]> sigrok.org Git - libsigrok.git/blame - src/analog.c
Fix read past end of array in sr_analog_si_prefix_friendly.
[libsigrok.git] / src / analog.c
CommitLineData
fb019a0e
BV
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2014 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
6ec6c43b 20#include <config.h>
c2a25ebb
BV
21#include <stdio.h>
22#include <stdint.h>
fb019a0e 23#include <string.h>
c2a25ebb 24#include <ctype.h>
962172e4 25#include <math.h>
c1aae900 26#include <libsigrok/libsigrok.h>
fb019a0e
BV
27#include "libsigrok-internal.h"
28
e00b3f58 29/** @cond PRIVATE */
fb019a0e 30#define LOG_PREFIX "analog"
e00b3f58
UH
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Handling and converting analog data.
37 */
38
39/**
40 * @defgroup grp_analog Analog data handling
41 *
42 * Handling and converting analog data.
43 *
44 * @{
45 */
fb019a0e 46
a5892391
BV
47struct unit_mq_string {
48 uint64_t value;
2c240774 49 const char *str;
a5892391
BV
50};
51
ca7dbb56 52/* Please use the same order as in enum sr_unit (libsigrok.h). */
a5892391
BV
53static struct unit_mq_string unit_strings[] = {
54 { SR_UNIT_VOLT, "V" },
55 { SR_UNIT_AMPERE, "A" },
56 { SR_UNIT_OHM, "\xe2\x84\xa6" },
57 { SR_UNIT_FARAD, "F" },
a5892391
BV
58 { SR_UNIT_KELVIN, "K" },
59 { SR_UNIT_CELSIUS, "\xc2\xb0""C" },
60 { SR_UNIT_FAHRENHEIT, "\xc2\xb0""F" },
61 { SR_UNIT_HERTZ, "Hz" },
62 { SR_UNIT_PERCENTAGE, "%" },
f7bcc686 63 { SR_UNIT_BOOLEAN, "" },
a5892391
BV
64 { SR_UNIT_SECOND, "s" },
65 { SR_UNIT_SIEMENS, "S" },
cdc31195
AJ
66 { SR_UNIT_DECIBEL_MW, "dBm" },
67 { SR_UNIT_DECIBEL_VOLT, "dBV" },
f7bcc686 68 { SR_UNIT_UNITLESS, "" },
a5892391
BV
69 { SR_UNIT_DECIBEL_SPL, "dB" },
70 { SR_UNIT_CONCENTRATION, "ppm" },
71 { SR_UNIT_REVOLUTIONS_PER_MINUTE, "RPM" },
72 { SR_UNIT_VOLT_AMPERE, "VA" },
73 { SR_UNIT_WATT, "W" },
74 { SR_UNIT_WATT_HOUR, "Wh" },
75 { SR_UNIT_METER_SECOND, "m/s" },
76 { SR_UNIT_HECTOPASCAL, "hPa" },
77 { SR_UNIT_HUMIDITY_293K, "%rF" },
78 { SR_UNIT_DEGREE, "\xc2\xb0" },
f7bcc686
UH
79 { SR_UNIT_HENRY, "H" },
80 { SR_UNIT_GRAM, "g" },
81 { SR_UNIT_CARAT, "ct" },
82 { SR_UNIT_OUNCE, "oz" },
83 { SR_UNIT_TROY_OUNCE, "oz t" },
84 { SR_UNIT_POUND, "lb" },
85 { SR_UNIT_PENNYWEIGHT, "dwt" },
86 { SR_UNIT_GRAIN, "gr" },
87 { SR_UNIT_TAEL, "tael" },
88 { SR_UNIT_MOMME, "momme" },
89 { SR_UNIT_TOLA, "tola" },
90 { SR_UNIT_PIECE, "pcs" },
a5892391
BV
91 ALL_ZERO
92};
93
ca7dbb56 94/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
a5892391 95static struct unit_mq_string mq_strings[] = {
a5892391
BV
96 { SR_MQFLAG_AC, " AC" },
