]> sigrok.org Git - libsigrok.git/blob - src/lcr/es51919.c
Free sr_config and sr_config lists in meta datafeeds correctly.
[libsigrok.git] / src / lcr / es51919.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2014 Janne Huttunen <jahuttun@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <stdint.h>
22 #include <string.h>
23 #include <math.h>
24 #include <glib.h>
25 #include <libsigrok/libsigrok.h>
26 #include "libsigrok-internal.h"
27
28 #define LOG_PREFIX "es51919"
29
30 struct dev_buffer {
31         /** Total size of the buffer. */
32         size_t size;
33         /** Amount of data currently in the buffer. */
34         size_t len;
35         /** Offset where the data starts in the buffer. */
36         size_t offset;
37         /** Space for the data. */
38         uint8_t data[];
39 };
40
41 static struct dev_buffer *dev_buffer_new(size_t size)
42 {
43         struct dev_buffer *dbuf;
44
45         dbuf = g_malloc0(sizeof(struct dev_buffer) + size);
46         dbuf->size = size;
47         dbuf->len = 0;
48         dbuf->offset = 0;
49
50         return dbuf;
51 }
52
53 static void dev_buffer_destroy(struct dev_buffer *dbuf)
54 {
55         g_free(dbuf);
56 }
57
58 static int dev_buffer_fill_serial(struct dev_buffer *dbuf,
59                                   struct sr_dev_inst *sdi)
60 {
61         struct sr_serial_dev_inst *serial;
62         int len;
63
64         serial = sdi->conn;
65
66         /* If we already have data, move it to the beginning of the buffer. */
67         if (dbuf->len > 0 && dbuf->offset > 0)
68                 memmove(dbuf->data, dbuf->data + dbuf->offset, dbuf->len);
69
70         dbuf->offset = 0;
71
72         len = dbuf->size - dbuf->len;
73         len = serial_read_nonblocking(serial, dbuf->data + dbuf->len, len);
74         if (len < 0) {
75                 sr_err("Serial port read error: %d.", len);
76                 return len;
77         }
78
79         dbuf->len += len;
80
81         return SR_OK;
82 }
83
84 static uint8_t *dev_buffer_packet_find(struct dev_buffer *dbuf,
85                                 gboolean (*packet_valid)(const uint8_t *),
86                                 size_t packet_size)
87 {
88         size_t offset;
89
90         while (dbuf->len >= packet_size) {
91                 if (packet_valid(dbuf->data + dbuf->offset)) {
92                         offset = dbuf->offset;
93                         dbuf->offset += packet_size;
94                         dbuf->len -= packet_size;
95                         return dbuf->data + offset;
96                 }
97                 dbuf->offset++;
98                 dbuf->len--;
99         }
100
101         return NULL;
102 }
103
104 struct dev_limit_counter {
105         /** The current number of received samples/frames/etc. */
106         uint64_t count;
107         /** The limit (in number of samples/frames/etc.). */
108         uint64_t limit;
109 };
110
111 static void dev_limit_counter_start(struct dev_limit_counter *cnt)
112 {
113         cnt->count = 0;
114 }
115
116 static void dev_limit_counter_inc(struct dev_limit_counter *cnt)
117 {
118         cnt->count++;
119 }
120
121 static void dev_limit_counter_limit_set(struct dev_limit_counter *cnt,
122                                         uint64_t limit)
123 {
124         cnt->limit = limit;
125 }
126
127 static gboolean dev_limit_counter_limit_reached(struct dev_limit_counter *cnt)
128 {
129         if (cnt->limit && cnt->count >= cnt->limit) {
130                 sr_info("Requested counter limit reached.");
131                 return TRUE;
132         }
133
134         return FALSE;
135 }
136
137 struct dev_time_counter {
138         /** The starting time of current sampling run. */
139         int64_t starttime;
140         /** The time limit (in milliseconds). */
141         uint64_t limit;
142 };
143
144 static void dev_time_counter_start(struct dev_time_counter *cnt)
145 {
146         cnt->starttime = g_get_monotonic_time();
147 }
148
149 static void dev_time_limit_set(struct dev_time_counter *cnt, uint64_t limit)
150 {
151         cnt->limit = limit;
152 }
153
154 static gboolean dev_time_limit_reached(struct dev_time_counter *cnt)
155 {
156         int64_t time;
157
158         if (cnt->limit) {
159                 time = (g_get_monotonic_time() - cnt->starttime) / 1000;
160                 if (time > (int64_t)cnt->limit) {
161                         sr_info("Requested time limit reached.");
