len)
520 status = TRUE;
521
522 /* Consume the input text which just was taken. */
7db06394
BV
523 g_string_erase(buf, 0, pos);
524 }
99eaa206 525
0ab36d2f 526 /* Return section name and content if a section was seen. */
99eaa206 527 *name = g_string_free(sname, !status);
7db06394 528 *contents = g_string_free(scontent, !status);
7db06394 529
99eaa206
PA
530 return status;
531}
532
0ab36d2f
GS
533/*
534 * The glib routine which splits an input text into a list of words also
535 * "provides empty strings" which application code then needs to remove.
536 * And copies of the input text get allocated for all words.
537 *
538 * The repeated memory allocation is acceptable for small workloads like
539 * parsing the header sections. But the heavy lifting for sample data is
540 * done by DIY code to speedup execution. The use of glib routines would
541 * severely hurt throughput. Allocated memory gets re-used while a strict
542 * ping-pong pattern is assumed (each text line of input data enters and
543 * leaves in a strict symmetrical manner, due to the organization of the
544 * receive() routine and parse calls).
545 */
546
547/* Remove empty parts from an array returned by g_strsplit(). */
548static void remove_empty_parts(gchar **parts)
549{
550 gchar **src, **dest;
551
552 src = dest = parts;
553 while (*src) {
554 if (!**src) {
555 g_free(*src);
556 } else {
557 if (dest != src)
558 *dest = *src;
559 dest++;
560 }
561 src++;
562 }
563 *dest = NULL;
564}
565
566static char **split_text_line(struct context *inc, char *text, size_t *count)
567{
568 struct split_state *state;
569 size_t counted, alloced, wanted;
570 char **words, *p, **new_words;
571
572 state = &inc->split;
573
574 if (count)
575 *count = 0;
576
577 if (state->in_use) {
578 sr_dbg("coding error, split() called while \"in use\".");
579 return NULL;
580 }
581
582 /*
583 * Seed allocation when invoked for the first time. Assume
584 * simple logic data, start with a few words per line. Will
585 * automatically adjust with subsequent use.
586 */
587 if (!state->alloced) {
588 alloced = 20;
589 words = g_malloc(sizeof(words[0]) * alloced);
590 if (!words)
591 return NULL;
592 state->alloced = alloced;
593 state->words = words;
594 }
595
596 /* Start with most recently allocated word list space. */
597 alloced = state->alloced;
598 words = state->words;
599 counted = 0;
600
601 /* As long as more input text remains ... */
602 p = text;
603 while (*p) {
604 /* Resize word list if needed. Just double the size. */
605 if (counted + 1 >= alloced) {
606 wanted = 2 * alloced;
607 new_words = g_realloc(words, sizeof(words[0]) * wanted);
608 if (!new_words) {
609 return NULL;
610 }
611 words = new_words;
612 alloced = wanted;
613 state->words = words;
614 state->alloced = alloced;
615 }
616
617 /* Skip leading spaces. */
618 while (g_ascii_isspace(*p))
619 p++;
620 if (!*p)
621 break;
622
623 /* Add found word to word list. */
624 words[counted++] = p;
625
626 /* Find end of the word. Terminate loop upon EOS. */
627 while (*p && !g_ascii_isspace(*p))
628 p++;
629 if (!*p)
630 break;
631
632 /* More text follows. Terminate the word. */
633 *p++ = '\0';
634 }
635
636 /*
637 * NULL terminate the word list. Provide its length so that
638 * calling code need not re-iterate the list to get the count.
639 */
640 words[counted] = NULL;
641 if (count)
642 *count = counted;
643 state->in_use = TRUE;
644
645 return words;
646}
647
648static void free_text_split(struct context *inc, char **words)
649{
650 struct split_state *state;
651
652 state = &inc->split;
653
654 if (words && words != state->words) {
655 sr_dbg("coding error, free() arg differs from split() result.");
656 }
657
658 /* "Double free" finally releases the memory. */
659 if (!state->in_use) {
660 g_free(state->words);
661 state->words = NULL;
662 state->alloced = 0;
663 }
664
665 /* Mark as no longer in use. */
666 state->in_use = FALSE;
667}
668
669static gboolean have_header(GString *buf)
670{
671 static const char *enddef_txt = "$enddefinitions";
672 static const char *end_txt = "$end";
673
674 char *p, *p_stop;
675
676 /* Search for "end of definitions" section keyword. */
677 p = g_strstr_len(buf->str, buf->len, enddef_txt);
678 if (!p)
679 return FALSE;
680 p += strlen(enddef_txt);
681
682 /* Search for end of section (content expected to be empty). */
683 p_stop = &buf->str[buf->len];
684 p_stop -= strlen(end_txt);
685 while (p < p_stop && g_ascii_isspace(*p))
686 p++;
687 if (strncmp(p, end_txt, strlen(end_txt)) != 0)
688 return FALSE;
689 p += strlen(end_txt);
690
691 return TRUE;
692}
693
694static int parse_timescale(struct context *inc, char *contents)
db9679af 695{
0ab36d2f
GS
696 uint64_t p, q;
697
698 /*
699 * The standard allows for values 1, 10 or 100
700 * and units s, ms, us, ns, ps and fs.
701 */
702 if (sr_parse_period(contents, &p, &q) != SR_OK) {
703 sr_err("Parsing $timescale failed.");
704 return SR_ERR_DATA;
705 }
706
707 inc->samplerate = q / p;
708 sr_dbg("Samplerate: %" PRIu64, inc->samplerate);
709 if (q % p != 0) {
710 /* Does not happen unless time value is non-standard */
711 sr_warn("Inexact rounding of samplerate, %" PRIu64 " / %" PRIu64 " to %" PRIu64 " Hz.",
712 q, p, inc->samplerate);
713 }
714
715 return SR_OK;
716}
717
718/*
719 * Handle '$scope' and '$upscope' sections in the input file. Assume that
720 * input signals have a "base name", which may be ambiguous within the
721 * file. These names get declared within potentially nested scopes, which
722 * this implementation uses to create longer but hopefully unique and
723 * thus more usable sigrok channel names.
724 *
725 * Track the currently effective scopes in a string variable to simplify
726 * the channel name creation. Start from an empty string, then append the
727 * scope name and a separator when a new scope opens, and remove the last
728 * scope name when a scope closes. This allows to simply prefix basenames
729 * with the current scope to get a full name.
730 *
731 * It's an implementation detail to keep the trailing NUL here in the
732 * GString member, to simplify the g_strconcat() call in the channel name
733 * creation.
734 *
735 * TODO
736 * - Check whether scope types must get supported, this implementation
737 * does not distinguish between 'module' and 'begin' and what else
738 * may be seen. The first word simply gets ignored.
739 * - Check the allowed alphabet for scope names. This implementation
740 * assumes "programming language identifier" style (alphanumeric with
741 * underscores, plus brackets since we've seen them in example files).
742 */
743static int parse_scope(struct context *inc, char *contents, gboolean is_up)
744{
745 char *sep_pos, *name_pos;
746 char **parts;
747 size_t length;
748
749 /*
750 * The 'upscope' case, drop one scope level (if available). Accept
751 * excess 'upscope' calls, assume that a previous 'scope' section
752 * was ignored because it referenced our software package's name.
753 */
754 if (is_up) {
755 /*
756 * Check for a second right-most separator (and position
757 * right behind that, which is the start of the last
758 * scope component), or fallback to the start of string.
759 * g_string_erase() from that positon to the end to drop
760 * the last component.
761 */
762 name_pos = inc->scope_prefix->str;
763 do {
764 sep_pos = strrchr(name_pos, SCOPE_SEP);
765 if (!sep_pos)
766 break;
767 *sep_pos = '\0';
768 sep_pos = strrchr(name_pos, SCOPE_SEP);
769 if (!sep_pos)
770 break;
771 name_pos = ++sep_pos;
772 } while (0);
773 length = name_pos - inc->scope_prefix->str;
774 g_string_truncate(inc->scope_prefix, length);
775 g_string_append_c(inc->scope_prefix, '\0');
776 sr_dbg("$upscope, prefix now: \"%s\"", inc->scope_prefix->str);
777 return SR_OK;
778 }
779
780 /*
781 * The 'scope' case, add another scope level. But skip our own
782 * package name, assuming that this is an artificial node which
783 * was emitted by libsigrok's VCD output module.
784 */
785 sr_spew("$scope, got: \"%s\"", contents);
786 parts = g_strsplit_set(contents, " \r\n\t", 0);
787 remove_empty_parts(parts);
788 length = g_strv_length(parts);
789 if (length != 2) {
790 sr_err("Unsupported 'scope' syntax: %s", contents);
791 g_strfreev(parts);
792 return SR_ERR_DATA;
793 }
794 name_pos = parts[1];
795 if (strcmp(name_pos, PACKAGE_NAME) == 0) {
796 sr_info("Skipping scope with application's package name: %s",
797 name_pos);
798 *name_pos = '\0';
799 }
800 if (*name_pos) {
801 /* Drop NUL, append scope name and separator, and re-add NUL. */
802 g_string_truncate(inc->scope_prefix, inc->scope_prefix->len - 1);
803 g_string_append_printf(inc->scope_prefix,
804 "%s%c%c", name_pos, SCOPE_SEP, '\0');
805 }
806 g_strfreev(parts);
807 sr_dbg("$scope, prefix now: \"%s\"", inc->scope_prefix->str);
808
809 return SR_OK;
810}
811
812/**
813 * Parse a $var section which describes a VCD signal ("variable").