97 { SR_MQFLAG_DC, " DC" },
98 { SR_MQFLAG_RMS, " RMS" },
99 { SR_MQFLAG_DIODE, " DIODE" },
100 { SR_MQFLAG_HOLD, " HOLD" },
101 { SR_MQFLAG_MAX, " MAX" },
102 { SR_MQFLAG_MIN, " MIN" },
103 { SR_MQFLAG_AUTORANGE, " AUTO" },
104 { SR_MQFLAG_RELATIVE, " REL" },
f7bcc686
UH
105 { SR_MQFLAG_SPL_FREQ_WEIGHT_A, "(A)" },
106 { SR_MQFLAG_SPL_FREQ_WEIGHT_C, "(C)" },
107 { SR_MQFLAG_SPL_FREQ_WEIGHT_Z, "(Z)" },
108 { SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, "(SPL)" },
109 { SR_MQFLAG_SPL_TIME_WEIGHT_S, " S" },
110 { SR_MQFLAG_SPL_TIME_WEIGHT_F, " F" },
111 { SR_MQFLAG_SPL_LAT, " LAT" },
112 /* Not a standard function for SLMs, so this is a made-up notation. */
113 { SR_MQFLAG_SPL_PCT_OVER_ALARM, "%oA" },
114 { SR_MQFLAG_DURATION, " DURATION" },
a5892391
BV
115 { SR_MQFLAG_AVG, " AVG" },
116 { SR_MQFLAG_REFERENCE, " REF" },
f7bcc686 117 { SR_MQFLAG_UNSTABLE, " UNSTABLE" },
6d5cd3bd 118 { SR_MQFLAG_FOUR_WIRE, " 4-WIRE" },
a5892391
BV
119 ALL_ZERO
120};
121
f200d59e 122/** @private */
edb691fc 123SR_PRIV int sr_analog_init(struct sr_datafeed_analog *analog,
41caa319
AJ
124 struct sr_analog_encoding *encoding,
125 struct sr_analog_meaning *meaning,
126 struct sr_analog_spec *spec,
127 int digits)
128{
129 memset(analog, 0, sizeof(*analog));
130 memset(encoding, 0, sizeof(*encoding));
131 memset(meaning, 0, sizeof(*meaning));
132 memset(spec, 0, sizeof(*spec));
133
134 analog->encoding = encoding;
135 analog->meaning = meaning;
136 analog->spec = spec;
137
138 encoding->unitsize = sizeof(float);
139 encoding->is_float = TRUE;
140#ifdef WORDS_BIGENDIAN
141 encoding->is_bigendian = TRUE;
142#else
143 encoding->is_bigendian = FALSE;
144#endif
145 encoding->digits = digits;
146 encoding->is_digits_decimal = TRUE;
147 encoding->scale.p = 1;
148 encoding->scale.q = 1;
149 encoding->offset.p = 0;
150 encoding->offset.q = 1;
151
152 spec->spec_digits = digits;
153
154 return SR_OK;
155}
156
22fb1bff
UH
157/**
158 * Convert an analog datafeed payload to an array of floats.
159 *
8dc423b0
UH
160 * Sufficient memory for outbuf must have been pre-allocated by the caller,
161 * who is also responsible for freeing it when no longer needed.
162 *
22fb1bff
UH
163 * @param[in] analog The analog payload to convert. Must not be NULL.
164 * analog->data, analog->meaning, and analog->encoding
165 * must not be NULL.
166 * @param[out] outbuf Memory where to store the result. Must not be NULL.
167 *
22fb1bff
UH
168 * @retval SR_OK Success.
169 * @retval SR_ERR Unsupported encoding.
170 * @retval SR_ERR_ARG Invalid argument.
