]> sigrok.org Git - libsigrok.git/blame - src/hardware/sysclk-lwla/lwla1016.c
sysclk-lwla: Declare model_info structs as extern
[libsigrok.git] / src / hardware / sysclk-lwla / lwla1016.c
CommitLineData
be64f90b
DE
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2015 Daniel Elstner <daniel.kitta@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include "lwla.h"
22#include "protocol.h"
23
24/* Number of logic channels.
25 */
26#define NUM_CHANNELS 16
27
28/* Unit size for the sigrok logic datafeed.
29 */
30#define UNIT_SIZE ((NUM_CHANNELS + 7) / 8)
31
32/* Size of the acquisition buffer in device memory units.
33 */
34#define MEMORY_DEPTH (256 * 1024) /* 256k x 32 bit */
35
36/* Capture memory read start address.
37 */
38#define READ_START_ADDR 2
39
40/* Number of device memory units (32 bit) to read at a time.
41 */
42#define READ_CHUNK_LEN32 250
43
44/** LWLA1016 register addresses.
45 */
46enum reg_addr {
47 REG_CHAN_MASK = 0x1000, /* bit mask of enabled channels */
48
49 REG_DURATION = 0x1010, /* capture duration in ms */
50
51 REG_MEM_WR_PTR = 0x1070,
52 REG_MEM_RD_PTR = 0x1074,
53 REG_MEM_DATA = 0x1078,
54 REG_MEM_CTRL = 0x107C,
55
56 REG_CAP_COUNT = 0x10B0,
57
58 REG_TEST_ID = 0x10B4, /* read */
59 REG_TRG_SEL = 0x10B4, /* write */
60
61 REG_CAP_CTRL = 0x10B8,
62
63 REG_CAP_TOTAL = 0x10BC, /* read */
64 REG_DIV_COUNT = 0x10BC, /* write */
65};
66
67/** Flag bits for REG_MEM_CTRL.
68 */
69enum mem_ctrl_flag {
70 MEM_CTRL_RESET = 1 << 0,
71 MEM_CTRL_WRITE = 1 << 1,
72};
73
74/** Flag bits for REG_CAP_CTRL.
75 */
76enum cap_ctrl_flag {
77 CAP_CTRL_FIFO32_FULL = 1 << 0, /* "fifo32_ful" bit */
78 CAP_CTRL_FIFO64_FULL = 1 << 1, /* "fifo64_ful" bit */
79 CAP_CTRL_TRG_EN = 1 << 2, /* "trg_en" bit */
80 CAP_CTRL_CLR_TIMEBASE = 1 << 3, /* "do_clr_timebase" bit */
81 CAP_CTRL_FIFO_EMPTY = 1 << 4, /* "fifo_empty" bit */
82 CAP_CTRL_SAMPLE_EN = 1 << 5, /* "sample_en" bit */
83 CAP_CTRL_CNTR_NOT_ENDR = 1 << 6, /* "cntr_not_endr" bit */
84};
85
86/* Available FPGA configurations.
87 */
88enum fpga_config {
89 FPGA_100 = 0, /* 100 MS/s, no compression */
90 FPGA_100_TS, /* 100 MS/s, timing-state mode */
91};
92
93/* FPGA bitstream resource filenames.
94 */
95static const char bitstream_map[][32] = {
96 [FPGA_100] = "sysclk-lwla1016-100.rbf",
97 [FPGA_100_TS] = "sysclk-lwla1016-100-ts.rbf",
98};
99
100/* Demangle incoming sample data from the transfer buffer.
