]> sigrok.org Git - libsigrok.git/blame - src/hardware/hp-3457a/protocol.c
hp-3457a: Implement AC, ACDC, and four-wire resistance modes
[libsigrok.git] / src / hardware / hp-3457a / protocol.c
CommitLineData
00b2a092
AG
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2016 Alexandru Gagniuc <mr.nuke.me@gmail.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
db23af7f
AG
21#include <math.h>
22#include <scpi.h>
00b2a092
AG
23#include "protocol.h"
24
2c04f943
AG
25static int set_mq_volt(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags);
26static int set_mq_amp(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags);
27static int set_mq_ohm(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags);
db23af7f 28/*
db23af7f
AG
29 * The source for the frequency measurement can be either AC voltage, AC+DC
30 * voltage, AC current, or AC+DC current. Configuring this is not yet
31 * supported. For details, see "FSOURCE" command.
2c04f943
AG
32 * The set_mode function is optional and can be set to NULL, but in that case
33 * a cmd string must be provided.
db23af7f
AG
34 */
35static const struct {
36 enum sr_mq mq;
37 enum sr_unit unit;
38 const char *cmd;
2c04f943 39 int (*set_mode)(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags);
db23af7f 40} sr_mq_to_cmd_map[] = {
2c04f943
AG
41 { SR_MQ_VOLTAGE, SR_UNIT_VOLT, "DCV", set_mq_volt },
42 { SR_MQ_CURRENT, SR_UNIT_AMPERE, "DCI", set_mq_amp },
43 { SR_MQ_RESISTANCE, SR_UNIT_OHM, "OHM", set_mq_ohm },
44 { SR_MQ_FREQUENCY, SR_UNIT_HERTZ, "FREQ", NULL },
db23af7f
AG
45};
46
47static const struct rear_card_info rear_card_parameters[] = {
48 {
49 .type = REAR_TERMINALS,
50 .card_id = 0,
51 .name = "Rear terminals",
52 .cg_name = "rear",
53 }, {
54 .type = HP_44491A,
55 .card_id = 44491,
56 .name = "44491A Armature Relay Multiplexer",
57 .cg_name = "44491a",
58 }, {
59 .type = HP_44492A,
60 .card_id = 44492,
61 .name = "44492A Reed Relay Multiplexer",
62 .cg_name = "44492a",
63 }
64};
65
2c04f943
AG
66static int send_mq_ac_dc(struct sr_scpi_dev_inst *scpi, const char *mode,
67 enum sr_mqflag flags)
68{
69 const char *ac_flag, *dc_flag;
70
71 if (flags & ~(SR_MQFLAG_AC | SR_MQFLAG_DC))
72 return SR_ERR_NA;
73
74 ac_flag = (flags & SR_MQFLAG_AC) ? "AC" : "";
75 dc_flag = "";
76 /* Must specify DC measurement when AC flag is not given. */
77 if ((flags & SR_MQFLAG_DC) || !(flags & SR_MQFLAG_AC))
78 dc_flag = "DC";
79
80 return sr_scpi_send(scpi, "%s%s%s", ac_flag, dc_flag, mode);
81}
82
83static int set_mq_volt(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags)
84{
85 return send_mq_ac_dc(scpi, "V", flags);
86}
87
88static int set_mq_amp(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags)
89{
90 return send_mq_ac_dc(scpi, "I", flags);
91}
92
93static int set_mq_ohm(struct sr_scpi_dev_inst *scpi, enum sr_mqflag flags)
94{
95 const char *ohm_flag;
96
97 if (flags & ~(SR_MQFLAG_FOUR_WIRE))
98 return SR_ERR_NA;
99
100 ohm_flag = (flags & SR_MQFLAG_FOUR_WIRE) ? "F" : "";
101 return sr_scpi_send(scpi, "OHM%s", ohm_flag);
102}
103
104SR_PRIV int hp_3457a_set_mq(const struct sr_dev_inst *sdi, enum sr_mq mq,
105 enum sr_mqflag mq_flags)
db23af7f
AG
106{
107 int ret;
108 size_t i;
109 struct sr_scpi_dev_inst *scpi = sdi->conn;
110 struct dev_context *devc = sdi->priv;
111
112 for (i = 0; i < ARRAY_SIZE(sr_mq_to_cmd_map); i++) {
113 if (sr_mq_to_cmd_map[i].mq != mq)
114 continue;
2c04f943
AG
115 if (sr_mq_to_cmd_map[i].set_mode) {
116 ret = sr_mq_to_cmd_map[i].set_mode(scpi, mq_flags);
117 } else {
118 ret = sr_scpi_send(scpi, sr_mq_to_cmd_map[i].cmd);
119 }
db23af7f
AG
120 if (ret == SR_OK) {
121 devc->measurement_mq = sr_mq_to_cmd_map[i].mq;
2c04f943 122 devc->measurement_mq_flags = mq_flags;
db23af7f
AG
123 devc->measurement_unit = sr_mq_to_cmd_map[i].unit;
124 }
125 return ret;
126 }
127
128 return SR_ERR_NA;
129}
130
131SR_PRIV const struct rear_card_info *hp_3457a_probe_rear_card(struct sr_scpi_dev_inst *scpi)
132{
133 size_t i;
134 float card_fval;
135 unsigned int card_id;
136 const struct rear_card_info *rear_card = NULL;