171 *
172 * @since 0.4.0
173 */
edb691fc 174SR_API int sr_analog_to_float(const struct sr_datafeed_analog *analog,
4b4fdeea 175 float *outbuf)
fb019a0e 176{
0519db86 177 unsigned int b, count;
fb019a0e 178 gboolean bigendian;
5cee3d08
UH
179
180 if (!analog || !(analog->data) || !(analog->meaning)
181 || !(analog->encoding) || !outbuf)
182 return SR_ERR_ARG;
183
184 count = analog->num_samples * g_slist_length(analog->meaning->channels);
fb019a0e
BV
185
186#ifdef WORDS_BIGENDIAN
187 bigendian = TRUE;
188#else
189 bigendian = FALSE;
190#endif
8dc423b0 191
fb019a0e 192 if (!analog->encoding->is_float) {
4d376e08
SB
193 float offset = analog->encoding->offset.p / (float)analog->encoding->offset.q;
194 float scale = analog->encoding->scale.p / (float)analog->encoding->scale.q;
195 gboolean is_signed = analog->encoding->is_signed;
196 gboolean is_bigendian = analog->encoding->is_bigendian;
197 int8_t *data8 = (int8_t *)(analog->data);
198 int16_t *data16 = (int16_t *)(analog->data);
199 int32_t *data32 = (int32_t *)(analog->data);
200
201 switch (analog->encoding->unitsize) {
202 case 1:
203 if (is_signed) {
204 for (unsigned int i = 0; i < count; i++) {
205 outbuf[i] = scale * data8[i];
206 outbuf[i] += offset;
207 }
208 } else {
209 for (unsigned int i = 0; i < count; i++) {
210 outbuf[i] = scale * R8(data8 + i);
211 outbuf[i] += offset;
212 }
213 }
214 break;
215 case 2:
216 if (is_signed && is_bigendian) {
217 for (unsigned int i = 0; i < count; i++) {
218 outbuf[i] = scale * RB16S(&data16[i]);
219 outbuf[i] += offset;
220 }
221 } else if (is_bigendian) {
222 for (unsigned int i = 0; i < count; i++) {
223 outbuf[i] = scale * RB16(&data16[i]);
224 outbuf[i] += offset;
225 }
226 } else if (is_signed) {
227 for (unsigned int i = 0; i < count; i++) {
228 outbuf[i] = scale * RL16S(&data16[i]);
229 outbuf[i] += offset;
230 }
231 } else {
232 for (unsigned int i = 0; i < count; i++) {
233 outbuf[i] = scale * RL16(&data16[i]);
234 outbuf[i] += offset;
235 }
236 }
237 break;
238 case 4:
239 if (is_signed && is_bigendian) {
240 for (unsigned int i = 0; i < count; i++) {
241 outbuf[i] = scale * RB32S(&data32[i]);
242 outbuf[i] += offset;
243 }
244 } else if (is_bigendian) {
245 for (unsigned int i = 0; i < count; i++) {
246 outbuf[i] = scale * RB32(&data32[i]);
247 outbuf[i] += offset;
248 }
249 } else if (is_signed) {
250 for (unsigned int i = 0; i < count; i++) {
251 outbuf[i] = scale * RL32S(&data32[i]);
252 outbuf[i] += offset;
253 }
254 } else {
255 for (unsigned int i = 0; i < count; i++) {
256 outbuf[i] = scale * RL32(&data32[i]);
257 outbuf[i] += offset;
258 }
259 }
260 break;
261 default:
8dc423b0
UH
262 sr_err("Unsupported unit size '%d' for analog-to-float"
263 " conversion.", analog->encoding->unitsize);
4d376e08
SB
264 return SR_ERR;
265 }
266 return SR_OK;
fb019a0e
BV
267 }
268
269 if (analog->encoding->unitsize == sizeof(float)
270 && analog->encoding->is_bigendian == bigendian
b07a1b04
ML
271 && analog->encoding->scale.p == 1
272 && analog->encoding->scale.q == 1
4b4fdeea 273 && analog->encoding->offset.p / (float)analog->encoding->offset.q == 0) {
fb019a0e 274 /* The data is already in the right format. */
7d65dd3a 275 memcpy(outbuf, analog->data, count * sizeof(float));
fb019a0e 276 } else {
0519db86 277 for (unsigned int i = 0; i < count; i += analog->encoding->unitsize) {
fb019a0e
BV
278 for (b = 0; b < analog->encoding->unitsize; b++) {
279 if (analog->encoding->is_bigendian == bigendian)
3e277549
ML
280 ((uint8_t *)outbuf)[i + b] =
281 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 282 else
3e277549
ML
283 ((uint8_t *)outbuf)[i + (analog->encoding->unitsize - b)] =
284 ((uint8_t *)analog->data)[i * analog->encoding->unitsize + b];
fb019a0e 285 }
b07a1b04
ML
286 if (analog->encoding->scale.p != 1
287 || analog->encoding->scale.q != 1)
4b4fdeea 288 outbuf[i] = (outbuf[i] * analog->encoding->scale.p) / analog->encoding->scale.q;
741bcf50 289 float offset = ((float)analog->encoding->offset.p / (float)analog->encoding->offset.q);
4b4fdeea 290 outbuf[i] += offset;
fb019a0e
BV
291 }
292 }
293
294 return SR_OK;
295}
c2a25ebb 296
962172e4
AJ
297/**
298 * Scale a float value to the appropriate SI prefix.