814 *
815 * @param[in] inc Input module context.
816 * @param[in] contents Input text, content of $var section.
817 */
818static int parse_header_var(struct context *inc, char *contents)
819{
820 char **parts;
821 size_t length;
822 char *type, *size_txt, *id, *ref, *idx;
823 gboolean is_reg, is_wire, is_real, is_int;
c1310f7d 824 gboolean is_str;
0ab36d2f
GS
825 enum sr_channeltype ch_type;
826 size_t size, next_size;
4237ab9e
GS
827 struct vcd_channel *vcd_ch;
828
0ab36d2f
GS
829 /*
830 * Format of $var or $reg header specs:
831 * $var type size identifier reference [opt-index] $end
832 */
833 parts = g_strsplit_set(contents, " \r\n\t", 0);
834 remove_empty_parts(parts);
835 length = g_strv_length(parts);
836 if (length != 4 && length != 5) {
837 sr_warn("$var section should have 4 or 5 items");
838 g_strfreev(parts);
839 return SR_ERR_DATA;
840 }
841
842 type = parts[0];
843 size_txt = parts[1];
844 id = parts[2];
845 ref = parts[3];
846 idx = parts[4];
847 if (idx && !*idx)
848 idx = NULL;
849 is_reg = g_strcmp0(type, "reg") == 0;
850 is_wire = g_strcmp0(type, "wire") == 0;
851 is_real = g_strcmp0(type, "real") == 0;
852 is_int = g_strcmp0(type, "integer") == 0;
c1310f7d 853 is_str = g_strcmp0(type, "string") == 0;
0ab36d2f
GS
854
855 if (is_reg || is_wire) {
856 ch_type = SR_CHANNEL_LOGIC;
857 } else if (is_real || is_int) {
858 ch_type = SR_CHANNEL_ANALOG;
c1310f7d
GS
859 } else if (is_str) {
860 sr_warn("Skipping id %s, name '%s%s', unsupported type '%s'.",
861 id, ref, idx ? idx : "", type);
862 inc->ignored_signals = g_slist_append(inc->ignored_signals,
863 g_strdup(id));
864 g_strfreev(parts);
865 return SR_OK;
0ab36d2f 866 } else {
1a35f711 867 sr_err("Unsupported signal type: '%s'", type);
0ab36d2f
GS
868 g_strfreev(parts);
869 return SR_ERR_DATA;
870 }
871
872 size = strtol(size_txt, NULL, 10);
873 if (ch_type == SR_CHANNEL_ANALOG) {
874 if (is_real && size != 32 && size != 64) {
875 /*
876 * The VCD input module does not depend on the
877 * specific width of the floating point value.
878 * This is just for information. Upon value
879 * changes, a mere string gets converted to
880 * float, so we may not care at all.
881 *
882 * Strictly speaking we might warn for 64bit
883 * (double precision) declarations, because
884 * sigrok internally uses single precision
885 * (32bit) only.
886 */
887 sr_info("Unexpected real width: '%s'", size_txt);
888 }
889 /* Simplify code paths below, by assuming size 1. */
890 size = 1;
891 }
892 if (!size) {
893 sr_warn("Unsupported signal size: '%s'", size_txt);
894 g_strfreev(parts);
895 return SR_ERR_DATA;
896 }
897 if (inc->conv_bits.max_bits < size)
898 inc->conv_bits.max_bits = size;
899 next_size = inc->logic_count + inc->analog_count + size;
900 if (inc->options.maxchannels && next_size > inc->options.maxchannels) {
901 sr_warn("Skipping '%s%s', exceeds requested channel count %zu.",
902 ref, idx ? idx : "", inc->options.maxchannels);
903 inc->ignored_signals = g_slist_append(inc->ignored_signals,
904 g_strdup(id));
905 g_strfreev(parts);
906 return SR_OK;
907 }
908
909 vcd_ch = g_malloc0(sizeof(*vcd_ch));
910 vcd_ch->identifier = g_strdup(id);
911 vcd_ch->name = g_strconcat(inc->scope_prefix->str, ref, idx, NULL);
912 vcd_ch->size = size;
913 vcd_ch->type = ch_type;
914 switch (ch_type) {
915 case SR_CHANNEL_LOGIC:
916 vcd_ch->array_index = inc->logic_count;
917 vcd_ch->byte_idx = vcd_ch->array_index / 8;
918 vcd_ch->bit_mask = 1 << (vcd_ch->array_index % 8);
919 inc->logic_count += size;
920 break;
921 case SR_CHANNEL_ANALOG:
922 vcd_ch->array_index = inc->analog_count++;
923 /* TODO: Use proper 'digits' value for this input module. */
924 vcd_ch->submit_digits = is_real ? 2 : 0;
925 break;
926 }
927 inc->vcdsignals++;
928 sr_spew("VCD signal %zu '%s' ID '%s' (size %zu), sr type %s, idx %zu.",
929 inc->vcdsignals, vcd_ch->name,
930 vcd_ch->identifier, vcd_ch->size,
931 vcd_ch->type == SR_CHANNEL_ANALOG ? "A" : "L",
932 vcd_ch->array_index);
933 inc->channels = g_slist_append(inc->channels, vcd_ch);
934 g_strfreev(parts);
935
936 return SR_OK;
db9679af
ML
937}
938
0ab36d2f
GS
939/**
940 * Construct the name of the nth sigrok channel for a VCD signal.
941 *
942 * Uses the VCD signal name for scalar types and single-bit signals.
943 * Uses "signal.idx" for multi-bit VCD signals without a range spec in
944 * their declaration. Uses "signal[idx]" when a range is known and was
945 * verified.
946 *
947 * @param[in] vcd_ch The VCD signal's description.
948 * @param[in] idx The sigrok channel's index within the VCD signal's group.
949 *
950 * @return An allocated text buffer which callers need to release, #NULL
951 * upon failure to create a sigrok channel name.
952 */
953static char *get_channel_name(struct vcd_channel *vcd_ch, size_t idx)
99eaa206 954{
0ab36d2f
GS
955 char *open_pos, *close_pos, *check_pos, *endptr;
956 gboolean has_brackets, has_range;
957 size_t upper, lower, tmp;
958 char *ch_name;
959
960 /* Handle simple scalar types, and single-bit logic first. */
961 if (vcd_ch->size <= 1)
962 return g_strdup(vcd_ch->name);
963
964 /*
965 * If not done before: Search for a matching pair of brackets in
966 * the right-most position at the very end of the string. Get the
967 * two colon separated numbers between the brackets, which are
968 * the range limits for array indices into the multi-bit signal.
969 * Grab the "base name" of the VCD signal.
970 *
971 * Notice that arrays can get nested. Earlier path components can
972 * be indexed as well, that's why we need the right-most range.
973 * This implementation does not handle bit vectors of size 1 here
974 * by explicit logic. The check for a [0:0] range would even fail.
975 * But the case of size 1 is handled above, and "happens to" give
976 * the expected result (just the VCD signal name).
977 *
978 * This implementation also deals with range limits in the reverse
979 * order, as well as ranges which are not 0-based (like "[4:7]").
980 */
981 if (!vcd_ch->base_name) {
982 has_range = TRUE;
983 open_pos = strrchr(vcd_ch->name, '[');
984 close_pos = strrchr(vcd_ch->name, ']');
985 if (close_pos && close_pos[1])
986 close_pos = NULL;
987 has_brackets = open_pos && close_pos && close_pos > open_pos;
988 if (!has_brackets)
989 has_range = FALSE;
990 if (has_range) {
991 check_pos = &open_pos[1];
992 endptr = NULL;
993 upper = strtoul(check_pos, &endptr, 10);
994 if (!endptr || *endptr != ':')
995 has_range = FALSE;
996 }
997 if (has_range) {
998 check_pos = &endptr[1];
999 endptr = NULL;
1000 lower = strtoul(check_pos, &endptr, 10);
1001 if (!endptr || endptr != close_pos)
1002 has_range = FALSE;
1003 }
1004 if (has_range && lower > upper) {
1005 tmp = lower;
1006 lower = upper;
1007 upper = tmp;
1008 }
1009 if (has_range) {
1010 if (lower >= upper)
1011 has_range = FALSE;
1012 if (upper + 1 - lower != vcd_ch->size)
1013 has_range = FALSE;
1014 }
1015 if (has_range) {
1016 /* Temporarily patch the VCD channel's name. */
1017 *open_pos = '\0';
1018 vcd_ch->base_name = g_strdup(vcd_ch->name);
1019 *open_pos = '[';
1020 vcd_ch->range_lower = lower;
1021 vcd_ch->range_upper = upper;
1022 }
99eaa206 1023 }
0ab36d2f
GS
1024 has_range = vcd_ch->range_lower + vcd_ch->range_upper;
1025 if (has_range && idx >= vcd_ch->size)
1026 has_range = FALSE;
1027 if (!has_range)
1028 return g_strdup_printf("%s.%zu", vcd_ch->name, idx);
cd1b0e8f 1029
0ab36d2f
GS
1030 /*
1031 * Create a sigrok channel name with just the bit's index in
1032 * brackets. This avoids "name[7:0].3" results, instead results
1033 * in "name[3]".
