]> sigrok.org Git - libsigrok.git/blame - src/hardware/greatfet/protocol.c
greatfet: support capture of the upper pin bank (first pin 8)
[libsigrok.git] / src / hardware / greatfet / protocol.c
CommitLineData
f594b3b0
GS
1/*
2 * This file is part of the libsigrok project.
3 *
208fcedc
GS
4 * Copyright (C) 2019 Katherine J. Temkin <k@ktemkin.com>
5 * Copyright (C) 2019 Mikaela Szekely <qyriad@gmail.com>
f594b3b0
GS
6 * Copyright (C) 2023 Gerhard Sittig <gerhard.sittig@gmx.net>
7 *
8 * This program is free software: you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 3 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21
208fcedc
GS
22#include "config.h"
23
24#include <stdio.h>
25#include <string.h>
26
f594b3b0
GS
27#include "protocol.h"
28
208fcedc
GS
29/*
30 * Communicate to GreatFET firmware, especially its Logic Analyzer mode.
31 *
32 * Firmware communication is done by two means: Control transfers to
33 * EP0 for command execution. Bulk transfer from EP1 for sample data.
34 * The sample data endpoint number is also provided by firmware in
35 * responses to LA configuration requests.
36 *
37 * Control transfers have a fixed layout: 2x u32 class and verb numbers,
38 * and u8[] payload data up to 512 bytes length. Payload layout depends
39 * on commands and the verb's parameters. Binary data is represented in
40 * LE format (firmware executes on Cortex-M). Strings are limited to a
41 * maximum of 128 bytes.
42 *
43 * The set of commands used by this sigrok driver is minimal:
44 * - Get the GreatFET's firmware version and serial number.
45 * - String queries, a core verb, individual verb codes for the
46 * version and for the serial number.
47 * - Configure Logic Analyzer mode, start and stop captures.
48 * - Configure takes a u32 samplerate and u8 channel count. Yields
49 * u32 samplerate, u32 buffer size, u8 endpoint number.
50 * - Start takes a u32 samplerate (does it? depending on firmware
51 * version?). Empty/no response.
52 * - Stop has empty/no request and response payloads.
53 *
54 * Firmware implementation details, observed during sigrok driver
55 * creation.
56 * - Serial number "strings" in responses may carry binary data and
57 * not a text presentation of the serial number. It's uncertain
58 * whether that is by design or an oversight. This sigrok driver
59 * copes when it happens. (Remainder from another request which
60 * provided the part number as well?)
61 * - The GreatFET firmware is designed for exploration by host apps.
62 * The embedded classes, their methods, their in/out parameters,
63 * including builtin help texts, can get enumerated. This driver
64 * does not use this discovery approach, assumes a given protocol.
65 * - The NXP LPC4330 chip has 16 SGPIO pins. It's assumed that the
66 * GreatFET firmware currently does not support more than 8 logic
67 * channels due to constraints on bitbang machinery synchronization
68 * which is under construction (IIUC, it's about pin banks that
69 * run independently). When firmware versions get identified which
70 * transparently (from the host's perspective) support more than
71 * 8 channels, this host driver may need a little adjustment.
72 * - The device can sample and stream 8 channels to the host at a
73 * continuous rate of 40.8MHz. Higher rates are possible assuming
74 * that fewer pins get sampled. The firmware then provides sample
75 * memory where data taken at several sample points reside in the
76 * same byte of sample memory. It helps that power-of-two bitness
77 * is applied, IOW that there are either 1, 2, 4, or 8 bits per
78 * sample point. Even when say 3 or 5 channels are enabled. The
79 * device firmware may assume that a "dense" list of channels gets
80 * enabled, the sigrok driver supports when some disabled channels
81 * preceed other enabled channels. The device is then asked to get
82 * as many channels as are needed to cover all enabled channels,
83 * including potentially disabled channels before them.
84 * - The LA configure request returns a samplerate that is supported
85 * by the hardware/firmware combination and will be used during
86 * acquisition. This returned rate is at least as high as the
87 * requested samplerate. But might exceed the USB bandwidth which
88 * the firmware is capable to sustain. Users may not expect that
89 * since numbers add up differently from their perspective. In the
90 * example of 3 enabled channels and a requested 72MHz samplerate,
91 * the firmware will derive that it needs to sample 4 channels at
92 * a 102MHz rate. Which exceeds its capabilities while users may
93 * not be aware of these constraints. This sigrok driver attempts
94 * to detect the condition, and not start an acquisition. And also
95 * emits diagnostics (at info level which is silent by default).
96 * It's assumed that users increase verbosity when diagnosing
97 * issues they may experience.
98 */
99
100/*
101 * Assign a symbolic name to endpoint 0 which is used for USB control
102 * transfers. Although those "or 0" phrases don't take effect from the
103 * compiler's perspective, they hopefully increase readability of the
104 * USB related incantations.
105 *
106 * Endpoint 1 for sample data reception is not declared here. Its value
107 * is taken from logic analyzer configure response. Which remains more
108 * portable across firmware versions and supported device models.
