]> sigrok.org Git - libsigrok.git/blame - hardware/ikalogic-scanaplus/protocol.c
Replace 'probe' with 'channel' in most places.
[libsigrok.git] / hardware / ikalogic-scanaplus / protocol.c
CommitLineData
fdf4a1f5
UH
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Uwe Hermann <uwe@hermann-uwe.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21#include "protocol.h"
22
ab4bb6eb
UH
23/*
24 * Logic level thresholds.
25 *
26 * For each of the two channel groups (1-4 and 5-9), the logic level
27 * threshold can be set independently.
28 *
29 * The threshold can be set to values that are usable for systems with
30 * different voltage levels, e.g. for 1.8V or 3.3V systems.
31 *
32 * The actual threshold value is always the middle of the values below.
33 * E.g. for a system voltage level of 1.8V, the threshold is at 0.9V. That
34 * means that values <= 0.9V are considered to be a logic 0/low, and
35 * values > 0.9V are considered to be a logic 1/high.
36 *
37 * - 1.2V system: threshold = 0.6V
38 * - 1.5V system: threshold = 0.75V
39 * - 1.8V system: threshold = 0.9V
40 * - 2.8V system: threshold = 1.4V
41 * - 3.3V system: threshold = 1.65V
42 */
43#define THRESHOLD_1_2V_SYSTEM 0x2e
44#define THRESHOLD_1_5V_SYSTEM 0x39
45#define THRESHOLD_1_8V_SYSTEM 0x45
46#define THRESHOLD_2_8V_SYSTEM 0x6c
47#define THRESHOLD_3_3V_SYSTEM 0x7f
48
49static int scanaplus_write(struct dev_context *devc, uint8_t *buf, int size)
50{
51 int i, bytes_written;
52 GString *s;
53
54 /* Note: Caller checks devc, devc->ftdic, buf, size. */
55
56 s = g_string_sized_new(100);
57 g_string_printf(s, "Writing %d bytes: ", size);
58 for (i = 0; i < size; i++)
59 g_string_append_printf(s, "0x%02x ", buf[i]);
60 sr_spew("%s", s->str);
61 g_string_free(s, TRUE);
62
63 bytes_written = ftdi_write_data(devc->ftdic, buf, size);
64 if (bytes_written < 0) {
65 sr_err("Failed to write FTDI data (%d): %s.",
66 bytes_written, ftdi_get_error_string(devc->ftdic));
67 } else if (bytes_written != size) {
68 sr_err("FTDI write error, only %d/%d bytes written: %s.",
69 bytes_written, size, ftdi_get_error_string(devc->ftdic));
70 }
71
72 return bytes_written;
73}
74
75SR_PRIV int scanaplus_close(struct dev_context *devc)
76{
77 int ret;
78
79 /* Note: Caller checks devc and devc->ftdic. */
80
81 if ((ret = ftdi_usb_close(devc->ftdic)) < 0) {
82 sr_err("Failed to close FTDI device (%d): %s.",
83 ret, ftdi_get_error_string(devc->ftdic));
84 return SR_ERR;
85 }
86
87 return SR_OK;
88}
89
90static void scanaplus_uncompress_block(struct dev_context *devc,
91 uint64_t num_bytes)
fdf4a1f5 92{
ab4bb6eb
UH
93 uint64_t i, j;
94 uint8_t num_samples, low, high;
95
96 for (i = 0; i < num_bytes; i += 2) {
97 num_samples = devc->compressed_buf[i + 0] >> 1;
98
99 low = devc->compressed_buf[i + 0] & (1 << 0);
100 high = devc->compressed_buf[i + 1];
101
102 for (j = 0; j < num_samples; j++) {
103 devc->sample_buf[devc->bytes_received++] = high;
104 devc->sample_buf[devc->bytes_received++] = low;
105 }
106 }
107}
108
109static void send_samples(struct dev_context *devc, uint64_t samples_to_send)
110{
111 struct sr_datafeed_packet packet;
112 struct sr_datafeed_logic logic;
113
114 sr_spew("Sending %" PRIu64 " samples.", samples_to_send);
115
116 packet.type = SR_DF_LOGIC;
117 packet.payload = &logic;
118 logic.length = samples_to_send * 2;
ba7dd8bb 119 logic.unitsize = 2; /* We need 2 bytes for 9 channels. */
ab4bb6eb
UH
120 logic.data = devc->sample_buf;
121 sr_session_send(devc->cb_data, &packet);
122
123 devc->samples_sent += samples_to_send;
124 devc->bytes_received -= samples_to_send * 2;
125}
126
127SR_PRIV int scanaplus_get_device_id(struct dev_context *devc)
128{
129 int ret;
130 uint16_t val1, val2;
131
132 /* FTDI EEPROM indices 16+17 contain the 3 device ID bytes. */
133 if ((ret = ftdi_read_eeprom_location(devc->ftdic, 16, &val1)) < 0) {
134 sr_err("Failed to read EEPROM index 16 (%d): %s.",
135 ret, ftdi_get_error_string(devc->ftdic));
136 return SR_ERR;
137 }
138 if ((ret = ftdi_read_eeprom_location(devc->ftdic, 17, &val2)) < 0) {
139 sr_err("Failed to read EEPROM index 17 (%d): %s.",
140 ret, ftdi_get_error_string(devc->ftdic));
141 return SR_ERR;
142 }
143
144 /*
145 * Note: Bit 7 of the three bytes must not be used, apparently.