1034 */
1035 ch_name = g_strdup_printf("%s[%zu]",
1036 vcd_ch->base_name, vcd_ch->range_lower + idx);
1037 return ch_name;
1038}
1039
1040/*
1041 * Create (analog or logic) sigrok channels for the VCD signals. Create
1042 * multiple sigrok channels for vector input since sigrok has no concept
1043 * of multi-bit signals. Create a channel group for the vector's bits
1044 * though to reflect that they form a unit. This is beneficial when UIs
1045 * support optional "collapsed" displays of channel groups (like
1046 * "parallel bus, hex output").
1047 *
1048 * Defer channel creation until after completion of parsing the input
1049 * file header. Make sure to create all logic channels first before the
1050 * analog channels get created. This avoids issues with the mapping of
1051 * channel indices to bitmap positions in the sample buffer.
1052 */
1053static void create_channels(const struct sr_input *in,
1054 struct sr_dev_inst *sdi, enum sr_channeltype ch_type)
1055{
1056 struct context *inc;
1057 size_t ch_idx;
1058 GSList *l;
1059 struct vcd_channel *vcd_ch;
1060 size_t size_idx;
1061 char *ch_name;
1062 struct sr_channel_group *cg;
1063 struct sr_channel *ch;
1064
1065 inc = in->priv;
1066
1067 ch_idx = 0;
1068 if (ch_type > SR_CHANNEL_LOGIC)
1069 ch_idx += inc->logic_count;
1070 if (ch_type > SR_CHANNEL_ANALOG)
1071 ch_idx += inc->analog_count;
1072 for (l = inc->channels; l; l = l->next) {
1073 vcd_ch = l->data;
1074 if (vcd_ch->type != ch_type)
1075 continue;
1076 cg = NULL;
1077 if (vcd_ch->size != 1) {
1078 cg = g_malloc0(sizeof(*cg));
1079 cg->name = g_strdup(vcd_ch->name);
1080 }
1081 for (size_idx = 0; size_idx < vcd_ch->size; size_idx++) {
1082 ch_name = get_channel_name(vcd_ch, size_idx);
1083 sr_dbg("sigrok channel idx %zu, name %s, type %s, en %d.",
1084 ch_idx, ch_name,
1085 ch_type == SR_CHANNEL_ANALOG ? "A" : "L", TRUE);
1086 ch = sr_channel_new(sdi, ch_idx, ch_type, TRUE, ch_name);
1087 g_free(ch_name);
1088 ch_idx++;
1089 if (cg)
1090 cg->channels = g_slist_append(cg->channels, ch);
1091 }
1092 if (cg)
1093 sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
1094 }
1095}
1096
1097static void create_feeds(const struct sr_input *in)
1098{
1099 struct context *inc;
1100 GSList *l;
1101 struct vcd_channel *vcd_ch;
1102 size_t ch_idx;
1103 struct sr_channel *ch;
1104
1105 inc = in->priv;
1106
1107 /* Create one feed for logic data. */
2cb4204c
GS
1108 if (inc->logic_count) {
1109 inc->unit_size = (inc->logic_count + 7) / 8;
1110 inc->feed_logic = feed_queue_logic_alloc(in->sdi,
1111 CHUNK_SIZE / inc->unit_size, inc->unit_size);
1112 }
0ab36d2f
GS
1113
1114 /* Create one feed per analog channel. */
1115 for (l = inc->channels; l; l = l->next) {
1116 vcd_ch = l->data;
1117 if (vcd_ch->type != SR_CHANNEL_ANALOG)
1118 continue;
1119 ch_idx = vcd_ch->array_index;
1120 ch_idx += inc->logic_count;
1121 ch = g_slist_nth_data(in->sdi->channels, ch_idx);
1122 vcd_ch->feed_analog = feed_queue_analog_alloc(in->sdi,
1123 CHUNK_SIZE / sizeof(float),
1124 vcd_ch->submit_digits, ch);
1125 }
99eaa206
PA
1126}
1127
08f8421a
GS
1128/*
1129 * Keep track of a previously created channel list, in preparation of
1130 * re-reading the input file. Gets called from reset()/cleanup() paths.
1131 */
1132static void keep_header_for_reread(const struct sr_input *in)
1133{
1134 struct context *inc;
1135
1136 inc = in->priv;
0ab36d2f
GS
1137
1138 g_slist_free_full(inc->prev.sr_groups, cg_free);
1139 inc->prev.sr_groups = in->sdi->channel_groups;
1140 in->sdi->channel_groups = NULL;
1141
1142 g_slist_free_full(inc->prev.sr_channels, sr_channel_free_cb);
1143 inc->prev.sr_channels = in->sdi->channels;
08f8421a
GS
1144 in->sdi->channels = NULL;
1145}
1146
1147/*
1148 * Check whether the input file is being re-read, and refuse operation
1149 * when essential parameters of the acquisition have changed in ways
1150 * that are unexpected to calling applications. Gets called after the
1151 * file header got parsed (again).
1152 *
1153 * Changing the channel list across re-imports of the same file is not
1154 * supported, by design and for valid reasons, see bug #1215 for details.
1155 * Users are expected to start new sessions when they change these
1156 * essential parameters in the acquisition's setup. When we accept the
1157 * re-read file, then make sure to keep using the previous channel list,
1158 * applications may still reference them.
1159 */
0ab36d2f 1160static gboolean check_header_in_reread(const struct sr_input *in)
08f8421a
GS
1161{
1162 struct context *inc;
1163
1164 if (!in)
1165 return FALSE;
1166 inc = in->priv;
1167 if (!inc)
1168 return FALSE;
0ab36d2f 1169 if (!inc->prev.sr_channels)
08f8421a
GS
1170 return TRUE;
1171
0ab36d2f 1172 if (sr_channel_lists_differ(inc->prev.sr_channels, in->sdi->channels)) {
08f8421a
GS
1173 sr_err("Channel list change not supported for file re-read.");
1174 return FALSE;
1175 }
0ab36d2f
GS
1176
1177 g_slist_free_full(in->sdi->channel_groups, cg_free);
1178 in->sdi->channel_groups = inc->prev.sr_groups;
1179 inc->prev.sr_groups = NULL;
1180
08f8421a 1181 g_slist_free_full(in->sdi->channels, sr_channel_free_cb);
0ab36d2f
GS
1182 in->sdi->channels = inc->prev.sr_channels;
1183 inc->prev.sr_channels = NULL;
08f8421a
GS
1184
1185 return TRUE;
1186}
1187
0ab36d2f
GS
1188/* Parse VCD file header sections (rate and variables declarations). */
1189static int parse_header(const struct sr_input *in, GString *buf)
99eaa206 1190{
7db06394
BV
1191 struct context *inc;
1192 gboolean status;
0ab36d2f
GS
1193 char *name, *contents;
1194 size_t size;
ec302917 1195 int ret;
99eaa206 1196
7db06394 1197 inc = in->priv;
0ab36d2f
GS
1198
1199 /* Parse sections until complete header was seen. */
7db06394 1200 status = FALSE;
0ab36d2f
GS
1201 name = contents = NULL;
1202 inc->conv_bits.max_bits = 1;
7db06394 1203 while (parse_section(buf, &name, &contents)) {
99eaa206 1204 sr_dbg("Section '%s', contents '%s'.", name, contents);
cd1b0e8f 1205
e4c8a4d7 1206 if (g_strcmp0(name, "enddefinitions") == 0) {
99eaa206 1207 status = TRUE;
0ab36d2f
GS
1208 goto done_section;
1209 }
1210 if (g_strcmp0(name, "timescale") == 0) {
1211 if (parse_timescale(inc, contents) != SR_OK)
1212 status = FALSE;
1213 goto done_section;
1214 }
1215 if (g_strcmp0(name, "scope") == 0) {
1216 if (parse_scope(inc, contents, FALSE) != SR_OK)
1217 status = FALSE;
1218 goto done_section;
1219 }
1220 if (g_strcmp0(name, "upscope") == 0) {
1221 if (parse_scope(inc, NULL, TRUE) != SR_OK)
1222 status = FALSE;
1223 goto done_section;
1224 }
1225 if (g_strcmp0(name, "var") == 0) {
1226 if (parse_header_var(inc, contents) != SR_OK)
1227 status = FALSE;
1228 goto done_section;
99eaa206 1229 }
cd1b0e8f 1230
0ab36d2f 1231done_section:
db0e5c99
PA
1232 g_free(name);
1233 name = NULL;
1234 g_free(contents);
1235 contents = NULL;
0ab36d2f
GS
1236
1237 if (status)
1238 break;
99eaa206 1239 }
99eaa206
PA
1240 g_free(name);
1241 g_free(contents);
cd1b0e8f 1242
7db06394 1243 inc->got_header = status;
0ab36d2f
GS
1244 if (!status)
1245 return SR_ERR_DATA;
cd1b0e8f 1246
0ab36d2f
GS
1247 /* Create sigrok channels here, late, logic before analog. */
1248 create_channels(in, in->sdi, SR_CHANNEL_LOGIC);
1249 create_channels(in, in->sdi, SR_CHANNEL_ANALOG);
1250 if (!check_header_in_reread(in))
1251 return SR_ERR_DATA;
1252 create_feeds(in);
99eaa206 1253
e4c8a4d7 1254 /*
0ab36d2f
GS
1255 * Allocate space for text to number conversion, and buffers to
1256 * hold current sample values before submission to the session
1257 * feed. Allocate one buffer for all logic bits, and another for
1258 * all floating point values of all analog channels.