109 */
110#define CONTROL_ENDPOINT 0
111
112/* Header fields for USB control requests. */
113#define LIBGREAT_REQUEST_NUMBER 0x65
114#define LIBGREAT_VALUE_EXECUTE 0
115#define LIBGREAT_FLAG_SKIP_RSP (1UL << 0)
116
117/* Classes and their verbs for core and logic analyzer. */
118#define GREATFET_CLASS_CORE 0x000
119#define CORE_VERB_READ_VERSION 0x1
120#define CORE_VERB_READ_SERIAL 0x3
121
122#define GREATFET_CLASS_LA 0x10d
123#define LA_VERB_CONFIGURE 0x0
70c9a254
GS
124#define LA_VERB_FIRST_PIN 0x1
125#define LA_VERB_ALT_PIN_MAP 0x2
208fcedc
GS
126#define LA_VERB_START_CAPTURE 0x3
127#define LA_VERB_STOP_CAPTURE 0x4
128
129/* Maximum text string and binary payload sizes for control requests. */
130#define CORE_MAX_STRING_LENGTH 128
131#define LOGIC_MAX_PAYLOAD_DATA 512
132
133/* USB communication parameters, pool dimensions. */
134#define LOGIC_DEFAULT_TIMEOUT 1000
135#define TRANSFER_POOL_SIZE 16
136#define TRANSFER_BUFFER_SIZE (256 * 1024)
137
138static int greatfet_process_receive_data(const struct sr_dev_inst *sdi,
139 const uint8_t *data, size_t dlen);
140static int greatfet_cancel_transfers(const struct sr_dev_inst *sdi);
141
142/* Communicate a GreatFET request to EP0, and get its response. */
143static int greatfet_ctrl_out_in(const struct sr_dev_inst *sdi,
144 const uint8_t *tx_data, size_t tx_size,
145 uint8_t *rx_data, size_t rx_size, unsigned int timeout_ms)
146{
147 struct sr_usb_dev_inst *usb;
148 uint16_t flags;
149 int ret;
150 size_t sent, rcvd;
151
152 usb = sdi->conn;
153 if (!usb)
154 return SR_ERR_ARG;
155
156 /* Caller can request to skip transmission of a response. */
157 flags = 0;
158 if (!rx_size)
159 flags |= LIBGREAT_FLAG_SKIP_RSP;
160
161 /* Send USB Control OUT request. */
162 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
163 GString *dump = sr_hexdump_new(tx_data, tx_size);
164 sr_spew("USB out data: %s", dump->str);
165 sr_hexdump_free(dump);
166 }
167 ret = libusb_control_transfer(usb->devhdl,
168 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT |
169 LIBUSB_ENDPOINT_OUT | CONTROL_ENDPOINT,
170 LIBGREAT_REQUEST_NUMBER, LIBGREAT_VALUE_EXECUTE,
171 flags, (void *)tx_data, tx_size, timeout_ms);
172 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
173 const char *msg;
2c3fadf5 174 msg = ret < 0 ? libusb_error_name(ret) : "-";
208fcedc
GS
175 sr_spew("USB out, rc %d, %s", ret, msg);
176 }
177 if (ret < 0) {
178 /* Rate limit error messages. Skip "please retry" kinds. */
179 if (ret != LIBUSB_ERROR_BUSY) {
180 sr_err("USB out transfer failed: %s (%d)",
181 libusb_error_name(ret), ret);
182 }
183 return SR_ERR_IO;
184 }
185 sent = (size_t)ret;
186 if (sent != tx_size) {
187 sr_err("Short USB write: want %zu, got %zu: %s.",
188 tx_size, sent, libusb_error_name(ret));
189 return SR_ERR_IO;
190 }
191
192 /* Get the USB Control IN response. */
193 if (!rx_size)
194 return SR_OK;
195 ret = libusb_control_transfer(usb->devhdl,
196 LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_ENDPOINT |
197 LIBUSB_ENDPOINT_IN | CONTROL_ENDPOINT,
198 LIBGREAT_REQUEST_NUMBER, LIBGREAT_VALUE_EXECUTE,
199 0, rx_data, rx_size, timeout_ms);
200 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
201 const char *msg;
2c3fadf5 202 msg = ret < 0 ? libusb_error_name(ret) : "-";
208fcedc
GS
203 sr_spew("USB in, rc %d, %s", ret, msg);
204 }
205 if (ret < 0) {
206 sr_err("USB in transfer failed: %s (%d)",
207 libusb_error_name(ret), ret);
208 return SR_ERR_IO;
209 }
210 rcvd = (size_t)ret;
211 if (sr_log_loglevel_get() >= SR_LOG_SPEW) {
212 GString *dump = sr_hexdump_new(rx_data, rcvd);
213 sr_spew("USB in data: %s", dump->str);
214 sr_hexdump_free(dump);
215 }
216 /* Short read, including zero length, is not fatal. */
217
218 return rcvd;
219}
220
221/*
222 * Use a string buffer in devc for USB transfers. This simplifies
223 * resource management in error paths.
224 */
225static int greatfet_prep_usb_buffer(const struct sr_dev_inst *sdi,
226 uint8_t **tx_buff, size_t *tx_size, uint8_t **rx_buff, size_t *rx_size)
227{
228 struct dev_context *devc;
229 size_t want_len;
230 GString *s;
231
232 if (tx_buff)
233 *tx_buff = NULL;
234 if (tx_size)
235 *tx_size = 0;
236 if (rx_buff)
237 *rx_buff = NULL;
238 if (rx_size)
239 *rx_size = 0;
240
241 if (!sdi)
242 return SR_ERR_ARG;
243 devc = sdi->priv;
244 if (!devc)
245 return SR_ERR_ARG;
246
247 /*
248 * Allocate the string buffer unless previously done.
249 * Ensure sufficient allocated space for request/response use.
250 * Assume that glib GString is suitable to hold uint8_t[] data.
251 */
252 if (!devc->usb_comm_buffer) {
253 want_len = 2 * sizeof(uint32_t) + LOGIC_MAX_PAYLOAD_DATA;
254 devc->usb_comm_buffer = g_string_sized_new(want_len);
255 if (!devc->usb_comm_buffer)
256 return SR_ERR_MALLOC;
257 }
258
259 /* Pass buffer start and size to the caller if requested. */
260 s = devc->usb_comm_buffer;
261 if (tx_buff)
262 *tx_buff = (uint8_t *)s->str;
263 if (tx_size)
264 *tx_size = s->allocated_len;
265 if (rx_buff)
266 *rx_buff = (uint8_t *)s->str;
267 if (rx_size)
268 *rx_size = s->allocated_len;
269
270 return SR_OK;
271}
272
273/* Retrieve a string by executing a core service. */
274static int greatfet_get_string(const struct sr_dev_inst *sdi,
275 uint32_t verb, char **value)
276{
277 uint8_t *req, *rsp;
278 size_t rsp_size;
279 uint8_t *wrptr;
280 size_t wrlen, rcvd;
281 const char *text;
282 int ret;
283
284 if (value)
285 *value = NULL;
286 if (!sdi)
287 return SR_ERR_ARG;
288 ret = greatfet_prep_usb_buffer(sdi, &req, NULL, &rsp, &rsp_size);
289 if (ret != SR_OK)
290 return ret;
291
292 wrptr = req;
293 write_u32le_inc(&wrptr, GREATFET_CLASS_CORE);
294 write_u32le_inc(&wrptr, verb);
295 wrlen = wrptr - req;
296 ret = greatfet_ctrl_out_in(sdi, req, wrlen,
297 rsp, rsp_size, LOGIC_DEFAULT_TIMEOUT);
298 if (ret < 0) {
299 sr_err("Cannot get core string.");
300 return ret;
301 }
302 rcvd = (size_t)ret;
303
304 rsp[rcvd] = '\0';
305 text = (const char *)rsp;
306 sr_dbg("got string, verb %u, text (%zu) %s", verb, rcvd, text);
307 if (value && *text) {
308 *value = g_strndup(text, rcvd);
309 } else if (value) {
310 /*
311 * g_strndup(3) does _not_ copy 'n' bytes. Instead it
312 * truncates the result at the first NUL character seen.
313 * That's why we need extra logic to pass binary data
314 * to callers, to not violate API layers and confuse
315 * USB readers with firmware implementation details
316 * (that may be version dependent).
317 * The very condition to determine whether text or some
318 * binary data was received is a simple check for NUL
319 * in the first position, implemented above. This is
320 * GoodEnough(TM) to handle the firmware version case.
321 */
322 *value = g_malloc0(rcvd + 1);
323 memcpy(*value, text, rcvd);
324 }
325
326 return rcvd;
327}
328
329SR_PRIV int greatfet_get_serial_number(const struct sr_dev_inst *sdi)
330{
331 struct dev_context *devc;
332 char *text;
333 int ret;
334 const uint8_t *rdptr;
335 size_t rdlen;
336 GString *snr;
337 uint32_t chunk;
338
339 if (!sdi)
340 return SR_ERR_ARG;
341 devc = sdi->priv;
342 if (!devc)
343 return SR_ERR_ARG;
344
345 ret = greatfet_get_string(sdi, CORE_VERB_READ_SERIAL, &text);
346 if (ret < 0)
347 return ret;
348 if (!text)
349 return SR_ERR_DATA;
350
351 /*
352 * The simple case, we got a text string. The 2019 K.Temkin
353 * implementation took the received string as is. So there
354 * are firmware versions which provide this presentation.
