]> sigrok.org Git - libsigrok.git/blame - src/hardware/saleae-logic-pro/protocol.c
drivers: Remove some uneeded 'ret' variables.
[libsigrok.git] / src / hardware / saleae-logic-pro / protocol.c
CommitLineData
a8e913c4
JL
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2017 Jan Luebbe <jluebbe@lasnet.de>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
ca7d19b5 21#include <string.h>
a8e913c4
JL
22#include "protocol.h"
23
ca7d19b5
JL
24#define COMMAND_START_CAPTURE 0x01
25#define COMMAND_STOP_CAPTURE 0x02
26#define COMMAND_READ_EEPROM 0x07
27#define COMMAND_WRITE_REG 0x80
28#define COMMAND_READ_REG 0x81
29#define COMMAND_WRITE_I2C 0x87
30#define COMMAND_READ_I2C 0x88
31#define COMMAND_WAKE_I2C 0x89
32#define COMMAND_READ_FW_VER 0x8b
33
34#define REG_LED_RED 0x0f
35#define REG_LED_GREEN 0x10
36#define REG_LED_BLUE 0x11
37
38static void iterate_lfsr(const struct sr_dev_inst *sdi)
39{
40 struct dev_context *devc = sdi->priv;
41 uint32_t lfsr = devc->lfsr;
42 int i, max;
43
44 max = (lfsr & 0x1f) + 34;
45 for (i = 0; i <= max; i++) {
46 lfsr = (lfsr >> 1) | \
47 ((lfsr ^ \
48 (lfsr >> 1) ^ \
49 (lfsr >> 21) ^ \
50 (lfsr >> 31) \
51 ) << 31);
52 }
53 sr_dbg("Iterate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
54 devc->lfsr = lfsr;
55}
56
57static void encrypt(const struct sr_dev_inst *sdi, const uint8_t *in, uint8_t *out, uint8_t len)
58{
59 struct dev_context *devc = sdi->priv;
60 uint32_t lfsr = devc->lfsr;
61 uint8_t value, mask;
62 int i;
63
64 for (i = 0; i < len; i++) {
65 value = in[i];
bb0c5271 66 mask = lfsr >> (i % 4 * 8);
ca7d19b5
JL
67 if (i == 0)
68 value = (value & 0x28) | ((value ^ mask) & ~0x28);
69 else
70 value = value ^ mask;
71 out[i] = value;
72 }
73 iterate_lfsr(sdi);
74}
75
76static void decrypt(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
77{
78 struct dev_context *devc = sdi->priv;
79 uint32_t lfsr = devc->lfsr;
80 int i;
81
bb0c5271
UH
82 for (i = 0; i < len; i++)
83 data[i] ^= (lfsr >> (i % 4 * 8));
ca7d19b5
JL
84 iterate_lfsr(sdi);
85}
86
87static int transact(const struct sr_dev_inst *sdi,
88 const uint8_t *req, uint8_t req_len,
89 uint8_t *rsp, uint8_t rsp_len)
90{
91 struct sr_usb_dev_inst *usb = sdi->conn;
92 uint8_t *req_enc;
93 uint8_t rsp_dummy[1] = {};
94 int ret, xfer;
95
96 if (req_len < 2 || req_len > 64 || rsp_len > 128 ||
97 !req || (rsp_len > 0 && !rsp))
98 return SR_ERR_ARG;
99
100 req_enc = g_malloc(req_len);
101 encrypt(sdi, req, req_enc, req_len);
102
103 ret = libusb_bulk_transfer(usb->devhdl, 1, req_enc, req_len, &xfer, 1000);
104 if (ret != 0) {
105 sr_dbg("Failed to send request 0x%02x: %s.",
106 req[1], libusb_error_name(ret));
107 return SR_ERR;
108 }
109 if (xfer != req_len) {
110 sr_dbg("Failed to send request 0x%02x: incorrect length "
111 "%d != %d.", req[1], xfer, req_len);
112 return SR_ERR;
113 }
114
bb0c5271 115 if (req[0] == 0x20) { /* Reseed. */
ca7d19b5
JL
116 return SR_OK;
117 } else if (rsp_len == 0) {