1259 *
1260 * The buffers get updated when the VCD input stream communicates
1261 * value changes. Upon reception of VCD timestamps, the buffer can
1262 * provide the previously received values, to "fill in the gaps"
1263 * in the generation of a continuous stream of samples for the
1264 * sigrok session.
99eaa206 1265 */
0ab36d2f
GS
1266 size = (inc->conv_bits.max_bits + 7) / 8;
1267 inc->conv_bits.unit_size = size;
1268 inc->conv_bits.value = g_malloc0(size);
1269 if (!inc->conv_bits.value)
1270 return SR_ERR_MALLOC;
1271
1272 size = (inc->logic_count + 7) / 8;
1273 inc->unit_size = size;
1274 inc->current_logic = g_malloc0(size);
1275 if (inc->unit_size && !inc->current_logic)
1276 return SR_ERR_MALLOC;
1277 size = sizeof(inc->current_floats[0]) * inc->analog_count;
1278 inc->current_floats = g_malloc0(size);
1279 if (size && !inc->current_floats)
1280 return SR_ERR_MALLOC;
1281 for (size = 0; size < inc->analog_count; size++)
1282 inc->current_floats[size] = 0.;
54ee427d 1283
ec302917
GS
1284 ret = ts_stats_prep(inc);
1285 if (ret != SR_OK)
1286 return ret;
1287
54ee427d 1288 return SR_OK;
99eaa206
PA
1289}
1290
0ab36d2f
GS
1291/*
1292 * Add N copies of previously received values to the session, before
1293 * subsequent value changes will update the data buffer. Locally buffer
1294 * sample data to minimize the number of send() calls.
1295 */
1296static void add_samples(const struct sr_input *in, size_t count, gboolean flush)
61a429c9 1297{
db0e5c99 1298 struct context *inc;
0ab36d2f
GS
1299 GSList *ch_list;
1300 struct vcd_channel *vcd_ch;
1301 struct feed_queue_analog *q;
1302 float value;
cd1b0e8f 1303
db0e5c99 1304 inc = in->priv;
61a429c9 1305
0ab36d2f
GS
1306 if (inc->logic_count) {
1307 feed_queue_logic_submit(inc->feed_logic,
1308 inc->current_logic, count);
1309 if (flush)
1310 feed_queue_logic_flush(inc->feed_logic);
1311 }
1312 for (ch_list = inc->channels; ch_list; ch_list = ch_list->next) {
1313 vcd_ch = ch_list->data;
1314 if (vcd_ch->type != SR_CHANNEL_ANALOG)
1315 continue;
1316 q = vcd_ch->feed_analog;
1317 if (!q)
1318 continue;
1319 value = inc->current_floats[vcd_ch->array_index];
1320 feed_queue_analog_submit(q, value, count);
1321 if (flush)
1322 feed_queue_analog_flush(q);
1323 }
1324}
cd1b0e8f 1325
0ab36d2f
GS
1326static gint vcd_compare_id(gconstpointer a, gconstpointer b)
1327{
1328 return strcmp((const char *)a, (const char *)b);
db0e5c99
PA
1329}
1330
0ab36d2f 1331static gboolean is_ignored(struct context *inc, const char *id)
db0e5c99 1332{
0ab36d2f 1333 GSList *ignored;
db0e5c99 1334
0ab36d2f
GS
1335 ignored = g_slist_find_custom(inc->ignored_signals, id, vcd_compare_id);
1336 return ignored != NULL;
1337}
cd1b0e8f 1338
0ab36d2f
GS
1339/*
1340 * Get an analog channel's value from a bit pattern (VCD 'integer' type).
1341 * The implementation assumes a maximum integer width (64bit), the API
1342 * doesn't (beyond the return data type). The use of SR_CHANNEL_ANALOG
1343 * channels may further constraint the number of significant digits
1344 * (current asumption: float -> 23bit).
1345 */
1346static float get_int_val(uint8_t *in_bits_data, size_t in_bits_count)
1347{
1348 uint64_t int_value;
1349 size_t byte_count, byte_idx;
1350 float flt_value; /* typeof(inc->current_floats[0]) */
1351
1352 /* Convert bit pattern to integer number (limited range). */
1353 int_value = 0;
1354 byte_count = (in_bits_count + 7) / 8;
1355 for (byte_idx = 0; byte_idx < byte_count; byte_idx++) {
1356 if (byte_idx >= sizeof(int_value))
1357 break;
1358 int_value |= *in_bits_data++ << (byte_idx * 8);
1359 }
1360 flt_value = int_value;
db0e5c99 1361
0ab36d2f
GS
1362 return flt_value;
1363}
cd1b0e8f 1364
0ab36d2f
GS
1365/*
1366 * Set a logic channel's level depending on the VCD signal's identifier
1367 * and parsed value. Multi-bit VCD values will affect several sigrok
1368 * channels. One VCD signal name can translate to several sigrok channels.
1369 */
1370static void process_bits(struct context *inc, char *identifier,
1371 uint8_t *in_bits_data, size_t in_bits_count)
1372{
1373 size_t size;
1374 gboolean have_int;
1375 GSList *l;
1376 struct vcd_channel *vcd_ch;
1377 float int_val;
1378 size_t bit_idx;
1379 uint8_t *in_bit_ptr, in_bit_mask;
1380 uint8_t *out_bit_ptr, out_bit_mask;
1381 uint8_t bit_val;
1382
1383 size = 0;
1384 have_int = FALSE;
1385 int_val = 0;
1386 for (l = inc->channels; l; l = l->next) {
1387 vcd_ch = l->data;
1388 if (g_strcmp0(identifier, vcd_ch->identifier) != 0)
1389 continue;
1390 if (vcd_ch->type == SR_CHANNEL_ANALOG) {
1391 /* Special case for 'integer' VCD signal types. */
1392 size = vcd_ch->size; /* Flag for "VCD signal found". */
1393 if (!have_int) {
1394 int_val = get_int_val(in_bits_data, in_bits_count);
1395 have_int = TRUE;
1396 }
1397 inc->current_floats[vcd_ch->array_index] = int_val;
1398 continue;
1399 }
1400 if (vcd_ch->type != SR_CHANNEL_LOGIC)
1401 continue;
1402 sr_spew("Processing %s data, id '%s', ch %zu sz %zu",
1403 (size == 1) ? "bit" : "vector",
1404 identifier, vcd_ch->array_index, vcd_ch->size);
1405
1406 /* Found our (logic) channel. Setup in/out bit positions. */
1407 size = vcd_ch->size;
1408 in_bit_ptr = in_bits_data;
1409 in_bit_mask = 1 << 0;
1410 out_bit_ptr = &inc->current_logic[vcd_ch->byte_idx];
1411 out_bit_mask = vcd_ch->bit_mask;
1412
1413 /*
1414 * Pass VCD input bit(s) to sigrok logic bits. Conversion
1415 * must be done repeatedly because one VCD signal name
1416 * can translate to several sigrok channels, and shifting
1417 * a previously computed bit field to another channel's
1418 * position in the buffer would be nearly as expensive,
1419 * and certain would increase complexity of the code.
1420 */
1421 for (bit_idx = 0; bit_idx < size; bit_idx++) {
1422 /* Get the bit value from input data. */
1423 bit_val = 0;
1424 if (bit_idx < in_bits_count) {
1425 bit_val = *in_bit_ptr & in_bit_mask;
1426 in_bit_mask <<= 1;
1427 if (!in_bit_mask) {
1428 in_bit_mask = 1 << 0;
1429 in_bit_ptr++;
1430 }
1431 }
1432 /* Manipulate the sample buffer data image. */
1433 if (bit_val)
1434 *out_bit_ptr |= out_bit_mask;
1435 else
1436 *out_bit_ptr &= ~out_bit_mask;
1437 /* Update output position after bitmap update. */
1438 out_bit_mask <<= 1;
1439 if (!out_bit_mask) {
1440 out_bit_mask = 1 << 0;
1441 out_bit_ptr++;
1442 }
db0e5c99 1443 }
61a429c9 1444 }
0ab36d2f
GS
1445 if (!size && !is_ignored(inc, identifier))
1446 sr_warn("VCD signal not found for ID '%s'.", identifier);
61a429c9
PA
1447}
1448
0ab36d2f
GS
1449/*
1450 * Set an analog channel's value from a floating point number. One
1451 * VCD signal name can translate to several sigrok channels.