355 */
356 if (*text) {
357 devc->serial_number = text;
358 return SR_OK;
359 }
360
361 /*
362 * The complex case. The received "string" looks binary. Local
363 * setups with v2018.12.1 and v2021.2.1 firmware versions yield
364 * response data that does not look like a text string. Instead
365 * it looks like four u32 fields which carry a binary value and
366 * leading padding. Try that interpreation as well. Construct a
367 * twenty character text presentation from that binary content.
368 *
369 * Implementation detail: Is the "leader" the part number which
370 * a different firmware request may yield? Are there other verbs
371 * which reliably yield the serial number in text format?
372 */
373 rdptr = (const uint8_t *)text;
374 rdlen = (size_t)ret;
375 sr_dbg("trying to read serial nr \"text\" as binary");
376 if (rdlen != 4 * sizeof(uint32_t)) {
377 g_free(text);
378 return SR_ERR_DATA;
379 }
380 snr = g_string_sized_new(20 + 1);
381 chunk = read_u32le_inc(&rdptr);
382 if (chunk) {
383 g_free(text);
384 return SR_ERR_DATA;
385 }
386 chunk = read_u32le_inc(&rdptr);
387 if (chunk) {
388 g_free(text);
389 return SR_ERR_DATA;
390 }
391 g_string_append_printf(snr, "%04" PRIx32, chunk);
392 chunk = read_u32le_inc(&rdptr);
393 g_string_append_printf(snr, "%08" PRIx32, chunk);
394 chunk = read_u32le_inc(&rdptr);
395 g_string_append_printf(snr, "%08" PRIx32, chunk);
396 sr_dbg("got serial number text %s", snr->str);
397 g_free(text);
398 text = g_string_free(snr, FALSE);
399 devc->serial_number = text;
400 return SR_OK;
401}
402
403SR_PRIV int greatfet_get_version_number(const struct sr_dev_inst *sdi)
404{
405 struct dev_context *devc;
406 char *text;
407 int ret;
408
409 if (!sdi)
410 return SR_ERR_ARG;
411 devc = sdi->priv;
412 if (!devc)
413 return SR_ERR_ARG;
414
415 ret = greatfet_get_string(sdi, CORE_VERB_READ_VERSION, &text);
416 if (ret < SR_OK)
417 return ret;
418
419 devc->firmware_version = text;
420 return SR_OK;
421}
422
423/*
424 * Transmit a parameter-less request that wants no response. Or a
425 * request with just a few bytes worth of parameter values, still
426 * not expecting a response.
427 */
428static int greatfet_trivial_request(const struct sr_dev_inst *sdi,
429 uint32_t cls, uint32_t verb, const uint8_t *tx_data, size_t tx_dlen)
430{
431 struct dev_context *devc;
432 uint8_t *req;
433 uint8_t *wrptr;
434 size_t wrlen;
435 int ret;
436
437 if (!sdi)
438 return SR_ERR_ARG;
439 devc = sdi->priv;
440 if (!devc)
441 return SR_ERR_ARG;
442
443 ret = greatfet_prep_usb_buffer(sdi, &req, NULL, NULL, NULL);
444 if (ret != SR_OK)
445 return ret;
446
447 wrptr = req;
448 write_u32le_inc(&wrptr, cls);
449 write_u32le_inc(&wrptr, verb);
450 while (tx_dlen--)
451 write_u8_inc(&wrptr, *tx_data++);
452 wrlen = wrptr - req;
453 return greatfet_ctrl_out_in(sdi, req, wrlen,
454 NULL, 0, LOGIC_DEFAULT_TIMEOUT);
455}
456
457/*
458 * Transmit a "configure logic analyzer" request. Gets the resulting
459 * samplerate (which can differ from requested values) and endpoint
460 * (which is very useful for compatibility across devices/versions).
461 * Also gets the device firmware's buffer size, which is only used
462 * for information, while the host assumes a fixed larger buffer size
463 * for its own purposes.
464 */
465static int greatfet_logic_config(const struct sr_dev_inst *sdi)
466{
467 struct dev_context *devc;
468 struct dev_acquisition_t *acq;
469 struct sr_usb_dev_inst *usb;
470 uint8_t *req, *rsp;
471 size_t rsp_size;
472 uint8_t *wrptr;
473 size_t wrlen, rcvd, want_len;
474 const uint8_t *rdptr;
475 uint64_t rate, bw;
476 size_t bufsize;
477 uint8_t ep;
478 char *print_bw;
479 int ret;
480
481 if (!sdi)
482 return SR_ERR_ARG;
483 devc = sdi->priv;
484 usb = sdi->conn;
485 if (!devc || !usb)
486 return SR_ERR_ARG;
487 acq = &devc->acquisition;
488
489 ret = greatfet_prep_usb_buffer(sdi, &req, NULL, &rsp, &rsp_size);
490 if (ret != SR_OK)
491 return ret;
492
70c9a254
GS
493 /*
494 * Optionally request to capture the upper pin bank. The device
495 * can sample from pins starting at number 8. We use the feature
496 * transparently when the first 8 channels are disabled.
497 *
498 * Values different from 0 or 8 are not used here. The details
499 * of the SGPIO hardware implementation degrade performance in
500 * this case. Its use is not desirable for users.
501 */
502 sr_dbg("about to config first pin, upper %d", acq->use_upper_pins);
503 wrptr = req;
504 write_u32le_inc(&wrptr, GREATFET_CLASS_LA);
505 write_u32le_inc(&wrptr, LA_VERB_FIRST_PIN);
506 write_u8_inc(&wrptr, acq->use_upper_pins ? 8 : 0);
507 wrlen = wrptr - req;
508 ret = greatfet_ctrl_out_in(sdi, req, wrlen,
509 NULL, 0, LOGIC_DEFAULT_TIMEOUT);
510 if (ret < 0) {
511 sr_err("Cannot configure first capture pin.");
512 return ret;
513 }
514
515 /* Disable alt pin mapping, just for good measure. */
516 sr_dbg("about to config alt pin mapping");
517 wrptr = req;
518 write_u32le_inc(&wrptr, GREATFET_CLASS_LA);
519 write_u32le_inc(&wrptr, LA_VERB_ALT_PIN_MAP);
520 write_u8_inc(&wrptr, 0);
521 wrlen = wrptr - req;
522 ret = greatfet_ctrl_out_in(sdi, req, wrlen,
523 NULL, 0, LOGIC_DEFAULT_TIMEOUT);
524 if (ret < 0) {
525 sr_err("Cannot configure alt pin mapping.");
526 return ret;
527 }
528
208fcedc
GS
529 /*
530 * Prepare to get a specific amount of receive data. The logic
531 * analyzer configure response is strictly binary, in contrast
532 * to variable length string responses elsewhere.