118 rsp = rsp_dummy;
119 rsp_len = sizeof(rsp_dummy);
120 }
121
122 ret = libusb_bulk_transfer(usb->devhdl, 0x80 | 1, rsp, rsp_len,
123 &xfer, 1000);
124 if (ret != 0) {
125 sr_dbg("Failed to receive response to request 0x%02x: %s.",
126 req[1], libusb_error_name(ret));
127 return SR_ERR;
128 }
129 if (xfer != rsp_len) {
130 sr_dbg("Failed to receive response to request 0x%02x: "
131 "incorrect length %d != %d.", req[1], xfer, rsp_len);
132 return SR_ERR;
133 }
134
135 decrypt(sdi, rsp, rsp_len);
136
137 return SR_OK;
138}
139
140static int reseed(const struct sr_dev_inst *sdi)
141{
142 struct dev_context *devc = sdi->priv;
143 uint8_t req[] = {0x20, 0x24, 0x4b, 0x35, 0x8e};
144
145 devc->lfsr = 0;
146 return transact(sdi, req, sizeof(req), NULL, 0);
147}
148
149static int write_regs(const struct sr_dev_inst *sdi, uint8_t (*regs)[2], uint8_t cnt)
150{
151 uint8_t req[64];
152 int i;
153
154 if (cnt < 1 || cnt > 30)
155 return SR_ERR_ARG;
156
157 req[0] = 0x00;
158 req[1] = COMMAND_WRITE_REG;
159 req[2] = cnt;
160
161 for (i = 0; i < cnt; i++) {
162 req[3 + 2 * i] = regs[i][0];
163 req[4 + 2 * i] = regs[i][1];
164 }
165
bb0c5271 166 return transact(sdi, req, 3 + (2 * cnt), NULL, 0);
ca7d19b5
JL
167}
168
169static int write_reg(const struct sr_dev_inst *sdi,
170 uint8_t address, uint8_t value)
171{
172 uint8_t regs[2] = {address, value};
173
174 return write_regs(sdi, &regs, 1);
175}
176
177static int get_firmware_version(const struct sr_dev_inst *sdi)
a8e913c4 178{
ca7d19b5
JL
179 uint8_t req[2] = {0x00, COMMAND_READ_FW_VER};
180 uint8_t rsp[128] = {};
181 int ret;
182
183 ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
184 if (ret == SR_OK) {
185 rsp[63] = 0;
186 sr_dbg("fw-version: %s", rsp);
187 }
188
189 return ret;
190}
a8e913c4 191
ca7d19b5
JL
192static int read_i2c(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t len)
193{
194 uint8_t req[5];
bb0c5271 195 uint8_t rsp[1 + 128];
ca7d19b5 196 int ret;
a8e913c4 197
ca7d19b5
JL
198 if (len < 1 || len > 128 || !data)
199 return SR_ERR_ARG;
a8e913c4 200
ca7d19b5
JL
201 req[0] = 0x00;
202 req[1] = COMMAND_READ_I2C;
bb0c5271 203 req[2] = 0xc0; /* Fixed address */
ca7d19b5 204 req[3] = len;
bb0c5271 205 req[4] = 0; /* Len MSB? */
a8e913c4 206
ca7d19b5 207 ret = transact(sdi, req, sizeof(req), rsp, 1 + len);
bb0c5271 208 if (ret != SR_OK)
ca7d19b5 209 return ret;
ca7d19b5
JL
210 if (rsp[0] != 0x02) {
211 sr_dbg("Failed to do I2C read (0x%02x).", rsp[0]);
212 return SR_ERR;
a8e913c4
JL
213 }
214
bb0c5271 215 memcpy(data, rsp + 1, len);
ca7d19b5
JL
216 return SR_OK;
217}
218
219static int write_i2c(const struct sr_dev_inst *sdi, const uint8_t *data, uint8_t len)
220{
221 uint8_t req[5 + 128];
222 uint8_t rsp[1];
223 int ret;
224
225 if (len < 1 || len > 128 || !data)
226 return SR_ERR_ARG;
227
228 req[0] = 0x00;
229 req[1] = COMMAND_WRITE_I2C;
bb0c5271 230 req[2] = 0xc0; /* Fixed address */
ca7d19b5 231 req[3] = len;