1452 */
1453static void process_real(struct context *inc, char *identifier, float real_val)
36dacf17 1454{
0ab36d2f 1455 gboolean found;
36dacf17
WS
1456 GSList *l;
1457 struct vcd_channel *vcd_ch;
36dacf17 1458
0ab36d2f
GS
1459 found = FALSE;
1460 for (l = inc->channels; l; l = l->next) {
36dacf17 1461 vcd_ch = l->data;
0ab36d2f
GS
1462 if (vcd_ch->type != SR_CHANNEL_ANALOG)
1463 continue;
1464 if (g_strcmp0(identifier, vcd_ch->identifier) != 0)
1465 continue;
1466
1467 /* Found our (analog) channel. */
1468 found = TRUE;
1469 sr_spew("Processing real data, id '%s', ch %zu, val %.16g",
1470 identifier, vcd_ch->array_index, real_val);
1471 inc->current_floats[vcd_ch->array_index] = real_val;
36dacf17 1472 }
0ab36d2f
GS
1473 if (!found && !is_ignored(inc, identifier))
1474 sr_warn("VCD signal not found for ID '%s'.", identifier);
1475}
1476
1477/*
1478 * Converts a bit position's text character to a number value.
1479 *
1480 * TODO Check for complete coverage of Verilog's standard logic values
1481 * (IEEE-1364). The set is said to be “01XZHUWL-”, which only a part of
1482 * is handled here. What would be the complete mapping?
1483 * - 0/L -> bit value 0
1484 * - 1/H -> bit value 1
1485 * - X "don't care" -> TODO
1486 * - Z "high impedance" -> TODO
1487 * - W "weak(?)" -> TODO
1488 * - U "undefined" -> TODO
1489 * - '-' "TODO" -> TODO
1490 *
1491 * For simplicity, this input module implementation maps "known low"
1492 * values to 0, and "known high" values to 1. All other values will
1493 * end up assuming "low" (return number 0), while callers might warn.
1494 * It's up to users to provide compatible input data, or accept the
1495 * warnings. Silently accepting unknown input data is not desirable.
1496 */
1497static uint8_t vcd_char_to_value(char bit_char, int *warn)
1498{
1499
1500 bit_char = g_ascii_tolower(bit_char);
1501
1502 /* Convert the "undisputed" variants. */
1503 if (bit_char == '0' || bit_char == 'l')
1504 return 0;
1505 if (bit_char == '1' || bit_char == 'h')
1506 return 1;
1507
1508 /* Convert the "uncertain" variants. */
1509 if (warn)
1510 *warn = 1;
1511 if (bit_char == 'x' || bit_char == 'z')
1512 return 0;
1513 if (bit_char == 'u')
1514 return 0;
35810515
GS
1515 if (bit_char == '-')
1516 return 0;
0ab36d2f
GS
1517
1518 /* Unhandled input text. */
1519 return ~0;
36dacf17
WS
1520}
1521
c1310f7d
GS
1522/*
1523 * Check the validity of a VCD string value. It's essential to reliably
1524 * accept valid data which the community uses in the field, yet robustly
1525 * reject invalid data for users' awareness. Since IEEE 1800-2017 would
1526 * not discuss the representation of this data type, it's assumed to not
1527 * be an official feature of the VCD file format. This implementation is
1528 * an educated guess after inspection of other arbitrary implementations,
1529 * not backed by any specification or public documentation.
1530 *
1531 * A quick summary of the implemented assumptions: Must be a sequence of
1532 * ASCII printables. Must not contain whitespace. Might contain escape
1533 * sequences: A backslash followed by a single character, like '\n' or
1534 * '\\'. Or a backslash and the letter x followed by two hex digits,
1535 * like '\x20'. Or a backslash followed by three octal digits, like
1536 * '\007'. As an exception also accepts a single digit '\0' but only at
1537 * the text end. The string value may be empty, but must not be NULL.
1538 *
1539 * This implementation assumes an ASCII based platform for simplicity
1540 * and readability. Should be a given on sigrok supported platforms.
1541 */
1542static gboolean vcd_string_valid(const char *s)
1543{
1544 char c;
1545
1546 if (!s)
1547 return FALSE;
1548
1549 while (*s) {
1550 c = *s++;
1551 /* Reject non-printable ASCII chars including DEL. */
1552 if (c < ' ')
1553 return FALSE;
1554 if (c > '~')
1555 return FALSE;
1556 /* Deeper inspection of escape sequences. */
1557 if (c == '\\') {
1558 c = *s++;
1559 switch (c) {
1560 case 'a': /* BEL, bell aka "alarm" */
1561 case 'b': /* BS, back space */
1562 case 't': /* TAB, tabulator */
1563 case 'n': /* NL, newline */
1564 case 'v': /* VT, vertical tabulator */
1565 case 'f': /* FF, form feed */
1566 case 'r': /* CR, carriage return */
1567 case '"': /* double quotes */
1568 case '\'': /* tick, single quote */
1569 case '?': /* question mark */
1570 case '\\': /* backslash */
1571 continue;
1572 case 'x': /* \xNN two hex digits */
1573 c = *s++;
1574 if (!g_ascii_isxdigit(c))
1575 return FALSE;
1576 c = *s++;
1577 if (!g_ascii_isxdigit(c))
1578 return FALSE;
1579 continue;
1580 case '0': /* \NNN three octal digits */
1581 case '1':
1582 case '2':
1583 case '3':
1584 case '4':
1585 case '5':
1586 case '6':
1587 case '7':
1588 /* Special case '\0' at end of text. */
1589 if (c == '0' && !*s)
1590 return TRUE;
1591 /*
1592 * First digit was covered by the outer
1593 * switch(). Two more digits to check.
1594 */
1595 c = *s++;
1596 if (!g_ascii_isdigit(c) || c > '7')
1597 return FALSE;
1598 c = *s++;
1599 if (!g_ascii_isdigit(c) || c > '7')
1600 return FALSE;
1601 continue;
1602 default:
1603 return FALSE;
1604 }
1605 }
1606 }
1607
1608 return TRUE;
1609}
1610
0ab36d2f
GS
1611/* Parse one text line of the data section. */
1612static int parse_textline(const struct sr_input *in, char *lines)
61a429c9 1613{
7db06394 1614 struct context *inc;
0ab36d2f
GS
1615 int ret;
1616 char **words;
1617 size_t word_count, word_idx;
1618 char *curr_word, *next_word, curr_first;
c1310f7d
GS
1619 gboolean is_timestamp, is_section;
1620 gboolean is_real, is_multibit, is_singlebit, is_string;
f9bc17d4 1621 uint64_t timestamp;
dd8bec71 1622 char *identifier, *endptr;
0ab36d2f 1623 size_t count;
cd1b0e8f 1624
7db06394 1625 inc = in->priv;
cd1b0e8f 1626
0ab36d2f
GS
1627 /*
1628 * Split the caller's text lines into a list of space separated
1629 * words. Note that some of the branches consume the very next
1630 * words as well, and assume that both adjacent words will be
1631 * available when the first word is seen. This constraint applies
1632 * to bit vector data, multi-bit integers and real (float) data,
1633 * as well as single-bit data with whitespace before its
1634 * identifier (if that's valid in VCD, we'd accept it here).
1635 * The fact that callers always pass complete text lines should
1636 * make this assumption acceptable.
1637 */
1638 ret = SR_OK;
1639 words = split_text_line(inc, lines, &word_count);
1640 for (word_idx = 0; word_idx < word_count; word_idx++) {
1641 /*
1642 * Make the next two words available, to simpilify code
1643 * paths below. The second word is optional here.
1644 */
1645 curr_word = words[word_idx];
1646 if (!curr_word && !curr_word[0])
1647 continue;
1648 curr_first = g_ascii_tolower(curr_word[0]);
1649 next_word = words[word_idx + 1];
1650 if (next_word && !next_word[0])
1651 next_word = NULL;
1652
1653 /*
1654 * Optionally skip some sections that can be interleaved
1655 * with data (and may or may not be supported by this
1656 * input module). If the section is not skipped but the
1657 * $end keyword needs to get tracked, specifically handle
1658 * this case, for improved robustness (still reject files
1659 * which happen to use invalid syntax).