533 */
534 want_len = 2 * sizeof(uint32_t) + sizeof(uint8_t);
535 if (rsp_size < want_len)
536 return SR_ERR_BUG;
537 rsp_size = want_len;
538
539 sr_dbg("about to config LA, rate %" PRIu64 ", chans %zu",
540 devc->samplerate, acq->capture_channels);
541 wrptr = req;
542 write_u32le_inc(&wrptr, GREATFET_CLASS_LA);
543 write_u32le_inc(&wrptr, LA_VERB_CONFIGURE);
544 write_u32le_inc(&wrptr, devc->samplerate);
545 write_u8_inc(&wrptr, acq->capture_channels);
546 wrlen = wrptr - req;
547 ret = greatfet_ctrl_out_in(sdi, req, wrlen,
548 rsp, rsp_size, LOGIC_DEFAULT_TIMEOUT);
549 if (ret < 0) {
550 sr_err("Cannot configure logic analyzer mode.");
551 return ret;
552 }
553 rcvd = (size_t)ret;
554 if (rcvd != want_len) {
555 sr_warn("Unexpected LA configuration response length.");
556 return SR_ERR_DATA;
557 }
558
559 rdptr = rsp;
560 rate = read_u32le_inc(&rdptr);
561 bufsize = read_u32le_inc(&rdptr);
562 ep = read_u8_inc(&rdptr);
563 sr_dbg("LA configured, rate %" PRIu64 ", buf %zu, ep %" PRIu8,
564 rate, bufsize, ep);
565 if (rate != devc->samplerate) {
566 sr_info("Configuration feedback, want rate %" PRIu64 ", got rate %." PRIu64,
567 devc->samplerate, rate);
568 devc->samplerate = rate;
569 }
570 acq->capture_samplerate = rate;
571 acq->firmware_bufsize = bufsize;
572 acq->samples_endpoint = ep;
573
574 /*
575 * The firmware does not reject requests that would exceed
576 * its capabilities. Yet the device becomes unaccessible when
577 * START is sent in that situation. (Observed with v2021.2.1
578 * firmware.)
579 *
580 * Assume a maximum USB bandwidth that we don't want to exceed.
581 * It's protecting the GreatFET's firmware. It's not a statement
582 * on the host's capability of keeping up with the GreatFET's
583 * firmware capabilities. :)
584 */
585 print_bw = sr_samplerate_string(acq->capture_samplerate);
586 sr_info("Capture configuration: %zu channels, samplerate %s.",
587 acq->capture_channels, print_bw);
588 g_free(print_bw);
589 bw = acq->capture_samplerate * 8 / acq->points_per_byte;
70c9a254
GS
590 if (!acq->use_upper_pins)
591 bw *= acq->unit_size;
208fcedc
GS
592 print_bw = sr_si_string_u64(bw, "bps");
593 sr_info("Resulting USB bandwidth: %s.", print_bw);
594 g_free(print_bw);
595 if (acq->bandwidth_threshold && bw > acq->bandwidth_threshold) {
596 sr_err("Configuration exceeds bandwidth limit. Aborting.");
597 return SR_ERR_SAMPLERATE;
598 }
599
600 return SR_OK;
601}
602
603/* Transmit "start logic capture" request. */
604static int greatfet_logic_start(const struct sr_dev_inst *sdi)
605{
606 int ret;
607
608 ret = greatfet_trivial_request(sdi,
609 GREATFET_CLASS_LA, LA_VERB_START_CAPTURE, NULL, 0);
610 sr_dbg("LA start, USB out, rc %d", ret);
611 if (ret != SR_OK)
612 sr_err("Cannot start logic analyzer capture.");
613
614 return ret;
615}
616
617/* Transmit "stop logic capture" request. */
618static int greatfet_logic_stop(const struct sr_dev_inst *sdi)
619{
620 struct dev_context *devc;
621 struct dev_acquisition_t *acq;
622 int ret;
623
624 devc = sdi->priv;
625 if (!devc)
626 return SR_ERR_ARG;
627 acq = &devc->acquisition;
628
629 /* Only send STOP when START was sent before. */
630 if (!acq->start_req_sent)
631 return SR_OK;
632
633 ret = greatfet_trivial_request(sdi,
634 GREATFET_CLASS_LA, LA_VERB_STOP_CAPTURE, NULL, 0);
635 sr_dbg("LA stop, USB out, rc %d", ret);
636 if (ret == SR_OK)
637 acq->start_req_sent = FALSE;
638 else
639 sr_warn("Cannot stop logic analyzer capture in the device.");
640
641 return ret;
642}
643
644/*
645 * Determine how many channels the device firmware needs to sample.
646 * So that resulting capture data will cover all those logic channels
647 * which currently are enabled on the sigrok side. We (have to) accept
648 * when the sequence of enabled channels "has gaps" in them. Disabling
649 * channels in the middle of the pin groups is a user's choice that we
650 * need to obey. The count of enabled channels is not good enough for
651 * the purpose of acquisition, it must be "a maximum index" or a total
652 * to-get-sampled count.
653 */
654static int greatfet_calc_capture_chans(const struct sr_dev_inst *sdi)
655{
656 struct dev_context *devc;
657 struct dev_acquisition_t *acq;
658 GSList *l;
659 struct sr_channel *ch;
660 int last_used_idx;
70c9a254 661 uint16_t pin_map;
208fcedc 662 size_t logic_ch_count, en_ch_count, fw_ch_count;
70c9a254 663 gboolean have_upper, have_lower, use_upper_pins;
208fcedc
GS
664 int ret;
665
666 if (!sdi)
667 return SR_ERR_ARG;
668 devc = sdi->priv;
669 if (!devc)
670 return SR_ERR_ARG;
671 acq = &devc->acquisition;
672
673 last_used_idx = -1;
674 logic_ch_count = 0;
70c9a254 675 pin_map = 0;
208fcedc
GS
676 for (l = sdi->channels; l; l = l->next) {
677 ch = l->data;
678 if (ch->type != SR_CHANNEL_LOGIC)
679 continue;
680 logic_ch_count++;
681 if (!ch->enabled)
682 continue;
683 if (last_used_idx < ch->index)
684 last_used_idx = ch->index;
70c9a254 685 pin_map |= 1UL << ch->index;
208fcedc
GS
686 }
687 en_ch_count = last_used_idx + 1;
688 sr_dbg("channel count, logic %zu, highest enabled idx %d -> count %zu",
689 logic_ch_count, last_used_idx, en_ch_count);
690 if (!en_ch_count)
691 return SR_ERR_ARG;
70c9a254
GS
692 have_upper = pin_map & 0xff00;
693 have_lower = pin_map & 0x00ff;
694 use_upper_pins = have_upper && !have_lower;
695 if (use_upper_pins) {
696 sr_dbg("ch mask 0x%04x -> using upper pins", pin_map);
697 last_used_idx -= 8;
698 en_ch_count -= 8;
699 }
700 if (have_upper && !use_upper_pins)
701 sr_warn("Multi-bank capture, check firmware support!");
208fcedc
GS
702
703 acq->capture_channels = en_ch_count;
70c9a254 704 acq->use_upper_pins = use_upper_pins;
208fcedc
GS
705 ret = sr_next_power_of_two(last_used_idx, NULL, &fw_ch_count);
706 if (ret != SR_OK)
707 return ret;
708 if (!fw_ch_count)
709 return SR_ERR_ARG;
710 if (fw_ch_count > 8) {
711 acq->unit_size = sizeof(uint16_t);
712 acq->points_per_byte = 1;
713 } else {
714 acq->unit_size = sizeof(uint8_t);
70c9a254
GS
715 if (acq->use_upper_pins)
716 acq->unit_size = sizeof(uint16_t);
208fcedc
GS
717 acq->points_per_byte = 8 / fw_ch_count;
718 }
719 acq->channel_shift = fw_ch_count % 8;
720 sr_dbg("unit %zu, dense %d -> shift %zu, points %zu",
721 acq->unit_size, !!acq->channel_shift,
722 acq->channel_shift, acq->points_per_byte);
723
724 return SR_OK;
725}
726
727/*
728 * This is an opportunity to adapt the host's USB transfer size to
729 * the value which the device firmware has provided in the LA config
730 * response.