299 *
300 * @param[in,out] value The float value to convert to appropriate SI prefix.
301 * @param[in,out] digits The number of significant decimal digits in value.
302 *
303 * @return The SI prefix to which value was scaled, as a printable string.
304 *
305 * @since 0.5.0
306 */
307SR_API const char *sr_analog_si_prefix(float *value, int *digits)
308{
f200d59e 309/** @cond PRIVATE */
405b9c10 310#define NEG_PREFIX_COUNT 5 /* number of prefixes below unity */
962172e4 311#define POS_PREFIX_COUNT (int)(ARRAY_SIZE(prefixes) - NEG_PREFIX_COUNT - 1)
f200d59e 312/** @endcond */
8dc423b0 313 static const char *prefixes[] = { "f", "p", "n", "µ", "m", "", "k", "M", "G", "T" };
962172e4 314
8dc423b0 315 if (!value || !digits || isnan(*value))
962172e4
AJ
316 return prefixes[NEG_PREFIX_COUNT];
317
318 float logval = log10f(fabsf(*value));
319 int prefix = (logval / 3) - (logval < 1);
320
8dc423b0
UH
321 if (prefix < -NEG_PREFIX_COUNT)
322 prefix = -NEG_PREFIX_COUNT;
323 if (3 * prefix < -*digits)
324 prefix = (-*digits + 2 * (*digits < 0)) / 3;
325 if (prefix > POS_PREFIX_COUNT)
326 prefix = POS_PREFIX_COUNT;
962172e4
AJ
327
328 *value *= powf(10, -3 * prefix);
329 *digits += 3 * prefix;
8dc423b0 330
962172e4
AJ
331 return prefixes[prefix + NEG_PREFIX_COUNT];
332}
333
5728718b
AJ
334/**
335 * Check if a unit "accepts" an SI prefix.
336 *
337 * E.g. SR_UNIT_VOLT is SI prefix friendly while SR_UNIT_DECIBEL_MW or
338 * SR_UNIT_PERCENTAGE are not.
339 *
340 * @param[in] unit The unit to check for SI prefix "friendliness".
341 *
342 * @return TRUE if the unit "accept" an SI prefix.
343 *
344 * @since 0.5.0
345 */
346SR_API gboolean sr_analog_si_prefix_friendly(enum sr_unit unit)
347{
348 static const enum sr_unit prefix_friendly_units[] = {
349 SR_UNIT_VOLT,
350 SR_UNIT_AMPERE,
351 SR_UNIT_OHM,
352 SR_UNIT_FARAD,
353 SR_UNIT_KELVIN,
354 SR_UNIT_HERTZ,
355 SR_UNIT_SECOND,
356 SR_UNIT_SIEMENS,
357 SR_UNIT_VOLT_AMPERE,
358 SR_UNIT_WATT,
359 SR_UNIT_WATT_HOUR,
360 SR_UNIT_METER_SECOND,
361 SR_UNIT_HENRY,
362 SR_UNIT_GRAM
363 };
364 unsigned int i;
365
366 for (i = 0; i < ARRAY_SIZE(prefix_friendly_units); i++)
367 if (unit == prefix_friendly_units[i])
5e5fde6e 368 return TRUE;
5728718b 369
5e5fde6e 370 return FALSE;
5728718b
AJ
371}
372
22fb1bff 373/**
a5892391
BV
374 * Convert the unit/MQ/MQ flags in the analog struct to a string.
375 *
8dc423b0
UH
376 * The string is allocated by the function and must be freed by the caller
377 * after use by calling g_free().
378 *
22fb1bff
UH
379 * @param[in] analog Struct containing the unit, MQ and MQ flags.
380 * Must not be NULL. analog->meaning must not be NULL.
381 * @param[out] result Pointer to store result. Must not be NULL.
a24da9a8 382 *
22fb1bff
UH
383 * @retval SR_OK Success.