1660 */
7db06394 1661 if (inc->skip_until_end) {
0ab36d2f 1662 if (strcmp(curr_word, "$end") == 0) {
7db06394 1663 /* Done with unhandled/unknown section. */
0ab36d2f 1664 sr_dbg("done skipping until $end");
7db06394 1665 inc->skip_until_end = FALSE;
0ab36d2f
GS
1666 } else {
1667 sr_spew("skipping word: %s", curr_word);
1668 }
1669 continue;
1670 }
1671 if (inc->ignore_end_keyword) {
1672 if (strcmp(curr_word, "$end") == 0) {
1673 sr_dbg("done ignoring $end keyword");
1674 inc->ignore_end_keyword = FALSE;
1675 continue;
7db06394
BV
1676 }
1677 }
cd1b0e8f 1678
0ab36d2f
GS
1679 /*
1680 * There may be $keyword sections inside the data part of
1681 * the input file. Do inspect some of the sections' content
1682 * but ignore their surrounding keywords. Silently skip
1683 * unsupported section types (which transparently covers
1684 * $comment sections).
1685 */
1686 is_section = curr_first == '$' && curr_word[1];
1687 if (is_section) {
1688 gboolean inspect_data;
1689
1690 inspect_data = FALSE;
1691 inspect_data |= g_strcmp0(curr_word, "$dumpvars") == 0;
1692 inspect_data |= g_strcmp0(curr_word, "$dumpon") == 0;
1693 inspect_data |= g_strcmp0(curr_word, "$dumpoff") == 0;
1694 if (inspect_data) {
1695 /* Ignore keywords, yet parse contents. */
1696 sr_dbg("%s section, will parse content", curr_word);
1697 inc->ignore_end_keyword = TRUE;
1698 } else {
1699 /* Ignore section from here up to $end. */
1700 sr_dbg("%s section, will skip until $end", curr_word);
1701 inc->skip_until_end = TRUE;
1702 }
1703 continue;
1704 }
1705
1706 /*
1707 * Numbers prefixed by '#' are timestamps, which translate
1708 * to sigrok sample numbers. Apply optional downsampling,
1709 * and apply the 'skip' logic. Check the recent timestamp
1710 * for plausibility. Submit the corresponding number of
1711 * samples of previously accumulated data values to the
1712 * session feed.
1713 */
1714 is_timestamp = curr_first == '#' && g_ascii_isdigit(curr_word[1]);
1715 if (is_timestamp) {
dd8bec71
GS
1716 endptr = NULL;
1717 timestamp = strtoull(&curr_word[1], &endptr, 10);
1718 if (!endptr || *endptr) {
1719 sr_err("Invalid timestamp: %s.", curr_word);
1720 ret = SR_ERR_DATA;
1721 break;
1722 }
0ab36d2f 1723 sr_spew("Got timestamp: %" PRIu64, timestamp);
ec302917
GS
1724 ret = ts_stats_check(&inc->ts_stats, timestamp);
1725 if (ret != SR_OK)
1726 break;
0ab36d2f
GS
1727 if (inc->options.downsample > 1) {
1728 timestamp /= inc->options.downsample;
1729 sr_spew("Downsampled timestamp: %" PRIu64, timestamp);
1730 }
cd1b0e8f 1731
e4c8a4d7
BV
1732 /*
1733 * Skip < 0 => skip until first timestamp.
0157808d
PA
1734 * Skip = 0 => don't skip
1735 * Skip > 0 => skip until timestamp >= skip.
1736 */
0ab36d2f 1737 if (inc->options.skip_specified && !inc->use_skip) {
dd8bec71
GS
1738 sr_dbg("Seeding skip from user spec %" PRIu64,
1739 inc->options.skip_starttime);
1740 inc->prev_timestamp = inc->options.skip_starttime;
0ab36d2f
GS
1741 inc->use_skip = TRUE;
1742 }
1743 if (!inc->use_skip) {
dd8bec71 1744 sr_dbg("Seeding skip from first timestamp");
0ab36d2f 1745 inc->options.skip_starttime = timestamp;
f9bc17d4 1746 inc->prev_timestamp = timestamp;
0ab36d2f
GS
1747 inc->use_skip = TRUE;
1748 continue;
1749 }
1750 if (inc->options.skip_starttime && timestamp < inc->options.skip_starttime) {
1751 sr_spew("Timestamp skipped, before user spec");
1752 inc->prev_timestamp = inc->options.skip_starttime;
1753 continue;
1754 }
1755 if (timestamp == inc->prev_timestamp) {
1756 /*
1757 * Ignore repeated timestamps (e.g. sigrok
1758 * outputs these). Can also happen when
1759 * downsampling makes distinct input values
1760 * end up at the same scaled down value.
1761 * Also transparently covers the initial
1762 * timestamp.
1763 */
1764 sr_spew("Timestamp is identical to previous timestamp");
1765 continue;
1766 }
1767 if (timestamp < inc->prev_timestamp) {
1768 sr_err("Invalid timestamp: %" PRIu64 " (leap backwards).", timestamp);
1769 ret = SR_ERR_DATA;
ed367d68 1770 break;
0ab36d2f
GS
1771 }
1772 if (inc->options.compress) {
1773 /* Compress long idle periods */
1774 count = timestamp - inc->prev_timestamp;
1775 if (count > inc->options.compress) {
1776 sr_dbg("Long idle period, compressing");
1777 count = timestamp - inc->options.compress;
1778 inc->prev_timestamp = count;
6b7ace48 1779 }
61a429c9 1780 }
0ab36d2f
GS
1781
1782 /* Generate samples from prev_timestamp up to timestamp - 1. */
0ab36d2f 1783 count = timestamp - inc->prev_timestamp;
dd8bec71 1784 sr_spew("Got a new timestamp, feeding %zu samples", count);
0ab36d2f
GS
1785 add_samples(in, count, FALSE);
1786 inc->prev_timestamp = timestamp;
1787 inc->data_after_timestamp = FALSE;
1788 continue;
1789 }
1790 inc->data_after_timestamp = TRUE;
1791
1792 /*
1793 * Data values come in different formats, are associated
1794 * with channel identifiers, and correspond to the period
1795 * of time from the most recent timestamp to the next
1796 * timestamp.
1797 *
1798 * Supported input data formats are:
c1310f7d 1799 * - S<value> <sep> <id> (value not used, VCD type 'string').
0ab36d2f
GS
1800 * - R<value> <sep> <id> (analog channel, VCD type 'real').
1801 * - B<value> <sep> <id> (analog channel, VCD type 'integer').
1802 * - B<value> <sep> <id> (logic channels, VCD bit vectors).
1803 * - <value> <id> (logic channel, VCD single-bit values).
1804 *
1805 * Input values can be:
1806 * - Floating point numbers.
1807 * - Bit strings (which covers multi-bit aka integers
1808 * as well as vectors).
1809 * - Single bits.
1810 *
1811 * Things to note:
1812 * - Individual bits can be 0/1 which is supported by
1813 * libsigrok, or x or z which is treated like 0 here
1814 * (sigrok lacks support for ternary logic, neither is
1815 * there support for the full IEEE set of values).
1816 * - Single-bit values typically won't be separated from
1817 * the signal identifer, multi-bit values and floats
1818 * are separated (will reference the next word). This
1819 * implementation silently accepts separators for
1820 * single-bit values, too.
1821 */
1822 is_real = curr_first == 'r' && curr_word[1];
1823 is_multibit = curr_first == 'b' && curr_word[1];
1824 is_singlebit = curr_first == '0' || curr_first == '1';
35810515 1825 is_singlebit |= curr_first == 'l' || curr_first == 'h';
0ab36d2f 1826 is_singlebit |= curr_first == 'x' || curr_first == 'z';
35810515 1827 is_singlebit |= curr_first == 'u' || curr_first == '-';
c1310f7d 1828 is_string = curr_first == 's';
0ab36d2f
GS
1829 if (is_real) {
1830 char *real_text;
1831 float real_val;
1832
1833 real_text = &curr_word[1];
1834 identifier = next_word;
1835 word_idx++;
1836 if (!*real_text || !identifier || !*identifier) {
1837 sr_err("Unexpected real format.");
1838 ret = SR_ERR_DATA;
7db06394 1839 break;
8be87469 1840 }
0ab36d2f
GS
1841 sr_spew("Got real data %s for id '%s'.",
1842 real_text, identifier);
1843 if (sr_atof_ascii(real_text, &real_val) != SR_OK) {
1844 sr_err("Cannot convert value: %s.", real_text);
1845 ret = SR_ERR_DATA;
76bc28c3 1846 break;
0ab36d2f
GS
1847 }
1848 process_real(inc, identifier, real_val);
1849 continue;
1850 }
1851 if (is_multibit) {
1852 char *bits_text_start;
1853 size_t bit_count;
1854 char *bits_text, bit_char;
1855 uint8_t bit_value;
1856 uint8_t *value_ptr, value_mask;
1857 GString *bits_val_text;
1858
1859 /* TODO
1860 * Fold in single-bit code path here? To re-use
1861 * the X/Z support. Current redundancy is few so
1862 * there is little pressure to unify code paths.
1863 * Also multi-bit handling is often different
1864 * from single-bit handling, so the "unified"
1865 * path would often check for special cases. So
1866 * we may never unify code paths at all here.