731 *
732 * We let the opportunity pass. Always use a fixed value for the host
733 * configuration. BULK transfers will adopt, which reduces the number
734 * of transfer completion events for the host.
735 *
736 * Notice that transfer size adjustment is _not_ a means to get user
737 * feedback earlier at low samplerates. This may be done in other
738 * drivers but does not take effect here. Because a buffer is used to
739 * submit sample values to the session. When in doubt, the feed queue
740 * needs flushing.
741 *
742 * TODO Consider whether sample data needs flushing when sample rates
743 * are low and buffers are deep. Ideally use common feed queue support
744 * if that becomes available in the future. Translate low samplerates
745 * (and channel counts) to the amount of samples after which the queue
746 * should get flushed.
747 *
748 * This implementation assumes that samplerates start at 1MHz, and
749 * flushing is not necessary.
750 */
751static int greatfet_calc_submit_size(const struct sr_dev_inst *sdi)
752{
753 struct dev_context *devc;
754 struct dev_transfers_t *dxfer;
755
756 if (!sdi)
757 return SR_ERR_ARG;
758 devc = sdi->priv;
759 if (!devc)
760 return SR_ERR_ARG;
761 dxfer = &devc->transfers;
762
763 dxfer->capture_bufsize = dxfer->transfer_bufsize;
764 return SR_OK;
765}
766
767/*
768 * This routine is local to protocol.c and does mere data manipulation
769 * and a single attempt at sending "logic analyzer stop" to the device.
770 * This routine gets invoked from USB transfer completion callbacks as
771 * well as periodic timer or data availability callbacks. It is essential
772 * to not spend extended periods of time here.
773 */
774static void greatfet_abort_acquisition_quick(const struct sr_dev_inst *sdi)
775{
776 struct dev_context *devc;
777 struct dev_acquisition_t *acq;
778
779 if (!sdi)
780 return;
781 devc = sdi->priv;
782 if (!devc)
783 return;
784 acq = &devc->acquisition;
785
786 if (acq->acquisition_state == ACQ_RECEIVE)
787 acq->acquisition_state = ACQ_SHUTDOWN;
788
789 (void)greatfet_logic_stop(sdi);
790 greatfet_cancel_transfers(sdi);
791
70c9a254
GS
792 if (acq->feed_queue)
793 feed_queue_logic_flush(acq->feed_queue);
208fcedc
GS
794}
795
796/* Allocate USB transfers and associated receive buffers. */
797static int greatfet_allocate_transfers(const struct sr_dev_inst *sdi)
798{
799 struct dev_context *devc;
800 struct dev_transfers_t *dxfer;
801 size_t alloc_size, idx;
802 struct libusb_transfer *xfer;
803
804 if (!sdi)
805 return SR_ERR_ARG;
806 devc = sdi->priv;
807 if (!devc)
808 return SR_ERR_ARG;
809 dxfer = &devc->transfers;
810
811 dxfer->transfer_bufsize = TRANSFER_BUFFER_SIZE;
812 dxfer->transfers_count = TRANSFER_POOL_SIZE;
813
814 alloc_size = dxfer->transfers_count * dxfer->transfer_bufsize;
815 dxfer->transfer_buffer = g_malloc0(alloc_size);
816 if (!dxfer->transfer_buffer)
817 return SR_ERR_MALLOC;
818
819 alloc_size = dxfer->transfers_count;
820 alloc_size *= sizeof(dxfer->transfers[0]);
821 dxfer->transfers = g_malloc0(alloc_size);
822 if (!dxfer->transfers)
823 return SR_ERR_MALLOC;
824
825 for (idx = 0; idx < dxfer->transfers_count; idx++) {
826 xfer = libusb_alloc_transfer(0);
827 if (!xfer)
828 return SR_ERR_MALLOC;
829 dxfer->transfers[idx] = xfer;
830 }
831
832 return SR_OK;
833}
834
835/* Submit USB transfers for reception, registers the data callback. */
836static int greatfet_prepare_transfers(const struct sr_dev_inst *sdi,
837 libusb_transfer_cb_fn callback)
838{
839 struct dev_context *devc;
840 struct dev_acquisition_t *acq;
841 struct dev_transfers_t *dxfer;
842 struct sr_usb_dev_inst *conn;
843 uint8_t ep;
844 size_t submit_length;
845 size_t off, idx;
846 struct libusb_transfer *xfer;
847 int ret;
848
849 if (!sdi)
850 return SR_ERR_ARG;
851 devc = sdi->priv;
852 conn = sdi->conn;
853 if (!devc || !conn)
854 return SR_ERR_ARG;
855 acq = &devc->acquisition;
856 dxfer = &devc->transfers;
857
858 ep = acq->samples_endpoint;
859 ret = greatfet_calc_submit_size(sdi);
860 if (ret != SR_OK)
861 return ret;
862 submit_length = dxfer->capture_bufsize;
863 if (submit_length > dxfer->transfer_bufsize)
864 submit_length = dxfer->transfer_bufsize;
865 sr_dbg("prep xfer, ep %u (%u), len %zu",
866 ep, ep & ~LIBUSB_ENDPOINT_IN, submit_length);
867
868 dxfer->active_transfers = 0;
869 off = 0;
870 for (idx = 0; idx < dxfer->transfers_count; idx++) {
871 xfer = dxfer->transfers[idx];
872 libusb_fill_bulk_transfer(xfer, conn->devhdl, ep,
873 &dxfer->transfer_buffer[off], submit_length,
874 callback, (void *)sdi, 0);
875 if (!xfer->buffer)
876 return SR_ERR_MALLOC;
877 ret = libusb_submit_transfer(xfer);
878 if (ret != 0) {
879 sr_spew("submit bulk xfer failed, idx %zu, %d: %s",
880 idx, ret, libusb_error_name(ret));
881 return SR_ERR_IO;
882 }
883 dxfer->active_transfers++;
884 off += submit_length;
885 }
886
887 return SR_OK;
888}
889
890/*
891 * Initiate the termination of an acquisition. Cancel all USB transfers.