bb0c5271 232 req[4] = 0; /* Len MSB? */
ca7d19b5
JL
233 memcpy(req + 5, data, len);
234
235 ret = transact(sdi, req, 5 + len, rsp, sizeof(rsp));
bb0c5271 236 if (ret != SR_OK)
ca7d19b5 237 return ret;
ca7d19b5
JL
238 if (rsp[0] != 0x02) {
239 sr_dbg("Failed to do I2C write (0x%02x).", rsp[0]);
240 return SR_ERR;
241 }
242
243 return SR_OK;
244}
245
246static int wake_i2c(const struct sr_dev_inst *sdi)
247{
248 uint8_t req[] = {0x00, COMMAND_WAKE_I2C};
249 uint8_t rsp[1] = {};
bb0c5271 250 uint8_t i2c_rsp[1 + 1 + 2] = {};
ca7d19b5
JL
251 int ret;
252
253 ret = transact(sdi, req, sizeof(req), rsp, sizeof(rsp));
bb0c5271 254 if (ret != SR_OK)
ca7d19b5 255 return ret;
ca7d19b5
JL
256 if (rsp[0] != 0x00) {
257 sr_dbg("Failed to do I2C wake trigger (0x%02x).", rsp[0]);
258 return SR_ERR;
259 }
260
261 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
262 if (ret != SR_OK) {
263 return ret;
264 }
265 if (i2c_rsp[1] != 0x11) {
266 sr_dbg("Failed to do I2C wake read (0x%02x).", i2c_rsp[0]);
267 return SR_ERR;
268 }
269
270 return SR_OK;
271}
272
273static int crypto_random(const struct sr_dev_inst *sdi, uint8_t *data)
274{
275 uint8_t i2c_req[8] = {0x03, 0x07, 0x1b, 0x00, 0x00, 0x00, 0x24, 0xcd};
bb0c5271 276 uint8_t i2c_rsp[1 + 32 + 2] = {};
ca7d19b5
JL
277 int ret;
278
279 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
bb0c5271 280 if (ret != SR_OK)
ca7d19b5 281 return ret;
ca7d19b5 282
bb0c5271 283 g_usleep(100000); /* TODO: Poll instead. */
ca7d19b5
JL
284
285 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
bb0c5271 286 if (ret != SR_OK)
ca7d19b5 287 return ret;
ca7d19b5 288
bb0c5271
UH
289 if (data)
290 memcpy(data, i2c_rsp + 1, 32);
ca7d19b5
JL
291
292 return SR_OK;
293}
294
295static int crypto_nonce(const struct sr_dev_inst *sdi, uint8_t *data)
296{
bb0c5271
UH
297 uint8_t i2c_req[6 + 20 + 2] = {0x03, 0x1b, 0x16, 0x00, 0x00, 0x00};
298 uint8_t i2c_rsp[1 + 32 + 2] = {};
ca7d19b5
JL
299 int ret;
300
bb0c5271 301 /* CRC */
ca7d19b5
JL
302 i2c_req[26] = 0x7d;
303 i2c_req[27] = 0xe0;
304
305 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
bb0c5271 306 if (ret != SR_OK)
ca7d19b5 307 return ret;
ca7d19b5 308
bb0c5271 309 g_usleep(100000); /* TODO: Poll instead. */
ca7d19b5
JL
310
311 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
bb0c5271 312 if (ret != SR_OK)
ca7d19b5 313 return ret;
ca7d19b5 314
bb0c5271
UH
315 if (data)
316 memcpy(data, i2c_rsp + 1, 32);
ca7d19b5
JL
317
318 return SR_OK;
319}
320
321static int crypto_sign(const struct sr_dev_inst *sdi, uint8_t *data, uint8_t *crc)
322{
323 uint8_t i2c_req[8] = {0x03, 0x07, 0x41, 0x80, 0x00, 0x00, 0x28, 0x05};
bb0c5271 324 uint8_t i2c_rsp[1 + 64 + 2] = {};
ca7d19b5
JL
325 int ret;
326
327 ret = write_i2c(sdi, i2c_req, sizeof(i2c_req));
bb0c5271 328 if (ret != SR_OK)
ca7d19b5 329 return ret;
ca7d19b5 330
bb0c5271 331 g_usleep(100000); /* TODO: Poll instead. */
ca7d19b5
JL
332