162                         return TRUE;
163                 }
164         }
165
166         return FALSE;
167 }
168
169 static void serial_conf_get(GSList *options, const char *def_serialcomm,
170                             const char **conn, const char **serialcomm)
171 {
172         struct sr_config *src;
173         GSList *l;
174
175         *conn = *serialcomm = NULL;
176         for (l = options; l; l = l->next) {
177                 src = l->data;
178                 switch (src->key) {
179                 case SR_CONF_CONN:
180                         *conn = g_variant_get_string(src->data, NULL);
181                         break;
182                 case SR_CONF_SERIALCOMM:
183                         *serialcomm = g_variant_get_string(src->data, NULL);
184                         break;
185                 }
186         }
187
188         if (*serialcomm == NULL)
189                 *serialcomm = def_serialcomm;
190 }
191
192 static struct sr_serial_dev_inst *serial_dev_new(GSList *options,
193                                                  const char *def_serialcomm)
194
195 {
196         const char *conn, *serialcomm;
197
198         serial_conf_get(options, def_serialcomm, &conn, &serialcomm);
199
200         if (!conn)
201                 return NULL;
202
203         return sr_serial_dev_inst_new(conn, serialcomm);
204 }
205
206 static int serial_stream_check_buf(struct sr_serial_dev_inst *serial,
207                                    uint8_t *buf, size_t buflen,
208                                    size_t packet_size,
209                                    packet_valid_callback is_valid,
210                                    uint64_t timeout_ms, int baudrate)
211 {
212         size_t len, dropped;
213         int ret;
214
215         if ((ret = serial_open(serial, SERIAL_RDWR)) != SR_OK)
216                 return ret;
217
218         serial_flush(serial);
219
220         len = buflen;
221         ret = serial_stream_detect(serial, buf, &len, packet_size,
222                                    is_valid, timeout_ms, baudrate);
223
224         serial_close(serial);
225
226         if (ret != SR_OK)
227                 return ret;
228
229         /*
230          * If we dropped more than two packets worth of data, something is
231          * wrong. We shouldn't quit however, since the dropped bytes might be
232          * just zeroes at the beginning of the stream. Those can occur as a
233          * combination of the nonstandard cable that ships with some devices
234          * and the serial port or USB to serial adapter.
235          */
236         dropped = len - packet_size;
237         if (dropped > 2 * packet_size)
238                 sr_warn("Had to drop too much data.");
239
240         return SR_OK;
241 }
242
243 static int serial_stream_check(struct sr_serial_dev_inst *serial,
244                                size_t packet_size,
245                                packet_valid_callback is_valid,
246                                uint64_t timeout_ms, int baudrate)
247 {
248         uint8_t buf[128];
249
250         return serial_stream_check_buf(serial, buf, sizeof(buf), packet_size,
251                                        is_valid, timeout_ms, baudrate);
252 }
253
254 static int send_config_update(struct sr_dev_inst *sdi, struct sr_config *cfg)
255 {
256         struct sr_datafeed_packet packet;
257         struct sr_datafeed_meta meta;
258         int ret;
259
260         memset(&meta, 0, sizeof(meta));
261
262         packet.type = SR_DF_META;
263         packet.payload = &meta;
264
265         meta.config = g_slist_append(NULL, cfg);
266
267         ret = sr_session_send(sdi, &packet);
268
269         g_slist_free(meta.config);
270
271         return ret;
272 }
273
274 static int send_config_update_key(struct sr_dev_inst *sdi, uint32_t key,
275                                   GVariant *var)
276 {
277         struct sr_config *cfg;
278         int ret;
279
280         cfg = sr_config_new(key, var);
281         if (!cfg)
282                 return SR_ERR;
283
284         ret = send_config_update(sdi, cfg);
285         sr_config_free(cfg);
286
287         return ret;
288 }
289
290 /*
291  * Cyrustek ES51919 LCR chipset host protocol.
292  *
293  * Public official documentation does not contain the protocol
294  * description, so this is all based on reverse engineering.