892 * Their completion will drive further progress including resource
893 * release.
894 */
895static int greatfet_cancel_transfers(const struct sr_dev_inst *sdi)
896{
897 struct dev_context *devc;
898 struct dev_transfers_t *dxfer;
899 size_t idx;
900 struct libusb_transfer *xfer;
901
902 if (!sdi)
903 return SR_ERR_ARG;
904 devc = sdi->priv;
905 if (!devc)
906 return SR_ERR_ARG;
907 dxfer = &devc->transfers;
70c9a254
GS
908 if (!dxfer->transfers)
909 return SR_OK;
208fcedc
GS
910
911 for (idx = 0; idx < dxfer->transfers_count; idx++) {
912 xfer = dxfer->transfers[idx];
913 if (!xfer)
914 continue;
915 (void)libusb_cancel_transfer(xfer);
916 /*
917 * Cancelled transfers will cause acquisitions to abort
918 * in their callback. Keep the "active" count as is.
919 */
920 }
921
922 return SR_OK;
923}
924
925/*
926 * Free an individual transfer during its callback's execution.
927 * Releasing the last USB transfer also happens to drive more of
928 * the shutdown path.
929 */
930static void greatfet_free_transfer(const struct sr_dev_inst *sdi,
931 struct libusb_transfer *xfer)
932{
933 struct drv_context *drvc;
934 struct sr_usb_dev_inst *usb;
935 struct dev_context *devc;
936 struct dev_acquisition_t *acq;
937 struct dev_transfers_t *dxfer;
938 size_t idx;
939
940 if (!sdi || !sdi->driver)
941 return;
942 drvc = sdi->driver->context;
943 usb = sdi->conn;
944 devc = sdi->priv;
945 if (!drvc || !usb || !devc)
946 return;
947 acq = &devc->acquisition;
948 dxfer = &devc->transfers;
949
950 /* Void the transfer in the driver's list of transfers. */
951 for (idx = 0; idx < dxfer->transfers_count; idx++) {
952 if (xfer != dxfer->transfers[idx])
953 continue;
954 dxfer->transfers[idx] = NULL;
955 dxfer->active_transfers--;
956 break;
957 }
958
959 /* Release the transfer from libusb use. */
960 libusb_free_transfer(xfer);
961
962 /* Done here when more transfers are still pending. */
963 if (!dxfer->active_transfers)
964 return;
965
966 /*
967 * The last USB transfer has been freed after completion.
968 * Post process the previous acquisition's execution.
969 */
970 (void)greatfet_stop_acquisition(sdi);
971 if (acq->frame_begin_sent) {
972 std_session_send_df_end(sdi);
973 acq->frame_begin_sent = FALSE;
974 }
975 usb_source_remove(sdi->session, drvc->sr_ctx);
976 if (acq->samples_interface_claimed) {
977 libusb_release_interface(usb->devhdl, acq->samples_interface);
978 acq->samples_interface_claimed = FALSE;
979 }
980 feed_queue_logic_free(acq->feed_queue);
981 acq->feed_queue = NULL;
982 acq->acquisition_state = ACQ_IDLE;
983}
984
985/*
986 * Callback for the completion of previously submitted USB transfers.
987 * Processes received sample memory content. Initiates termination of
988 * the current acquisition in case of failed processing or failed
989 * communication to the acquisition device. Also initiates termination
990 * when previously configured acquisition limits were reached.
991 */
992static void LIBUSB_CALL xfer_complete_cb(struct libusb_transfer *xfer)
993{
994 struct sr_dev_inst *sdi;
995 struct dev_context *devc;
996 struct dev_acquisition_t *acq;
997 const uint8_t *data;
998 size_t dlen;
999 gboolean was_completed, was_cancelled;
1000 gboolean has_timedout, device_gone, is_stalled;
1001 int level;
1002 gboolean shall_abort;
1003 int ret;
1004
1005 sdi = xfer ? xfer->user_data : NULL;
1006 devc = sdi ? sdi->priv : NULL;
1007 if (!sdi || !devc) {
1008 /* ShouldNotHappen(TM) */
1009 sr_warn("Completion of unregistered USB transfer.");
1010 libusb_free_transfer(xfer);
1011 return;
1012 }
1013 acq = &devc->acquisition;
1014
1015 /*
1016 * Outside of an acquisition? Or in its shutdown path?
1017 * Just release the USB transfer, don't process its data.
1018 */
1019 if (acq->acquisition_state != ACQ_RECEIVE) {
1020 greatfet_free_transfer(sdi, xfer);
1021 return;
1022 }
1023
1024 /*
1025 * Avoid the unfortunate libusb identifiers and data types.
1026 * Simplify USB transfer status checks for later code paths.
1027 * Optionally log the USB transfers' completion.
1028 */
1029 data = xfer->buffer;
1030 dlen = xfer->actual_length;
1031 was_completed = xfer->status == LIBUSB_TRANSFER_COMPLETED;
1032 has_timedout = xfer->status == LIBUSB_TRANSFER_TIMED_OUT;
1033 was_cancelled = xfer->status == LIBUSB_TRANSFER_CANCELLED;
1034 device_gone = xfer->status == LIBUSB_TRANSFER_NO_DEVICE;
1035 is_stalled = xfer->status == LIBUSB_TRANSFER_STALL;
1036 level = sr_log_loglevel_get();
1037 if (level >= SR_LOG_SPEW) {
1038 sr_spew("USB transfer, status %s, byte count %zu.",
1039 libusb_error_name(xfer->status), dlen);
1040 } else if (level >= SR_LOG_DBG && !was_completed) {
1041 sr_dbg("USB transfer, status %s, byte count %zu.",
1042 libusb_error_name(xfer->status), dlen);
1043 }
1044
1045 /*
1046 * Timed out transfers may contain a little data. Warn but accept.
1047 * Typical case will be completed transfers. Cancelled transfers
1048 * are seen in shutdown paths, their data need not get processed.
1049 * Terminate acquisition in case of communication or processing
1050 * failure, or when limits were reached.
1051 */
1052 shall_abort = FALSE;
1053 if (has_timedout)
1054 sr_warn("USB transfer timed out. Using available data.");
1055 if (was_completed || has_timedout) {
1056 ret = greatfet_process_receive_data(sdi, data, dlen);
1057 if (ret != SR_OK) {
1058 sr_err("Error processing sample data. Aborting.");
1059 shall_abort = TRUE;
1060 }
1061 if (acq->acquisition_state != ACQ_RECEIVE) {
1062 sr_dbg("Sample data processing ends acquisition.");
1063 feed_queue_logic_flush(acq->feed_queue);
1064 shall_abort = TRUE;
1065 }
1066 } else if (device_gone) {
1067 sr_err("Device gone during USB transfer. Aborting.");
1068 shall_abort = TRUE;
1069 } else if (was_cancelled) {
1070 sr_dbg("Cancelled USB transfer. Terminating acquisition.");
1071 shall_abort = TRUE;
1072 } else if (is_stalled) {
1073 sr_err("Device firmware is stalled on USB transfer. Aborting.");
1074 shall_abort = TRUE;
1075 } else {
1076 sr_err("USB transfer failed (%s). Aborting.",
1077 libusb_error_name(xfer->status));
1078 shall_abort = TRUE;
1079 }
1080
1081 /*
1082 * Resubmit the USB transfer for continued reception of sample
1083 * data. Or release the transfer when acquisition terminates
1084 * after errors were seen, or limits were reached, or the end
1085 * was requested in other regular ways.