34724ffa 1867 */
0ab36d2f
GS
1868 bits_text = &curr_word[1];
1869 identifier = next_word;
1870 word_idx++;
1871
1872 if (!*bits_text || !identifier || !*identifier) {
1873 sr_err("Unexpected integer/vector format.");
1874 ret = SR_ERR_DATA;
34724ffa
WS
1875 break;
1876 }
0ab36d2f
GS
1877 sr_spew("Got integer/vector data %s for id '%s'.",
1878 bits_text, identifier);
7db06394
BV
1879
1880 /*
0ab36d2f
GS
1881 * Accept a bit string of arbitrary length (sort
1882 * of, within the limits of the previously setup
1883 * conversion buffer). The input text omits the
1884 * leading zeroes, hence we convert from end to
1885 * the start, to get the significant bits. There
1886 * should only be errors for invalid input, or
1887 * for input that is rather strange (data holds
1888 * more bits than the signal's declaration in
1889 * the header suggested). Silently accept data
1890 * that fits in the conversion buffer, and has
1891 * more significant bits than the signal's type
1892 * (that'd be non-sence yet acceptable input).
7db06394 1893 */
0ab36d2f
GS
1894 bits_text_start = bits_text;
1895 bits_text += strlen(bits_text);
1896 bit_count = bits_text - bits_text_start;
1897 if (bit_count > inc->conv_bits.max_bits) {
1898 sr_err("Value exceeds conversion buffer: %s",
1899 bits_text_start);
1900 ret = SR_ERR_DATA;
1901 break;
1902 }
1903 memset(inc->conv_bits.value, 0, inc->conv_bits.unit_size);
1904 value_ptr = &inc->conv_bits.value[0];
1905 value_mask = 1 << 0;
1906 inc->conv_bits.sig_count = 0;
1907 while (bits_text > bits_text_start) {
1908 inc->conv_bits.sig_count++;
1909 bit_char = *(--bits_text);
1910 bit_value = vcd_char_to_value(bit_char, NULL);
1911 if (bit_value == 0) {
1912 /* EMPTY */
1913 } else if (bit_value == 1) {
1914 *value_ptr |= value_mask;
1915 } else {
1916 inc->conv_bits.sig_count = 0;
73f052d3
WS
1917 break;
1918 }
0ab36d2f
GS
1919 value_mask <<= 1;
1920 if (!value_mask) {
1921 value_ptr++;
1922 value_mask = 1 << 0;
1923 }
61a429c9 1924 }
0ab36d2f
GS
1925 if (!inc->conv_bits.sig_count) {
1926 sr_err("Unexpected vector format: %s",
1927 bits_text_start);
1928 ret = SR_ERR_DATA;
1929 break;
1930 }
1931 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
1932 bits_val_text = sr_hexdump_new(inc->conv_bits.value,
1933 value_ptr - inc->conv_bits.value + 1);
1934 sr_spew("Vector value: %s.", bits_val_text->str);
1935 sr_hexdump_free(bits_val_text);
1936 }
1937
1938 process_bits(inc, identifier,
1939 inc->conv_bits.value, inc->conv_bits.sig_count);
1940 continue;
8be87469 1941 }
0ab36d2f
GS
1942 if (is_singlebit) {
1943 char *bits_text, bit_char;
1944 uint8_t bit_value;
1945
1946 /* Get the value text, and signal identifier. */
1947 bits_text = &curr_word[0];
1948 bit_char = *bits_text;
1949 if (!bit_char) {
1950 sr_err("Bit value missing.");
1951 ret = SR_ERR_DATA;
1952 break;
1953 }
1954 identifier = ++bits_text;
1955 if (!*identifier) {
1956 identifier = next_word;
1957 word_idx++;
1958 }
1959 if (!identifier || !*identifier) {
1960 sr_err("Identifier missing.");
1961 ret = SR_ERR_DATA;
1962 break;
1963 }
1964
1965 /* Convert value text to single-bit number. */
1966 bit_value = vcd_char_to_value(bit_char, NULL);
1967 if (bit_value != 0 && bit_value != 1) {
1968 sr_err("Unsupported bit value '%c'.", bit_char);
1969 ret = SR_ERR_DATA;
1970 break;
1971 }
1972 inc->conv_bits.value[0] = bit_value;
1973 process_bits(inc, identifier, inc->conv_bits.value, 1);
1974 continue;
1975 }
c1310f7d
GS
1976 if (is_string) {
1977 const char *str_value;
1978
1979 str_value = &curr_word[1];
1980 identifier = next_word;
1981 word_idx++;
1982 if (!vcd_string_valid(str_value)) {
1983 sr_err("Invalid string data: %s", str_value);
1984 ret = SR_ERR_DATA;
1985 break;
1986 }
1987 if (!identifier || !*identifier) {
1988 sr_err("String value without identifier.");
1989 ret = SR_ERR_DATA;
1990 break;
1991 }
1992 sr_spew("Got string data, id '%s', value \"%s\".",
1993 identifier, str_value);
1994 if (!is_ignored(inc, identifier)) {
1995 sr_err("String value for identifier '%s'.",
1996 identifier);
1997 ret = SR_ERR_DATA;
1998 break;
1999 }
2000 continue;
2001 }
0ab36d2f
GS
2002
2003 /* Design choice: Consider unsupported input fatal. */
2004 sr_err("Unknown token '%s'.", curr_word);
2005 ret = SR_ERR_DATA;
2006 break;
7db06394 2007 }
0ab36d2f
GS
2008 free_text_split(inc, words);
2009
2010 return ret;
7db06394
BV
2011}
2012
0ab36d2f 2013static int process_buffer(struct sr_input *in, gboolean is_eof)
7db06394 2014{
7db06394 2015 struct context *inc;
0ab36d2f
GS
2016 uint64_t samplerate;
2017 GVariant *gvar;
2018 int ret;
2019 char *rdptr, *endptr, *trimptr;
2020 size_t rdlen;
7db06394 2021
0ab36d2f 2022 inc = in->priv;
cd1b0e8f 2023
0ab36d2f
GS
2024 /* Send feed header and samplerate (once) before sample data. */
2025 if (!inc->started) {
2026 std_session_send_df_header(in->sdi);
7db06394 2027
0ab36d2f
GS
2028 samplerate = inc->samplerate / inc->options.downsample;
2029 if (samplerate) {
2030 gvar = g_variant_new_uint64(samplerate);
2031 sr_session_send_meta(in->sdi, SR_CONF_SAMPLERATE, gvar);
2032 }
7db06394 2033
0ab36d2f
GS
2034 inc->started = TRUE;
2035 }
7db06394 2036
0ab36d2f
GS
2037 /*
2038 * Workaround broken generators which output incomplete text
2039 * lines. Enforce the trailing line feed. Proper input is not
2040 * harmed by another empty line of input data.
2041 */
2042 if (is_eof)
2043 g_string_append_c(in->buf, '\n');
2044
2045 /* Find and process complete text lines in the input data. */
2046 ret = SR_OK;
2047 rdptr = in->buf->str;
2048 while (TRUE) {
2049 rdlen = &in->buf->str[in->buf->len] - rdptr;
2050 endptr = g_strstr_len(rdptr, rdlen, "\n");
2051 if (!endptr)
2052 break;
2053 trimptr = endptr;
2054 *endptr++ = '\0';
2055 while (g_ascii_isspace(*rdptr))
2056 rdptr++;
2057 while (trimptr > rdptr && g_ascii_isspace(trimptr[-1]))
2058 *(--trimptr) = '\0';
2059 if (!*rdptr) {
2060 rdptr = endptr;
2061 continue;
2062 }
2063 ret = parse_textline(in, rdptr);
2064 rdptr = endptr;
2065 if (ret != SR_OK)
2066 break;
2067 }
2068 rdlen = rdptr - in->buf->str;
2069 g_string_erase(in->buf, 0, rdlen);
db0e5c99 2070
0ab36d2f 2071 return ret;
61a429c9
PA
2072}
2073
0ab36d2f 2074static int format_match(GHashTable *metadata, unsigned int *confidence)
7db06394 2075{
0ab36d2f
GS
2076 GString *buf, *tmpbuf;
2077 gboolean status;
2078 char *name, *contents;
7db06394 2079
0ab36d2f
GS
2080 buf = g_hash_table_lookup(metadata,
2081 GINT_TO_POINTER(SR_INPUT_META_HEADER));
2082 tmpbuf = g_string_new_len(buf->str, buf->len);
2083
2084 /*
2085 * If we can parse the first section correctly, then it is
2086 * assumed that the input is in VCD format.