137
138 if (sr_scpi_get_float(scpi, "OPT?", &card_fval) != SR_OK)
139 return NULL;
140
141 card_id = (unsigned int)card_fval;
142
143 for (i = 0; i < ARRAY_SIZE(rear_card_parameters); i++) {
144 if (rear_card_parameters[i].card_id == card_id) {
145 rear_card = rear_card_parameters + i;
146 break;
147 }
148 }
149
150 if (!rear_card)
151 return NULL;
152
153 sr_info("Found %s.", rear_card->name);
154
155 return rear_card;
156}
157
158SR_PRIV int hp_3457a_set_nplc(const struct sr_dev_inst *sdi, float nplc)
159{
160 int ret;
161 struct sr_scpi_dev_inst *scpi = sdi->conn;
162 struct dev_context *devc = sdi->priv;
163
164 if ((nplc < 1E-6) || (nplc > 100))
165 return SR_ERR_ARG;
166
167 /* Only need one digit of precision here. */
168 ret = sr_scpi_send(scpi, "NPLC %.0E", nplc);
169
170 /*
171 * The instrument only has a few valid NPLC setting, so get back the
172 * one which was selected.
173 */
174 sr_scpi_get_float(scpi, "NPLC?", &devc->nplc);
175
176 return ret;
177}
178
179/* HIRES register only contains valid data with 10 or more powerline cycles. */
180static int is_highres_enabled(struct dev_context *devc)
181{
182 return (devc->nplc >= 10.0);
183}
184
185static void retrigger_measurement(struct sr_scpi_dev_inst *scpi,
186 struct dev_context *devc)
187{
188 sr_scpi_send(scpi, "?");
189 devc->acq_state = ACQ_TRIGGERED_MEASUREMENT;
190}
191
192static void request_hires(struct sr_scpi_dev_inst *scpi,
193 struct dev_context *devc)
194{
195 sr_scpi_send(scpi, "RMATH HIRES");
196 devc->acq_state = ACQ_REQUESTED_HIRES;
197}
198
199static void request_range(struct sr_scpi_dev_inst *scpi,
200 struct dev_context *devc)
201{
202 sr_scpi_send(scpi, "RANGE?");
203 devc->acq_state = ACQ_REQUESTED_RANGE;
204}
205
206/*
207 * Calculate the number of leading zeroes in the measurement.
208 *
209 * Depending on the range and measurement, a reading may not have eight digits
210 * of resolution. For example, on a 30V range:
211 * : 10.000000 V has 8 significant digits
212 * : 9.999999 V has 7 significant digits
213 * : 0.999999 V has 6 significant digits
214 *
215 * The number of significant digits is determined based on the range in which
216 * the measurement was taken:
217 * 1. By taking the base 10 logarithm of the range, and converting that to
218 * an integer, we can get the minimum reading which has a full resolution
219 * reading. Raising 10 to the integer power gives the full resolution.
220 * Ex: For 30 V range, a full resolution reading is 10.000000.
221 * 2. A ratio is taken between the full resolution reading and the
222 * measurement. Since the full resolution reading is a power of 10,
223 * for every leading zero, this ratio will be slightly higher than a
224 * power of 10. For example, for 10 V full resolution:
225 * : 10.000000 V, ratio = 1.0000000
226 * : 9.999999 V, ratio = 1.0000001
227 * : 0.999999 V, ratio = 10.000001
228 * 3. The ratio is rounded up to prevent loss of precision in the next step.
229 * 4. The base 10 logarithm of the ratio is taken, then rounded up. This
230 * gives the number of leading zeroes in the measurement.
231 * For example, for 10 V full resolution:
232 * : 10.000000 V, ceil(1.0000000) = 1, log10 = 0.00; 0 leading zeroes
233 * : 9.999999 V, ceil(1.0000001) = 2, log10 = 0.30; 1 leading zero
234 * : 0.999999 V, ceil(10.000001) = 11, log10 = 1.04, 2 leading zeroes
235 * 5. The number of leading zeroes is subtracted from the maximum number of
236 * significant digits, 8, at 7 1/2 digits resolution.
237 * For a 10 V full resolution reading, this gives:
238 * : 10.000000 V, 0 leading zeroes => 8 significant digits
239 * : 9.999999 V, 1 leading zero => 7 significant digits
240 * : 0.999999 V, 2 leading zeroes => 6 significant digits
241 *
242 * Single precision floating point numbers can achieve about 16 million counts,
243 * but in high resolution mode we can get as much as 30 million counts. As a
244 * result, these calculations must be done with double precision
245 * (the HP 3457A is a very precise instrument).