1086 *
1087 * In the case of error or other terminating conditions cancel
1088 * the currently executing acquisition, end all USB transfers.
1089 */
1090 if (!shall_abort) {
1091 ret = libusb_submit_transfer(xfer);
1092 if (ret < 0) {
1093 sr_err("Cannot resubmit USB transfer. Aborting.");
1094 shall_abort = TRUE;
1095 }
1096 }
1097 if (shall_abort) {
1098 greatfet_free_transfer(sdi, xfer);
1099 greatfet_abort_acquisition_quick(sdi);
1100 }
1101}
1102
1103/* The public protocol.c API to start/stop acquisitions. */
1104
1105SR_PRIV int greatfet_setup_acquisition(const struct sr_dev_inst *sdi)
1106{
1107 int ret;
1108
1109 ret = greatfet_allocate_transfers(sdi);
1110 if (ret != SR_OK)
1111 return ret;
1112
1113 ret = greatfet_calc_capture_chans(sdi);
1114 if (ret != SR_OK)
1115 return ret;
1116
1117 return SR_OK;
1118}
1119
1120SR_PRIV int greatfet_start_acquisition(const struct sr_dev_inst *sdi)
1121{
1122 struct dev_context *devc;
1123 struct dev_acquisition_t *acq;
1124 struct sr_usb_dev_inst *usb;
1125 int ret;
1126
1127 if (!sdi)
1128 return SR_ERR_ARG;
1129 devc = sdi->priv;
1130 usb = sdi->conn;
1131 if (!devc || !usb)
1132 return SR_ERR_ARG;
1133 acq = &devc->acquisition;
1134
1135 /*
1136 * Configure the logic analyzer. Claim the USB interface. This
1137 * part of the sequence is not time critical.
1138 */
1139 ret = greatfet_logic_config(sdi);
1140 if (ret != SR_OK)
1141 return ret;
1142
1143 ret = libusb_claim_interface(usb->devhdl, acq->samples_interface);
1144 acq->samples_interface_claimed = ret == 0;
1145
1146 /*
1147 * Ideally we could submit USB transfers before sending the
1148 * logic analyzer start request. Experience suggests that this
1149 * results in libusb IO errors. That's why we need to accept the
1150 * window of blindness between sending the LA start request and
1151 * initiating USB data reception.
1152 */
1153 ret = greatfet_logic_start(sdi);
1154 if (ret != SR_OK)
1155 return ret;
1156
1157 ret = greatfet_prepare_transfers(sdi, xfer_complete_cb);
1158 if (ret != SR_OK)
1159 return ret;
1160
1161 return SR_OK;
1162}
1163
1164/*
1165 * The public acquisition abort routine, invoked by api.c logic. Could
1166 * optionally spend more time than the _quick() routine.
1167 */
1168SR_PRIV void greatfet_abort_acquisition(const struct sr_dev_inst *sdi)
1169{
1170 struct dev_context *devc;
1171
1172 if (!sdi)
1173 return;
1174 devc = sdi->priv;
1175 if (!devc)
1176 return;
1177
1178 (void)greatfet_logic_stop(sdi);
1179 greatfet_abort_acquisition_quick(sdi);
1180}
1181
1182SR_PRIV int greatfet_stop_acquisition(const struct sr_dev_inst *sdi)
1183{
1184 struct sr_usb_dev_inst *usb;
1185 int ret;
1186
1187 if (!sdi)
1188 return SR_ERR_ARG;
1189 usb = sdi->conn;
1190 if (!usb)
1191 return SR_ERR_ARG;
1192
1193 ret = greatfet_logic_stop(sdi);
1194 if (ret != SR_OK)
1195 return ret;
1196
1197 return SR_OK;
1198}
1199
1200SR_PRIV void greatfet_release_resources(const struct sr_dev_inst *sdi)
1201{
1202 struct dev_context *devc;
1203 struct dev_transfers_t *dxfer;
1204
1205 if (!sdi)
1206 return;
1207 devc = sdi->priv;
1208 if (!devc)
1209 return;
1210 dxfer = &devc->transfers;
1211
1212 /*
1213 * Is there something that needs to be done here? Transfers'
1214 * cancellation gets initiated and then happens as they keep
1215 * completing. The completion handler releases their libusb
1216 * resources. The last release also unregisters the periodic
1217 * glib main loop callback.
1218 *
1219 * Can something be done here? The receive buffer still is
1220 * allocated. As is the feed queue. Can we synchronize to the
1221 * last release of the USB resources? Need we keep invoking
1222 * the receive callback until the USB transfers pool has been
1223 * released? Need we wait for the active transfers counter to
1224 * drop to zero, is more checking involved?
1225 */
1226 if (dxfer->active_transfers)
1227 sr_warn("Got active USB transfers in release code path.");
1228}
1229
1230/*
1231 * Process received sample date. There are two essential modes:
1232 * - The straight forward case. The device provides 8 bits per sample
1233 * point. Forward each byte as is to the sigrok session. It matches
1234 * the sizeof(uint8_t) feed queue allocation parameter.
1235 * - The compact presentation where a smaller number of channels is
1236 * active, and their data spans only part of a byte per sample point.
1237 * Multiple samples' data is sharing bytes, and bytes will carry data
1238 * that was taken at different times. This requires some untangling
1239 * before forwarding byte sized sample data to the sigrok session.
1240 *
1241 * Implementation details:
1242 * - Samples taken first are found in the least significant bits of a
1243 * byte. Samples taken next are found in upper bits of the byte. For
1244 * example a byte containing 4x 2bit sample data is seen as 33221100.
1245 * - Depending on the number of enabled channels there could be up to
1246 * eight samples in one byte of sample memory. This implementation
1247 * tries to accumulate one input byte's content, but not more. To
1248 * simplify the implementation. Performance can get tuned later as
1249 * the need gets identified. Sampling at 204MHz results in some 3%
1250 * CPU load with Pulseview on the local workstation.
1251 * - Samples for 16 channels transparently are handled by the simple
1252 * 8 channel case above. All logic data of an individual samplepoint
1253 * occupies full bytes, endianess of sample data as provided by the
1254 * device firmware and the sigrok session are the same. No conversion
1255 * is required.