2087 */
2088 check_remove_bom(tmpbuf);
2089 status = parse_section(tmpbuf, &name, &contents);
2090 g_string_free(tmpbuf, TRUE);
2091 g_free(name);
2092 g_free(contents);
2093
2094 if (!status)
2095 return SR_ERR;
7db06394 2096
0ab36d2f
GS
2097 *confidence = 1;
2098 return SR_OK;
7db06394
BV
2099}
2100
0ab36d2f 2101static int init(struct sr_input *in, GHashTable *options)
99eaa206 2102{
7db06394 2103 struct context *inc;
0ab36d2f 2104 GVariant *data;
7db06394 2105
0ab36d2f 2106 inc = g_malloc0(sizeof(*inc));
99eaa206 2107
0ab36d2f
GS
2108 data = g_hash_table_lookup(options, "numchannels");
2109 inc->options.maxchannels = g_variant_get_uint32(data);
d0181813 2110
0ab36d2f
GS
2111 data = g_hash_table_lookup(options, "downsample");
2112 inc->options.downsample = g_variant_get_uint64(data);
2113 if (inc->options.downsample < 1)
2114 inc->options.downsample = 1;
99eaa206 2115
0ab36d2f
GS
2116 data = g_hash_table_lookup(options, "compress");
2117 inc->options.compress = g_variant_get_uint64(data);
2118 inc->options.compress /= inc->options.downsample;
2119
2120 data = g_hash_table_lookup(options, "skip");
2121 if (data) {
2122 inc->options.skip_specified = TRUE;
2123 inc->options.skip_starttime = g_variant_get_uint64(data);
dd8bec71
GS
2124 if (inc->options.skip_starttime == ~UINT64_C(0)) {
2125 inc->options.skip_specified = FALSE;
2126 inc->options.skip_starttime = 0;
2127 }
0ab36d2f 2128 inc->options.skip_starttime /= inc->options.downsample;
7db06394 2129 }
99eaa206 2130
0ab36d2f
GS
2131 in->sdi = g_malloc0(sizeof(*in->sdi));
2132 in->priv = inc;
2133
2134 inc->scope_prefix = g_string_new("\0");
2135
7db06394
BV
2136 return SR_OK;
2137}
cd1b0e8f 2138
7066fd46
BV
2139static int receive(struct sr_input *in, GString *buf)
2140{
2141 struct context *inc;
2142 int ret;
2143
0ab36d2f
GS
2144 inc = in->priv;
2145
2146 /* Collect all input chunks, potential deferred processing. */
7066fd46 2147 g_string_append_len(in->buf, buf->str, buf->len);
0ab36d2f
GS
2148 if (!inc->got_header && in->buf->len == buf->len)
2149 check_remove_bom(in->buf);
7066fd46 2150
0ab36d2f 2151 /* Must complete reception of the VCD header first. */
7066fd46
BV
2152 if (!inc->got_header) {
2153 if (!have_header(in->buf))
2154 return SR_OK;
0ab36d2f
GS
2155 ret = parse_header(in, in->buf);
2156 if (ret != SR_OK)
2157 return ret;
7066fd46 2158 /* sdi is ready, notify frontend. */
0ab36d2f 2159 in->sdi_ready = TRUE;
7066fd46
BV
2160 return SR_OK;
2161 }
2162
0ab36d2f
GS
2163 /* Process sample data. */
2164 ret = process_buffer(in, FALSE);
7066fd46
BV
2165
2166 return ret;
2167}
2168
2169static int end(struct sr_input *in)
7db06394
BV
2170{
2171 struct context *inc;
7066fd46 2172 int ret;
0ab36d2f 2173 size_t count;
7066fd46 2174
db0e5c99
PA
2175 inc = in->priv;
2176
0ab36d2f 2177 /* Must complete processing of previously received chunks. */
7066fd46 2178 if (in->sdi_ready)
0ab36d2f 2179 ret = process_buffer(in, TRUE);
7066fd46
BV
2180 else
2181 ret = SR_OK;
99eaa206 2182
0ab36d2f
GS
2183 /* Flush most recently queued sample data when EOF is seen. */
2184 count = inc->data_after_timestamp ? 1 : 0;
2185 add_samples(in, count, TRUE);
db0e5c99 2186
ec302917
GS
2187 /* Optionally suggest downsampling after all input data was seen. */
2188 (void)ts_stats_post(inc, !inc->data_after_timestamp);
2189
0ab36d2f 2190 /* Must send DF_END when DF_HEADER was sent before. */
3be42bc2 2191 if (inc->started)
bee2b016 2192 std_session_send_df_end(in->sdi);
c10ef17c 2193
7066fd46
BV
2194 return ret;
2195}
2196
d5cc282f 2197static void cleanup(struct sr_input *in)
7066fd46
BV
2198{
2199 struct context *inc;
2200
2201 inc = in->priv;
0ab36d2f 2202
08f8421a 2203 keep_header_for_reread(in);
0ab36d2f 2204
7db06394 2205 g_slist_free_full(inc->channels, free_channel);
4237ab9e 2206 inc->channels = NULL;
0ab36d2f
GS
2207 feed_queue_logic_free(inc->feed_logic);
2208 inc->feed_logic = NULL;
2209 g_free(inc->conv_bits.value);
2210 inc->conv_bits.value = NULL;
2211 g_free(inc->current_logic);
2212 inc->current_logic = NULL;
2213 g_free(inc->current_floats);
2214 inc->current_floats = NULL;
2215 g_string_free(inc->scope_prefix, TRUE);
2216 inc->scope_prefix = NULL;
2217 g_slist_free_full(inc->ignored_signals, g_free);
2218 inc->ignored_signals = NULL;
2219 free_text_split(inc, NULL);
99eaa206
PA
2220}
2221
f4b4725b
SA
2222static int reset(struct sr_input *in)
2223{
0ab36d2f
GS
2224 struct context *inc;
2225 struct vcd_user_opt save;
2226 struct vcd_prev prev;
2227
2228 inc = in->priv;
f4b4725b 2229
0ab36d2f 2230 /* Relase previously allocated resources. */
f4b4725b 2231 cleanup(in);
f4b4725b
SA
2232 g_string_truncate(in->buf, 0);
2233
0ab36d2f
GS
2234 /* Restore part of the context, init() won't run again. */
2235 save = inc->options;
2236 prev = inc->prev;
2237 memset(inc, 0, sizeof(*inc));
2238 inc->options = save;
2239 inc->prev = prev;
2240 inc->scope_prefix = g_string_new("\0");
4237ab9e 2241
f4b4725b
SA
2242 return SR_OK;
2243}
2244
0ab36d2f
GS
2245enum vcd_option_t {
2246 OPT_NUM_CHANS,
2247 OPT_DOWN_SAMPLE,
2248 OPT_SKIP_COUNT,
2249 OPT_COMPRESS,
2250 OPT_MAX,
2251};
2252
7db06394 2253static struct sr_option options[] = {
0ab36d2f
GS
2254 [OPT_NUM_CHANS] = {
2255 "numchannels", "Max number of sigrok channels",
2256 "The maximum number of sigrok channels to create for VCD input signals.",
2257 NULL, NULL,
2258 },
2259 [OPT_DOWN_SAMPLE] = {
2260 "downsample", "Downsampling factor",
2261 "Downsample the input file's samplerate, i.e. divide by the specified factor.",
2262 NULL, NULL,
2263 },
2264 [OPT_SKIP_COUNT] = {
2265 "skip", "Skip this many initial samples",
2266 "Skip samples until the specified timestamp. "
2267 "By default samples start at the first timestamp in the file. "
2268 "Value 0 creates samples starting at timestamp 0. "
2269 "Values above 0 only start processing at the given timestamp.",
2270 NULL, NULL,
2271 },
2272 [OPT_COMPRESS] = {
2273 "compress", "Compress idle periods",
2274 "Compress idle periods which are longer than the specified number of timescale ticks.",
2275 NULL, NULL,
2276 },
2277 [OPT_MAX] = ALL_ZERO,
7db06394
BV
2278};
2279
2c240774 2280static const struct sr_option *get_options(void)
7db06394
BV
2281{
2282 if (!options[0].def) {
0ab36d2f
GS
2283 options[OPT_NUM_CHANS].def = g_variant_ref_sink(g_variant_new_uint32(0));
2284 options[OPT_DOWN_SAMPLE].def = g_variant_ref_sink(g_variant_new_uint64(1));
dd8bec71 2285 options[OPT_SKIP_COUNT].def = g_variant_ref_sink(g_variant_new_uint64(~UINT64_C(0)));
0ab36d2f 2286 options[OPT_COMPRESS].def = g_variant_ref_sink(g_variant_new_uint64(0));
7db06394
BV
2287 }
2288
2289 return options;
2290}
2291
d4c93774 2292SR_PRIV struct sr_input_module input_vcd = {
99eaa206 2293 .id = "vcd",
7db06394 2294 .name = "VCD",
b20eb520 2295 .desc = "Value Change Dump data",
c7bc82ff 2296 .exts = (const char*[]){"vcd", NULL},
7db06394
BV
2297 .metadata = { SR_INPUT_META_HEADER | SR_INPUT_META_REQUIRED },
2298 .options = get_options,
99eaa206
PA
2299 .format_match = format_match,
2300 .init = init,
7db06394 2301 .receive = receive,
7066fd46 2302 .end = end,
7db06394 2303 .cleanup = cleanup,
f4b4725b 2304 .reset = reset,
99eaa206 2305};