333 ret = read_i2c(sdi, i2c_rsp, sizeof(i2c_rsp));
bb0c5271 334 if (ret != SR_OK)
ca7d19b5 335 return ret;
ca7d19b5 336
bb0c5271
UH
337 memcpy(data, i2c_rsp + 1, 64);
338 memcpy(crc, i2c_rsp + 1 + 64, 2);
ca7d19b5
JL
339
340 return SR_OK;
341}
342
343static int authenticate(const struct sr_dev_inst *sdi)
344{
345 struct dev_context *devc = sdi->priv;
346 uint8_t random[32] = {};
347 uint8_t nonce[32] = {};
348 uint8_t sig[64] = {};
349 uint8_t sig_crc[64] = {};
350 uint32_t lfsr;
351 int i, ret;
352
353 ret = wake_i2c(sdi);
354 if (ret != SR_OK)
355 return ret;
356
357 ret = crypto_random(sdi, random);
358 if (ret != SR_OK)
359 return ret;
360 sr_dbg("random: 0x%02x 0x%02x 0x%02x 0x%02x", random[0], random[1], random[2], random[3]);
361
362 ret = crypto_nonce(sdi, nonce);
363 if (ret != SR_OK)
364 return ret;
365 sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
366
367 ret = crypto_nonce(sdi, nonce);
368 if (ret != SR_OK)
369 return ret;
370 sr_dbg("nonce: 0x%02x 0x%02x 0x%02x 0x%02x", nonce[0], nonce[1], nonce[2], nonce[3]);
371
372 ret = crypto_sign(sdi, sig, sig_crc);
373 if (ret != SR_OK)
374 return ret;
375 sr_dbg("sig: 0x%02x 0x%02x 0x%02x 0x%02x", sig[0], sig[1], sig[2], sig[3]);
376 sr_dbg("sig crc: 0x%02x 0x%02x", sig_crc[0], sig_crc[1]);
377
378 lfsr = 0;
379 for (i = 0; i < 28; i++)
bb0c5271 380 lfsr ^= nonce[i] << (8 * (i % 4));
ca7d19b5
JL
381 lfsr ^= sig_crc[0] | sig_crc[1] << 8;
382
383 sr_dbg("Authenticate 0x%08x -> 0x%08x", devc->lfsr, lfsr);
384 devc->lfsr = lfsr;
385
386 return SR_OK;
387}
388
fbbafc69 389#if 0
ca7d19b5
JL
390static int set_led(const struct sr_dev_inst *sdi, uint8_t r, uint8_t g, uint8_t b)
391{
392 uint8_t regs[][2] = {
393 {REG_LED_RED, r},
394 {REG_LED_GREEN, g},
395 {REG_LED_BLUE, b},
396 };
397
398 authenticate(sdi);
399
400 return write_regs(sdi, regs, G_N_ELEMENTS(regs));
401}
fbbafc69 402#endif
ca7d19b5
JL
403
404static int configure_channels(const struct sr_dev_inst *sdi)
405{
406 struct dev_context *devc = sdi->priv;
407 const struct sr_channel *c;
408 const GSList *l;
409 uint16_t mask;
410
411 devc->dig_channel_cnt = 0;
412 devc->dig_channel_mask = 0;
413 for (l = sdi->channels; l; l = l->next) {
414 c = l->data;
415 if (!c->enabled)
416 continue;
417
418 mask = 1 << c->index;
419 devc->dig_channel_masks[devc->dig_channel_cnt++] = mask;
420 devc->dig_channel_mask |= mask;
421
422 }
423 sr_dbg("%d channels enabled (0x%04x)",
bb0c5271 424 devc->dig_channel_cnt, devc->dig_channel_mask);
ca7d19b5
JL
425
426 return SR_OK;
427}
428
b6189f7c 429SR_PRIV int saleae_logic_pro_init(const struct sr_dev_inst *sdi)
ca7d19b5
JL
430{
431 reseed(sdi);
432 get_firmware_version(sdi);
bb0c5271 433 /* Setting the LED doesn't work yet. */
ca7d19b5
JL
434 /* set_led(sdi, 0x00, 0x00, 0xff); */
435
436 return SR_OK;
437}
438
b6189f7c 439SR_PRIV int saleae_logic_pro_prepare(const struct sr_dev_inst *sdi)
ca7d19b5
JL
440{
441 struct dev_context *devc = sdi->priv;