101 */
102static void read_response(struct acquisition_state *acq)
103{
104 uint32_t *in_p, *out_p;
7ed80817
DE
105 unsigned int words_left, num_words;
106 unsigned int max_samples, run_samples;
107 unsigned int i;
be64f90b
DE
108
109 words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
110 - acq->mem_addr_done;
111 /* Calculate number of samples to write into packet. */
112 max_samples = MIN(acq->samples_max - acq->samples_done,
113 PACKET_SIZE / UNIT_SIZE - acq->out_index);
114 run_samples = MIN(max_samples, 2 * words_left);
115
116 /* Round up in case the samples limit is an odd number. */
117 num_words = (run_samples + 1) / 2;
118 /*
119 * Without RLE the output index will always be a multiple of two
120 * samples (at least before reaching the samples limit), thus 32-bit
121 * alignment is guaranteed.
122 */
123 out_p = (uint32_t *)&acq->out_packet[acq->out_index * UNIT_SIZE];
124 in_p = &acq->xfer_buf_in[acq->in_index];
125 /*
126 * Transfer two samples at a time, taking care to swap the 16-bit
127 * halves of each input word but keeping the samples themselves in
128 * the original Little Endian order.
129 */
130 for (i = 0; i < num_words; i++)
131 out_p[i] = LROTATE(in_p[i], 16);
132
133 acq->in_index += num_words;
134 acq->mem_addr_done += num_words;
135 acq->out_index += run_samples;
136 acq->samples_done += run_samples;
137}
138
139/* Demangle and decompress incoming sample data from the transfer buffer.
140 */
141static void read_response_rle(struct acquisition_state *acq)
142{
143 uint32_t *in_p;
144 uint16_t *out_p;
7ed80817
DE
145 unsigned int words_left;
146 unsigned int max_samples, run_samples;
147 unsigned int wi, ri;
be64f90b
DE
148 uint32_t word;
149 uint16_t sample;
150
151 words_left = MIN(acq->mem_addr_next, acq->mem_addr_stop)
152 - acq->mem_addr_done;
153 in_p = &acq->xfer_buf_in[acq->in_index];
154
155 for (wi = 0;; wi++) {
156 /* Calculate number of samples to write into packet. */
157 max_samples = MIN(acq->samples_max - acq->samples_done,
158 PACKET_SIZE / UNIT_SIZE - acq->out_index);
159 run_samples = MIN(max_samples, acq->run_len);
160
161 /* Expand run-length samples into session packet. */
7ed80817 162 sample = GUINT16_TO_LE(acq->sample);
be64f90b
DE
163 out_p = &((uint16_t *)acq->out_packet)[acq->out_index];
164
165 for (ri = 0; ri < run_samples; ri++)
7ed80817 166 out_p[ri] = sample;
be64f90b
DE
167
168 acq->run_len -= run_samples;
169 acq->out_index += run_samples;
170 acq->samples_done += run_samples;
171
172 if (run_samples == max_samples)
173 break; /* packet full or sample limit reached */
174 if (wi >= words_left)
175 break; /* done with current transfer */
176
177 word = GUINT32_FROM_LE(in_p[wi]);
178 acq->sample = word >> 16;
179 acq->run_len = (word & 0xFFFF) + 1;
180 }
181 acq->in_index += wi;
182 acq->mem_addr_done += wi;
183}
184
185/* Select and transfer FPGA bitstream for the current configuration.
186 */
187static int apply_fpga_config(const struct sr_dev_inst *sdi)
188{
189 struct dev_context *devc;
190 struct drv_context *drvc;
191 int config;
192 int ret;
193
194 devc = sdi->priv;
195 drvc = sdi->driver->context;
196
197 if (sdi->status == SR_ST_INACTIVE)
198 return SR_OK; /* the LWLA1016 has no off state */
199
200 config = (devc->cfg_rle) ? FPGA_100_TS : FPGA_100;
201
202 if (config == devc->active_fpga_config)
203 return SR_OK; /* no change */
204
205 ret = lwla_send_bitstream(drvc->sr_ctx, sdi->conn,
206 bitstream_map[config]);
207 devc->active_fpga_config = (ret == SR_OK) ? config : FPGA_NOCONF;
208
209 return ret;
210}
211
212/* Perform initialization self test.