384 * @retval SR_ERR_ARG Invalid argument.
a5892391
BV
385 *
386 * @since 0.4.0
387 */
edb691fc 388SR_API int sr_analog_unit_to_string(const struct sr_datafeed_analog *analog,
a24da9a8 389 char **result)
a5892391 390{
a24da9a8 391 int i;
5cee3d08
UH
392 GString *buf;
393
394 if (!analog || !(analog->meaning) || !result)
395 return SR_ERR_ARG;
396
397 buf = g_string_new(NULL);
a5892391 398
a5892391
BV
399 for (i = 0; unit_strings[i].value; i++) {
400 if (analog->meaning->unit == unit_strings[i].value) {
a24da9a8 401 g_string_assign(buf, unit_strings[i].str);
a5892391
BV
402 break;
403 }
404 }
405
406 /* More than one MQ flag may apply. */
a24da9a8
ML
407 for (i = 0; mq_strings[i].value; i++)
408 if (analog->meaning->mqflags & mq_strings[i].value)
409 g_string_append(buf, mq_strings[i].str);
410
411 *result = buf->str;
412 g_string_free(buf, FALSE);
a5892391
BV
413
414 return SR_OK;
415}
416
22fb1bff 417/**
90cefe0c
BV
418 * Set sr_rational r to the given value.
419 *
22fb1bff
UH
420 * @param[out] r Rational number struct to set. Must not be NULL.
421 * @param[in] p Numerator.
422 * @param[in] q Denominator.
423 *
424 * @since 0.4.0
90cefe0c 425 */
53e5d3d1 426SR_API void sr_rational_set(struct sr_rational *r, int64_t p, uint64_t q)
90cefe0c 427{
5cee3d08
UH
428 if (!r)
429 return;
430
90cefe0c
BV
431 r->p = p;
432 r->q = q;
433}
434
bdba3626
SB
435#ifndef HAVE___INT128_T
436struct sr_int128_t {
437 int64_t high;
438 uint64_t low;
439};
440
441struct sr_uint128_t {
442 uint64_t high;
443 uint64_t low;
444};
445
446static void mult_int64(struct sr_int128_t *res, const int64_t a,
447 const int64_t b)
448{
449 uint64_t t1, t2, t3, t4;
450
451 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
452 t2 = (UINT32_MAX & a) * (b >> 32);
453 t3 = (a >> 32) * (UINT32_MAX & b);
454 t4 = (a >> 32) * (b >> 32);
455
456 res->low = t1 + (t2 << 32) + (t3 << 32);
457 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
458 res->high >>= 32;
459 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
460}
461
462static void mult_uint64(struct sr_uint128_t *res, const uint64_t a,
463 const uint64_t b)
464{
465 uint64_t t1, t2, t3, t4;
466
467 // (x1 + x2) * (y1 + y2) = x1*y1 + x1*y2 + x2*y1 + x2*y2
468 t1 = (UINT32_MAX & a) * (UINT32_MAX & b);
469 t2 = (UINT32_MAX & a) * (b >> 32);
470 t3 = (a >> 32) * (UINT32_MAX & b);
471 t4 = (a >> 32) * (b >> 32);
472
473 res->low = t1 + (t2 << 32) + (t3 << 32);
474 res->high = (t1 >> 32) + (uint64_t)((uint32_t)(t2)) + (uint64_t)((uint32_t)(t3));
475 res->high >>= 32;
476 res->high += ((int64_t)t2 >> 32) + ((int64_t)t3 >> 32) + t4;
477}
478#endif
479
480/**
8dc423b0 481 * Compare two sr_rational for equality.
bdba3626 482 *
8dc423b0 483 * The values are compared for numerical equality, i.e. 2/10 == 1/5.
bdba3626 484 *
8dc423b0
UH
485 * @param[in] a First value.
486 * @param[in] b Second value.
bdba3626 487 *
8dc423b0
UH
488 * @retval 1 if both values are equal.
489 * @retval 0 Otherwise.
bdba3626
SB
490 *
491 * @since 0.5.0
492 */
493SR_API int sr_rational_eq(const struct sr_rational *a, const struct sr_rational *b)
494{
495#ifdef HAVE___INT128_T
496 __int128_t m1, m2;
497
498 /* p1/q1 = p2/q2 <=> p1*q2 = p2*q1 */
499 m1 = ((__int128_t)(b->p)) * ((__uint128_t)a->q);
500 m2 = ((__int128_t)(a->p)) * ((__uint128_t)b->q);
501
502 return (m1 == m2);
503
504#else
505 struct sr_int128_t m1, m2;
506
507 mult_int64(&m1, a->q, b->p);
508 mult_int64(&m2, a->p, b->q);
509
510 return (m1.high == m2.high) && (m1.low == m2.low);
511#endif
512}
513
ee1b6054 514/**
8dc423b0 515 * Multiply two sr_rational.
ee1b6054
SB
516 *
517 * The resulting nominator/denominator are reduced if the result would not fit
518 * otherwise. If the resulting nominator/denominator are relatively prime,
519 * this may not be possible.