442 uint8_t regs_unknown[][2] = {
443 {0x03, 0x0f},
444 {0x04, 0x00},
445 {0x05, 0x00},
446 };
447 uint8_t regs_config[][2] = {
448 {0x00, 0x00},
bb0c5271
UH
449 {0x08, 0x00}, /* Analog channel mask (LSB) */
450 {0x09, 0x00}, /* Analog channel mask (MSB) */
451 {0x06, 0x01}, /* Digital channel mask (LSB) */
452 {0x07, 0x00}, /* Digital channel mask (MSB) */
453 {0x0a, 0x00}, /* Analog sample rate? */
454 {0x0b, 0x64}, /* Digital sample rate? */
ca7d19b5 455 {0x0c, 0x00},
bb0c5271
UH
456 {0x0d, 0x00}, /* Analog mux rate? */
457 {0x0e, 0x01}, /* Digital mux rate? */
ca7d19b5
JL
458 {0x12, 0x04},
459 {0x13, 0x00},
bb0c5271 460 {0x14, 0xff}, /* Pre-divider? */
ca7d19b5
JL
461 };
462 uint8_t start_req[] = {0x00, 0x01};
463 uint8_t start_rsp[2] = {};
464
465 configure_channels(sdi);
466
bb0c5271 467 /* Digital channel mask and muxing */
ca7d19b5
JL
468 regs_config[3][1] = devc->dig_channel_mask;
469 regs_config[4][1] = devc->dig_channel_mask >> 8;
470 regs_config[9][1] = devc->dig_channel_cnt;
471
bb0c5271 472 /* Samplerate */
ca7d19b5
JL
473 switch (devc->dig_samplerate) {
474 case SR_MHZ(1):
475 regs_config[6][1] = 0x64;
476 break;
477 case SR_MHZ(2):
478 regs_config[6][1] = 0x32;
479 break;
480 case SR_KHZ(2500):
481 regs_config[6][1] = 0x28;
482 break;
483 case SR_MHZ(10):
484 regs_config[6][1] = 0x0a;
485 break;
486 case SR_MHZ(25):
487 regs_config[6][1] = 0x04;
488 regs_config[12][1] = 0x80;
489 break;
490 case SR_MHZ(50):
491 regs_config[6][1] = 0x02;
492 regs_config[12][1] = 0x40;
493 break;
494 default:
495 return SR_ERR_ARG;
496 }
497
498 authenticate(sdi);
499
500 write_reg(sdi, 0x15, 0x03);
501 write_regs(sdi, regs_unknown, G_N_ELEMENTS(regs_unknown));
502 write_regs(sdi, regs_config, G_N_ELEMENTS(regs_config));
503
504 transact(sdi, start_req, sizeof(start_req), start_rsp, sizeof(start_rsp));
505
506 return SR_OK;
507}
508
b6189f7c 509SR_PRIV int saleae_logic_pro_start(const struct sr_dev_inst *sdi)
ca7d19b5
JL
510{
511 struct dev_context *devc = sdi->priv;
512
513 devc->conv_size = 0;
514 devc->batch_index = 0;
515
516 write_reg(sdi, 0x00, 0x01);
517
518 return SR_OK;
519}
520
b6189f7c 521SR_PRIV int saleae_logic_pro_stop(const struct sr_dev_inst *sdi)
ca7d19b5
JL
522{
523 uint8_t stop_req[] = {0x00, 0x02};
524 uint8_t stop_rsp[2] = {};
525
526 write_reg(sdi, 0x00, 0x00);
527 transact(sdi, stop_req, sizeof(stop_req), stop_rsp, sizeof(stop_rsp));
528
529 return SR_OK;
530}
531
b6189f7c 532static void saleae_logic_pro_send_data(const struct sr_dev_inst *sdi,
ca7d19b5
JL
533 void *data, size_t length, size_t unitsize)
534{
535 const struct sr_datafeed_logic logic = {
536 .length = length,
537 .unitsize = unitsize,
538 .data = data
539 };
540
541 const struct sr_datafeed_packet packet = {
542 .type = SR_DF_LOGIC,
543 .payload = &logic
544 };
545
546 sr_session_send(sdi, &packet);
547}
548
549/*
550 * One batch from the device consists of 32 samples per active digital channel.