213 */
214static int device_init_check(const struct sr_dev_inst *sdi)
215{
216 uint32_t value;
217 int ret;
218
219 ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
220 if (ret != SR_OK)
221 return ret;
222
223 /* Ignore the value returned by the first read. */
224 ret = lwla_read_reg(sdi->conn, REG_TEST_ID, &value);
225 if (ret != SR_OK)
226 return ret;
227
228 if (value != 0x12345678) {
229 sr_err("Received invalid test word 0x%08X.", value);
230 return SR_ERR;
231 }
232 return SR_OK;
233}
234
235static int setup_acquisition(const struct sr_dev_inst *sdi)
236{
237 struct dev_context *devc;
238 struct sr_usb_dev_inst *usb;
239 struct acquisition_state *acq;
240 uint32_t divider_count;
241 int ret;
242
243 devc = sdi->priv;
244 usb = sdi->conn;
245 acq = devc->acquisition;
246
247 acq->reg_seq_pos = 0;
248 acq->reg_seq_len = 0;
249
250 lwla_queue_regval(acq, REG_CHAN_MASK, devc->channel_mask);
251
252 if (devc->samplerate > 0 && devc->samplerate < SR_MHZ(100))
253 divider_count = SR_MHZ(100) / devc->samplerate - 1;
254 else
255 divider_count = 0;
256
257 lwla_queue_regval(acq, REG_DIV_COUNT, divider_count);
258
259 lwla_queue_regval(acq, REG_CAP_CTRL, 0);
260 lwla_queue_regval(acq, REG_DURATION, 0);
261
262 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
263 lwla_queue_regval(acq, REG_MEM_CTRL, 0);
264 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_WRITE);
265
266 lwla_queue_regval(acq, REG_CAP_CTRL,
267 CAP_CTRL_FIFO32_FULL | CAP_CTRL_FIFO64_FULL);
268
269 lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_FIFO_EMPTY);
270 lwla_queue_regval(acq, REG_CAP_CTRL, 0);
271
272 lwla_queue_regval(acq, REG_CAP_COUNT, MEMORY_DEPTH - 5);
273
274 lwla_queue_regval(acq, REG_TRG_SEL,
275 ((devc->trigger_edge_mask & 0xFFFF) << 16)
276 | (devc->trigger_values & 0xFFFF));
277
278 ret = lwla_write_regs(usb, acq->reg_sequence, acq->reg_seq_len);
279 acq->reg_seq_len = 0;
280
281 return ret;
282}
283
284static int prepare_request(const struct sr_dev_inst *sdi)
285{
286 struct dev_context *devc;
287 struct acquisition_state *acq;
7ed80817 288 unsigned int count;
be64f90b
DE
289
290 devc = sdi->priv;
291 acq = devc->acquisition;
292
293 acq->xfer_out->length = 0;
294 acq->reg_seq_pos = 0;
295 acq->reg_seq_len = 0;
296
297 switch (devc->state) {
298 case STATE_START_CAPTURE:
299 lwla_queue_regval(acq, REG_CAP_CTRL, CAP_CTRL_TRG_EN
300 | ((devc->trigger_mask & 0xFFFF) << 16));
301 break;
302 case STATE_STOP_CAPTURE:
303 lwla_queue_regval(acq, REG_CAP_CTRL, 0);
304 lwla_queue_regval(acq, REG_DIV_COUNT, 0);
305 break;
306 case STATE_READ_PREPARE:
307 lwla_queue_regval(acq, REG_MEM_CTRL, 0);
308 break;
309 case STATE_READ_FINISH:
310 lwla_queue_regval(acq, REG_MEM_CTRL, MEM_CTRL_RESET);
311 lwla_queue_regval(acq, REG_MEM_CTRL, 0);
312 break;
313 case STATE_STATUS_REQUEST:
314 lwla_queue_regval(acq, REG_CAP_CTRL, 0);
315 lwla_queue_regval(acq, REG_MEM_WR_PTR, 0);
316 lwla_queue_regval(acq, REG_DURATION, 0);