520 *
8dc423b0
UH
521 * It is safe to use the same variable for result and input values.
522 *
523 * @param[in] a First value.
524 * @param[in] b Second value.
525 * @param[out] res Result.
17d5a11c 526 *
ee1b6054 527 * @retval SR_OK Success.
8dc423b0 528 * @retval SR_ERR_ARG Resulting value too large.
ee1b6054
SB
529 *
530 * @since 0.5.0
531 */
532SR_API int sr_rational_mult(struct sr_rational *res, const struct sr_rational *a,
533 const struct sr_rational *b)
534{
535#ifdef HAVE___INT128_T
536 __int128_t p;
537 __uint128_t q;
538
539 p = (__int128_t)(a->p) * (__int128_t)(b->p);
540 q = (__uint128_t)(a->q) * (__uint128_t)(b->q);
541
542 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
543 while (!((p & 1) || (q & 1))) {
544 p /= 2;
545 q /= 2;
546 }
547 }
548
549 if ((p > INT64_MAX) || (p < INT64_MIN) || (q > UINT64_MAX)) {
550 // TODO: determine gcd to do further reduction
551 return SR_ERR_ARG;
552 }
553
405b9c10
UH
554 res->p = (int64_t)p;
555 res->q = (uint64_t)q;
ee1b6054
SB
556
557 return SR_OK;
558
559#else
560 struct sr_int128_t p;
561 struct sr_uint128_t q;
562
563 mult_int64(&p, a->p, b->p);
564 mult_uint64(&q, a->q, b->q);
565
566 while (!(p.low & 1) && !(q.low & 1)) {
567 p.low /= 2;
8dc423b0
UH
568 if (p.high & 1)
569 p.low |= (1ll << 63);
ee1b6054
SB
570 p.high >>= 1;
571 q.low /= 2;
8dc423b0
UH
572 if (q.high & 1)
573 q.low |= (1ll << 63);
ee1b6054
SB
574 q.high >>= 1;
575 }
576
577 if (q.high)
578 return SR_ERR_ARG;
579 if ((p.high >= 0) && (p.low > INT64_MAX))
580 return SR_ERR_ARG;
581 if (p.high < -1)
582 return SR_ERR_ARG;
583
584 res->p = (int64_t)p.low;
585 res->q = q.low;
586
587 return SR_OK;
588#endif
589}
590
17d5a11c 591/**
8dc423b0 592 * Divide rational a by rational b.
17d5a11c
SB
593 *
594 * The resulting nominator/denominator are reduced if the result would not fit
595 * otherwise. If the resulting nominator/denominator are relatively prime,
596 * this may not be possible.
597 *
8dc423b0
UH
598 * It is safe to use the same variable for result and input values.
599 *
600 * @param[in] num Numerator.
601 * @param[in] div Divisor.
602 * @param[out] res Result.
17d5a11c
SB
603 *
604 * @retval SR_OK Success.
8dc423b0
UH
605 * @retval SR_ERR_ARG Division by zero.
606 * @retval SR_ERR_ARG Denominator of divisor too large.
607 * @retval SR_ERR_ARG Resulting value too large.
17d5a11c
SB
608 *
609 * @since 0.5.0
610 */
611SR_API int sr_rational_div(struct sr_rational *res, const struct sr_rational *num,
612 const struct sr_rational *div)
613{
614 struct sr_rational t;
615
616 if (div->q > INT64_MAX)
617 return SR_ERR_ARG;
618 if (div->p == 0)
619 return SR_ERR_ARG;
620
621 if (div->p > 0) {
622 t.p = div->q;
623 t.q = div->p;
624 } else {
625 t.p = -div->q;
626 t.q = -div->p;
627 }
628
629 return sr_rational_mult(res, num, &t);
630}
631
e00b3f58 632/** @} */