146 *
147 * Even though the three bits can be either 0 or 1 (we've seen both
148 * in actual ScanaPLUS devices), the device ID as sent to the FPGA
149 * has bit 7 of each byte zero'd out.
150 *
151 * It is unknown whether bit 7 of these bytes has any meaning,
152 * whether it's used somewhere, or whether it can be simply ignored.
153 */
154 devc->devid[0] = ((val1 >> 0) & 0xff) & ~(1 << 7);
155 devc->devid[1] = ((val1 >> 8) & 0xff) & ~(1 << 7);
156 devc->devid[2] = ((val2 >> 0) & 0xff) & ~(1 << 7);
157
158 return SR_OK;
159}
160
161static int scanaplus_clear_device_id(struct dev_context *devc)
162{
163 uint8_t buf[2];
164
165 buf[0] = 0x8c;
166 buf[1] = 0x00;
167 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
168 return SR_ERR;
169
170 buf[0] = 0x8e;
171 buf[1] = 0x00;
172 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
173 return SR_ERR;
174
175 buf[0] = 0x8f;
176 buf[1] = 0x00;
177 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
178 return SR_ERR;
179
180 return SR_OK;
181}
182
183static int scanaplus_send_device_id(struct dev_context *devc)
184{
185 uint8_t buf[2];
186
187 buf[0] = 0x8c;
188 buf[1] = devc->devid[0];
189 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
190 return SR_ERR;
191
192 buf[0] = 0x8e;
193 buf[1] = devc->devid[1];
194 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
195 return SR_ERR;
196
197 buf[0] = 0x8f;
198 buf[1] = devc->devid[2];
199 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
200 return SR_ERR;
201
202 return SR_OK;
203}
204
205SR_PRIV int scanaplus_init(struct dev_context *devc)
206{
207 int i;
208 uint8_t buf[8];
209
210 buf[0] = 0x88;
211 buf[1] = 0x41;
212 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
213 return SR_ERR;
214
215 buf[0] = 0x89;
216 buf[1] = 0x64;
217 buf[2] = 0x8a;
218 buf[3] = 0x64;
219 if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
220 return SR_ERR;
221
222 buf[0] = 0x88;
223 buf[1] = 0x41;
224 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
225 return SR_ERR;
226
227 buf[0] = 0x88;
228 buf[1] = 0x40;
229 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
230 return SR_ERR;
231
232 buf[0] = 0x8d;
233 buf[1] = 0x01;
234 buf[2] = 0x8d;
235 buf[3] = 0x05;
236 buf[4] = 0x8d;
237 buf[5] = 0x01;
238 buf[6] = 0x8d;
239 buf[7] = 0x02;
240 if (scanaplus_write(devc, (uint8_t *)&buf, 8) < 0)
241 return SR_ERR;
242
243 for (i = 0; i < 57; i++) {
244 buf[0] = 0x8d;
245 buf[1] = 0x06;
246 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
247 return SR_ERR;
248
249 buf[0] = 0x8d;
250 buf[1] = 0x02;
251 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
252 return SR_ERR;
253 }
254
255 if (scanaplus_send_device_id(devc) < 0)
256 return SR_ERR;
257
258 buf[0] = 0x88;
259 buf[1] = 0x40;
260 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
261 return SR_ERR;
262
263 return SR_OK;
264}
265
266SR_PRIV int scanaplus_start_acquisition(struct dev_context *devc)
267{
268 uint8_t buf[4];
269
ba7dd8bb 270 /* Threshold and differential channel settings not yet implemented. */
ab4bb6eb
UH
271
272 buf[0] = 0x89;
ba7dd8bb 273 buf[1] = 0x7f; /* Logic level threshold for channels 1-4. */
ab4bb6eb 274 buf[2] = 0x8a;
ba7dd8bb 275 buf[3] = 0x7f; /* Logic level threshold for channels 5-9. */