317 break;
318 case STATE_LENGTH_REQUEST:
319 lwla_queue_regval(acq, REG_CAP_COUNT, 0);
320 break;
321 case STATE_READ_REQUEST:
be64f90b
DE
322 count = MIN(READ_CHUNK_LEN32,
323 acq->mem_addr_stop - acq->mem_addr_next);
324
325 acq->xfer_buf_out[0] = LWLA_WORD(CMD_READ_MEM32);
326 acq->xfer_buf_out[1] = LWLA_WORD_0(acq->mem_addr_next);
327 acq->xfer_buf_out[2] = LWLA_WORD_1(acq->mem_addr_next);
328 acq->xfer_buf_out[3] = LWLA_WORD_0(count);
329 acq->xfer_buf_out[4] = LWLA_WORD_1(count);
330 acq->xfer_out->length = 5 * sizeof(acq->xfer_buf_out[0]);
331
332 acq->mem_addr_next += count;
333 break;
334 default:
335 sr_err("BUG: unhandled request state %d.", devc->state);
336 return SR_ERR_BUG;
337 }
338
339 return SR_OK;
340}
341
342static int handle_response(const struct sr_dev_inst *sdi)
343{
344 struct dev_context *devc;
345 struct acquisition_state *acq;
346 int expect_len;
347
348 devc = sdi->priv;
349 acq = devc->acquisition;
350
351 switch (devc->state) {
352 case STATE_STATUS_REQUEST:
353 acq->status = acq->reg_sequence[0].val & 0x7F;
354 acq->mem_addr_fill = acq->reg_sequence[1].val;
355 acq->duration_now = acq->reg_sequence[2].val;
356 break;
357 case STATE_LENGTH_REQUEST:
358 acq->mem_addr_next = READ_START_ADDR;
359 acq->mem_addr_stop = acq->reg_sequence[0].val + READ_START_ADDR - 1;
360 break;
361 case STATE_READ_REQUEST:
362 expect_len = (acq->mem_addr_next - acq->mem_addr_done
363 + acq->in_index) * sizeof(acq->xfer_buf_in[0]);
364 if (acq->xfer_in->actual_length != expect_len) {
365 sr_err("Received size %d does not match expected size %d.",
366 acq->xfer_in->actual_length, expect_len);
367 devc->transfer_error = TRUE;
368 return SR_ERR;
369 }
370 if (acq->rle_enabled)
371 read_response_rle(acq);
372 else
373 read_response(acq);
374 break;
375 default:
376 sr_err("BUG: unhandled response state %d.", devc->state);
377 return SR_ERR_BUG;
378 }
379
380 return SR_OK;
381}
382
383/* Model descriptor for the LWLA1016.
384 */
385SR_PRIV const struct model_info lwla1016_info = {
386 .name = "LWLA1016",
387 .num_channels = NUM_CHANNELS,
388
389 .num_devopts = 5,
390 .devopts = {
391 SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
392 SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
393 SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
394 SR_CONF_TRIGGER_MATCH | SR_CONF_LIST,
395 SR_CONF_RLE | SR_CONF_GET | SR_CONF_SET,
396 },
397 .num_samplerates = 19,
398 .samplerates = {
399 SR_MHZ(100),
400 SR_MHZ(50), SR_MHZ(20), SR_MHZ(10),
401 SR_MHZ(5), SR_MHZ(2), SR_MHZ(1),
402 SR_KHZ(500), SR_KHZ(200), SR_KHZ(100),
403 SR_KHZ(50), SR_KHZ(20), SR_KHZ(10),
404 SR_KHZ(5), SR_KHZ(2), SR_KHZ(1),
405 SR_HZ(500), SR_HZ(200), SR_HZ(100),
406 },
407
408 .apply_fpga_config = &apply_fpga_config,
409 .device_init_check = &device_init_check,
410 .setup_acquisition = &setup_acquisition,
411
412 .prepare_request = &prepare_request,
413 .handle_response = &handle_response,
414};