551 * This stream of batches is packed into USB packets with 16384 bytes each.
552 */
b6189f7c 553static void saleae_logic_pro_convert_data(const struct sr_dev_inst *sdi,
ca7d19b5
JL
554 const uint32_t *src, size_t srccnt)
555{
556 struct dev_context *devc = sdi->priv;
557 uint8_t *dst = devc->conv_buffer;
558 uint32_t samples;
559 uint16_t channel_mask;
560 unsigned int sample_index, batch_index;
561 uint16_t *dst_batch;
562
bb0c5271
UH
563 /* Copy partial batch to the beginning. */
564 memcpy(dst, dst + devc->conv_size, CONV_BATCH_SIZE);
565 /* Reset converted size. */
ca7d19b5
JL
566 devc->conv_size = 0;
567
568 batch_index = devc->batch_index;
569 while (srccnt--) {
570 samples = *src++;
571 dst_batch = (uint16_t*)dst;
572
bb0c5271 573 /* First index of the batch. */
ca7d19b5
JL
574 if (batch_index == 0)
575 memset(dst, 0, CONV_BATCH_SIZE);
576
bb0c5271 577 /* Convert one channel. */
ca7d19b5
JL
578 channel_mask = devc->dig_channel_masks[batch_index];
579 for (sample_index = 0; sample_index <= 31; sample_index++)
bb0c5271 580 if ((samples >> (31 - sample_index)) & 1)
ca7d19b5
JL
581 dst_batch[sample_index] |= channel_mask;
582
bb0c5271 583 /* Last index of the batch. */
ca7d19b5
JL
584 if (++batch_index == devc->dig_channel_cnt) {
585 devc->conv_size += CONV_BATCH_SIZE;
586 batch_index = 0;
587 dst += CONV_BATCH_SIZE;
588 }
589 }
590 devc->batch_index = batch_index;
591}
592
b6189f7c 593SR_PRIV void LIBUSB_CALL saleae_logic_pro_receive_data(struct libusb_transfer *transfer)
ca7d19b5
JL
594{
595 const struct sr_dev_inst *sdi = transfer->user_data;
596 struct dev_context *devc = sdi->priv;
597 int ret;
598
599 switch (transfer->status) {
600 case LIBUSB_TRANSFER_NO_DEVICE:
601 sr_dbg("FIXME no device");
602 return;
603 case LIBUSB_TRANSFER_COMPLETED:
604 case LIBUSB_TRANSFER_TIMED_OUT: /* We may have received some data though. */
605 break;
606 default:
bb0c5271 607 /* FIXME */
ca7d19b5
JL
608 return;
609 }
610
bb0c5271 611 saleae_logic_pro_convert_data(sdi, (uint32_t*)transfer->buffer, 16 * 1024 / 4);
b6189f7c 612 saleae_logic_pro_send_data(sdi, devc->conv_buffer, devc->conv_size, 2);
ca7d19b5
JL
613
614 if ((ret = libusb_submit_transfer(transfer)) != LIBUSB_SUCCESS)
615 sr_dbg("FIXME resubmit failed");
a8e913c4 616}