ab4bb6eb
UH
276 if (scanaplus_write(devc, (uint8_t *)&buf, 4) < 0)
277 return SR_ERR;
278
279 buf[0] = 0x88;
ba7dd8bb 280 buf[1] = 0x40; /* Special config of channels 5/6 and 7/8. */
ab4bb6eb
UH
281 /* 0x40: normal, 0x50: ch56 diff, 0x48: ch78 diff, 0x58: ch5678 diff */
282 if (scanaplus_write(devc, (uint8_t *)&buf, 2) < 0)
283 return SR_ERR;
284
285 if (scanaplus_clear_device_id(devc) < 0)
286 return SR_ERR;
287
288 if (scanaplus_send_device_id(devc) < 0)
289 return SR_ERR;
290
291 return SR_OK;
292}
293
294SR_PRIV int scanaplus_receive_data(int fd, int revents, void *cb_data)
295{
296 int bytes_read;
297 struct sr_dev_inst *sdi;
fdf4a1f5 298 struct dev_context *devc;
ab4bb6eb 299 uint64_t max, n;
fdf4a1f5
UH
300
301 (void)fd;
ab4bb6eb 302 (void)revents;
fdf4a1f5
UH
303
304 if (!(sdi = cb_data))
305 return TRUE;
306
307 if (!(devc = sdi->priv))
308 return TRUE;
309
ab4bb6eb
UH
310 if (!devc->ftdic)
311 return TRUE;
312
313 /* Get a block of data. */
314 bytes_read = ftdi_read_data(devc->ftdic, devc->compressed_buf,
315 COMPRESSED_BUF_SIZE);
316 if (bytes_read < 0) {
317 sr_err("Failed to read FTDI data (%d): %s.",
318 bytes_read, ftdi_get_error_string(devc->ftdic));
319 sdi->driver->dev_acquisition_stop(sdi, sdi);
320 return FALSE;
321 }
322 if (bytes_read == 0) {
323 sr_spew("Received 0 bytes, nothing to do.");
324 return TRUE;
325 }
326
327 /*
328 * After a ScanaPLUS acquisition starts, a bunch of samples will be
329 * returned as all-zero, no matter which signals are actually present
ba7dd8bb 330 * on the channels. This is probably due to the FPGA reconfiguring some
ab4bb6eb
UH
331 * of its internal state/config during this time.
332 *
333 * As far as we know there is apparently no way for the PC-side to
334 * know when this "reconfiguration" starts or ends. The FTDI chip
335 * will return all-zero "dummy" samples during this time, which is
336 * indistinguishable from actual all-zero samples.
337 *
338 * We currently simply ignore the first 64kB of data after an
339 * acquisition starts. Empirical tests have shown that the
340 * "reconfigure" time is a lot less than that usually.
341 */
342 if (devc->compressed_bytes_ignored < COMPRESSED_BUF_SIZE) {
343 /* Ignore the first 64kB of data of every acquisition. */
344 sr_spew("Ignoring first 64kB chunk of data.");
345 devc->compressed_bytes_ignored += COMPRESSED_BUF_SIZE;
346 return TRUE;
347 }
348
349 /* TODO: Handle bytes_read which is not a multiple of 2? */
350 scanaplus_uncompress_block(devc, bytes_read);
351
352 n = devc->samples_sent + (devc->bytes_received / 2);
353 max = (SR_MHZ(100) / 1000) * devc->limit_msec;
354
355 if (devc->limit_samples && (n >= devc->limit_samples)) {
356 send_samples(devc, devc->limit_samples - devc->samples_sent);
357 sr_info("Requested number of samples reached.");
358 sdi->driver->dev_acquisition_stop(sdi, cb_data);
359 return TRUE;
360 } else if (devc->limit_msec && (n >= max)) {
361 send_samples(devc, max - devc->samples_sent);
362 sr_info("Requested time limit reached.");
363 sdi->driver->dev_acquisition_stop(sdi, cb_data);
364 return TRUE;
365 } else {
366 send_samples(devc, devc->bytes_received / 2);
fdf4a1f5
UH
367 }
368
369 return TRUE;
370}