1256 */
1257static int greatfet_process_receive_data(const struct sr_dev_inst *sdi,
1258 const uint8_t *data, size_t dlen)
1259{
1260 static int diag_shown;
1261
1262 struct dev_context *devc;
1263 struct dev_acquisition_t *acq;
1264 struct feed_queue_logic *q;
1265 uint64_t samples_remain;
1266 gboolean exceeded;
70c9a254 1267 gboolean full_bytes, lower_empty;
208fcedc
GS
1268 size_t samples_rcvd;
1269 uint8_t raw_mask;
1270 size_t points_per_byte, points_count;
70c9a254
GS
1271 uint8_t raw_data, wr_data;
1272 uint8_t accum[16];
208fcedc
GS
1273 const uint8_t *rdptr;
1274 uint8_t *wrptr;
1275 int ret;
1276
1277 if (!sdi)
1278 return SR_ERR_ARG;
1279 devc = sdi->priv;
1280 if (!devc)
1281 return SR_ERR_ARG;
1282 acq = &devc->acquisition;
1283 q = acq->feed_queue;
1284
1285 /*
1286 * Check whether acquisition limits apply, and whether they
1287 * were reached or exceeded before. Constrain the submission
1288 * of more sample values to what's still within the limits of
1289 * the current acquisition.
1290 */
1291 ret = sr_sw_limits_get_remain(&devc->sw_limits,
1292 &samples_remain, NULL, NULL, &exceeded);
1293 if (ret != SR_OK)
1294 return ret;
1295 if (exceeded)
1296 return SR_OK;
1297
1298 /*
1299 * Check for the simple case first. Where bytes carry samples
1300 * of exactly one sample point. Pass memory in verbatim form.
70c9a254
GS
1301 *
1302 * This approach applies to two cases: Captures of the first 8
1303 * channels, and captures for 16 channels where both banks are
1304 * involved (the device firmware provides all 16 bits of data
1305 * for any given sample point). The 16bit case happens to work
1306 * because sample data received from the device and logic data
1307 * in sigrok sessions both use the little endian format.
1308 *
1309 * The "upper pins" case must be handled below because the
1310 * device will not provide data for the lower pin bank, but the
1311 * samples (all-zero values) must be sent to the sigrok session.
208fcedc 1312 */
70c9a254
GS
1313 full_bytes = !acq->channel_shift;
1314 lower_empty = acq->use_upper_pins;
1315 if (full_bytes && !lower_empty) {
208fcedc
GS
1316 samples_rcvd = dlen / acq->unit_size;
1317 if (samples_remain && samples_rcvd > samples_remain)
1318 samples_rcvd = samples_remain;
1319 ret = feed_queue_logic_submit_many(q, data, samples_rcvd);
1320 if (ret != SR_OK)
1321 return ret;
1322 sr_sw_limits_update_samples_read(&devc->sw_limits, samples_rcvd);
1323 return SR_OK;
1324 }
1325
1326 /*
70c9a254
GS
1327 * Handle the complex cases where one byte carries values that
1328 * were taken at multiple sample points, or where the firmware
1329 * does not communicate the lower pin bank's data (upper pins).
1330 * This involves manipulation between reception and forwarding.
1331 * It helps that the firmware provides sample data in units of
1332 * power-of-two bit counts per sample point. This eliminates
1333 * fragments which could span several transfers.
208fcedc 1334 *
70c9a254
GS
1335 * Notice that "upper pins" and "multiple samples per byte" can
1336 * happen in combination. The implementation transparently deals
1337 * with upper pin use where bytes carry exactly one value.
208fcedc 1338 */
70c9a254
GS
1339 if (acq->channel_shift) {
1340 raw_mask = (1UL << acq->channel_shift) - 1;
1341 points_per_byte = 8 / acq->channel_shift;
1342 } else {
1343 raw_mask = (1UL << 8) - 1;
1344 points_per_byte = 1;
1345 }
208fcedc 1346 if (!diag_shown++) {
70c9a254 1347 sr_dbg("sample mem: ch count %zu, ch shift %zu, mask 0x%x, points %zu, upper %d",
208fcedc 1348 acq->capture_channels, acq->channel_shift,
70c9a254 1349 raw_mask, points_per_byte, acq->use_upper_pins);
208fcedc
GS
1350 }
1351 samples_rcvd = dlen * points_per_byte;
1352 if (samples_remain && samples_rcvd > samples_remain) {
1353 samples_rcvd = samples_remain;
1354 dlen = samples_rcvd;
1355 dlen += points_per_byte - 1;
1356 dlen /= points_per_byte;
1357 }
1358 rdptr = data;
1359 while (dlen--) {
1360 raw_data = read_u8_inc(&rdptr);
1361 wrptr = accum;
1362 points_count = points_per_byte;
1363 while (points_count--) {
70c9a254
GS
1364 wr_data = raw_data & raw_mask;
1365 if (acq->use_upper_pins)
1366 write_u16le_inc(&wrptr, wr_data << 8);
1367 else
1368 write_u8_inc(&wrptr, wr_data);
208fcedc
GS
1369 raw_data >>= acq->channel_shift;
1370 }
1371 points_count = points_per_byte;
1372 ret = feed_queue_logic_submit_many(q, accum, points_count);
1373 if (ret != SR_OK)
1374 return ret;
1375 sr_sw_limits_update_samples_read(&devc->sw_limits, points_count);
1376 }
1377 return SR_OK;
1378}
1379
1380/* Receive callback, invoked when data is available, or periodically. */
f594b3b0
GS
1381SR_PRIV int greatfet_receive_data(int fd, int revents, void *cb_data)
1382{
208fcedc 1383 struct sr_dev_inst *sdi;
f594b3b0 1384 struct dev_context *devc;
208fcedc
GS
1385 struct drv_context *drvc;
1386 libusb_context *ctx;
1387 struct timeval tv;
f594b3b0
GS
1388
1389 (void)fd;
208fcedc 1390 (void)revents;
f594b3b0
GS
1391
1392 sdi = cb_data;
208fcedc 1393 if (!sdi || !sdi->priv || !sdi->driver)
f594b3b0 1394 return TRUE;
f594b3b0
GS
1395 devc = sdi->priv;
1396 if (!devc)
1397 return TRUE;
208fcedc
GS
1398 drvc = sdi->driver->context;
1399 if (!drvc || !drvc->sr_ctx)
1400 return TRUE;
1401 ctx = drvc->sr_ctx->libusb_ctx;
1402
1403 /*
1404 * Handle those USB transfers which have completed so far
1405 * in a regular fashion. These carry desired sample values.
1406 */
1407 tv.tv_sec = tv.tv_usec = 0;
1408 libusb_handle_events_timeout(ctx, &tv);
f594b3b0 1409
208fcedc
GS
1410 /*
1411 * End the current acquisition when limites were reached.
1412 * Process USB transfers again here before returning, because
1413 * acquisition termination will unregister the receive callback,
1414 * and cancel previously submitted transfers. Reap those here.
1415 */
1416 if (sr_sw_limits_check(&devc->sw_limits)) {
1417 greatfet_abort_acquisition_quick(sdi);
1418 tv.tv_sec = tv.tv_usec = 0;
1419 libusb_handle_events_timeout(ctx, &tv);
f594b3b0
GS
1420 }
1421
1422 return TRUE;
1423}