246 */
247static int calculate_num_zero_digits(double measurement, double range)
248{
249 int zero_digits;
250 double min_full_res_reading, log10_range, full_res_ratio;
251
252 log10_range = log10(range);
253 min_full_res_reading = pow(10, (int)log10_range);
254 if (measurement > min_full_res_reading) {
255 zero_digits = 0;
256 } else if (measurement == 0.0) {
257 zero_digits = 0;
258 } else {
259 full_res_ratio = min_full_res_reading / measurement;
260 zero_digits = ceil(log10(ceil(full_res_ratio)));
261 }
262
263 return zero_digits;
264}
265
625430bf
AG
266/*
267 * Until the output modules understand double precision data, we need to send
268 * the measurement as floats instead of doubles, hence, the dance with
269 * measurement_workaround double to float conversion.
270 * See bug #779 for details.
271 * The workaround should be removed once the output modules are fixed.
272 */
db23af7f
AG
273static void acq_send_measurement(struct sr_dev_inst *sdi)
274{
275 double hires_measurement;
625430bf 276 float measurement_workaround;
db23af7f
AG
277 int zero_digits, num_digits;
278 struct sr_datafeed_packet packet;
279 struct sr_datafeed_analog analog;
280 struct sr_analog_encoding encoding;
281 struct sr_analog_meaning meaning;
282 struct sr_analog_spec spec;
283 struct dev_context *devc = sdi->priv;
284
285 hires_measurement = devc->base_measurement;
286 if (is_highres_enabled(devc))
287 hires_measurement += devc->hires_register;
288
289 /* Figure out how many of the digits are significant. */
290 num_digits = is_highres_enabled(devc) ? 8 : 7;
291 zero_digits = calculate_num_zero_digits(hires_measurement,
292 devc->measurement_range);
293 num_digits = num_digits - zero_digits;
294
295 packet.type = SR_DF_ANALOG;
296 packet.payload = &analog;
297
298 sr_analog_init(&analog, &encoding, &meaning, &spec, num_digits);
625430bf 299 encoding.unitsize = sizeof(float);
db23af7f
AG
300
301 meaning.channels = sdi->channels;
302
625430bf 303 measurement_workaround = hires_measurement;
db23af7f 304 analog.num_samples = 1;
625430bf 305 analog.data = &measurement_workaround;
db23af7f
AG
306
307 meaning.mq = devc->measurement_mq;
2c04f943 308 meaning.mqflags = devc->measurement_mq_flags;
db23af7f
AG
309 meaning.unit = devc->measurement_unit;
310
311 sr_session_send(sdi, &packet);
312}
313
00b2a092
AG
314SR_PRIV int hp_3457a_receive_data(int fd, int revents, void *cb_data)
315{
db23af7f
AG
316 int ret;
317 struct sr_scpi_dev_inst *scpi;
00b2a092 318 struct dev_context *devc;
db23af7f 319 struct sr_dev_inst *sdi = cb_data;
00b2a092
AG
320
321 (void)fd;
db23af7f 322 (void)revents;
00b2a092
AG
323
324 if (!(sdi = cb_data))
325 return TRUE;
326
327 if (!(devc = sdi->priv))
328 return TRUE;
329
db23af7f
AG
330 scpi = sdi->conn;
331
332 switch (devc->acq_state) {
333 case ACQ_TRIGGERED_MEASUREMENT:
334 ret = sr_scpi_get_double(scpi, NULL, &devc->base_measurement);
335 if (ret != SR_OK) {
336 retrigger_measurement(scpi, devc);
337 return TRUE;
338 }
339
340 if (is_highres_enabled(devc))
341 request_hires(scpi, devc);
342 else
343 request_range(scpi, devc);
344
345 break;
346 case ACQ_REQUESTED_HIRES:
347 ret = sr_scpi_get_double(scpi, NULL, &devc->hires_register);
348 if (ret != SR_OK) {
349 retrigger_measurement(scpi, devc);
350 return TRUE;
351 }
352 request_range(scpi, devc);
353 break;
354 case ACQ_REQUESTED_RANGE:
355 ret = sr_scpi_get_double(scpi, NULL, &devc->measurement_range);
356 if (ret != SR_OK) {
357 retrigger_measurement(scpi, devc);
358 return TRUE;
359 }
360 devc->acq_state = ACQ_GOT_MEASUREMENT;
361 break;
362 default:
363 return FALSE;
364 }
365
e2626373 366 if (devc->acq_state == ACQ_GOT_MEASUREMENT) {
db23af7f 367 acq_send_measurement(sdi);
e2626373
AG
368 devc->num_samples++;
369 }
db23af7f
AG
370
371 if (devc->limit_samples && (devc->num_samples >= devc->limit_samples)) {
372 sdi->driver->dev_acquisition_stop(sdi, cb_data);
373 return FALSE;
374 }
375
376 /* Got more to go. */
377 if (devc->acq_state == ACQ_GOT_MEASUREMENT) {
378 /* Retrigger */
db23af7f 379 retrigger_measurement(scpi, devc);
00b2a092
AG
380 }
381
382 return TRUE;
383}