295  *
296  * Packet structure (17 bytes):
297  *
298  * 0x00: header1 ?? (0x00)
299  * 0x01: header2 ?? (0x0d)
300  *
301  * 0x02: flags
302  *         bit 0 = hold enabled
303  *         bit 1 = reference shown (in delta mode)
304  *         bit 2 = delta mode
305  *         bit 3 = calibration mode
306  *         bit 4 = sorting mode
307  *         bit 5 = LCR mode
308  *         bit 6 = auto mode
309  *         bit 7 = parallel measurement (vs. serial)
310  *
311  * 0x03: config
312  *         bit 0-4 = ??? (0x10)
313  *         bit 5-7 = test frequency
314  *                     0 = 100 Hz
315  *                     1 = 120 Hz
316  *                     2 = 1 kHz
317  *                     3 = 10 kHz
318  *                     4 = 100 kHz
319  *                     5 = 0 Hz (DC)
320  *
321  * 0x04: tolerance (sorting mode)
322  *         0 = not set
323  *         3 = +-0.25%
324  *         4 = +-0.5%
325  *         5 = +-1%
326  *         6 = +-2%
327  *         7 = +-5%
328  *         8 = +-10%
329  *         9 = +-20%
330  *        10 = -20+80%
331  *
332  * 0x05-0x09: primary measurement
333  *   0x05: measured quantity
334  *           1 = inductance
335  *           2 = capacitance
336  *           3 = resistance
337  *           4 = DC resistance
338  *   0x06: measurement MSB  (0x4e20 = 20000 = outside limits)
339  *   0x07: measurement LSB
340  *   0x08: measurement info
341  *           bit 0-2 = decimal point multiplier (10^-val)
342  *           bit 3-7 = unit
343  *                       0 = no unit
344  *                       1 = Ohm
345  *                       2 = kOhm
346  *                       3 = MOhm
347  *                       5 = uH
348  *                       6 = mH
349  *                       7 = H
350  *                       8 = kH
351  *                       9 = pF
352  *                       10 = nF
353  *                       11 = uF
354  *                       12 = mF
355  *                       13 = %
356  *                       14 = degree
357  *   0x09: measurement status
358  *           bit 0-3 = status
359  *                       0 = normal (measurement shown)
360  *                       1 = blank (nothing shown)
361  *                       2 = lines ("----")
362  *                       3 = outside limits ("OL")
363  *                       7 = pass ("PASS")
364  *                       8 = fail ("FAIL")
365  *                       9 = open ("OPEn")
366  *                      10 = shorted ("Srt")
367  *           bit 4-6 = ??? (maybe part of same field with 0-3)
368  *           bit 7   = ??? (some independent flag)
369  *
370  * 0x0a-0x0e: secondary measurement
371  *   0x0a: measured quantity
372  *           0 = none
373  *           1 = dissipation factor
374  *           2 = quality factor
375  *           3 = parallel AC resistance / ESR
376  *           4 = phase angle
377  *   0x0b-0x0e: like primary measurement
378  *
379  * 0x0f: footer1 (0x0d) ?
380  * 0x10: footer2 (0x0a) ?
381  */
382
383 #define PACKET_SIZE 17
384
385 static const double frequencies[] = {
386         100, 120, 1000, 10000, 100000, 0,
387 };
388
389 enum { MODEL_NONE, MODEL_PAR, MODEL_SER, MODEL_AUTO, };
390
391 static const char *const models[] = {
392         "NONE", "PARALLEL", "SERIES", "AUTO",
393 };
394
395 struct dev_context {
396         struct dev_limit_counter frame_count;
397
398         struct dev_time_counter time_count;
399
400         struct dev_buffer *buf;
401
402         /** The frequency of the test signal (index to frequencies[]). */
403         unsigned int freq;
404
405         /** Equivalent circuit model (index to models[]). */
406         unsigned int model;
407 };
408
409 static const uint8_t *pkt_to_buf(const uint8_t *pkt, int is_secondary)
410 {
411         return is_secondary ? pkt + 10 : pkt + 5;
412 }
413
414 static int parse_mq(const uint8_t *pkt, int is_secondary, int is_parallel)
415 {
416         const uint8_t *buf;
417
418         buf = pkt_to_buf(pkt, is_secondary);
419
420         switch (is_secondary << 8 | buf[0]) {
421         case 0x001:
422                 return is_parallel ?
423                         SR_MQ_PARALLEL_INDUCTANCE : SR_MQ_SERIES_INDUCTANCE;
424         case 0x002:
425                 return is_parallel ?
426                         SR_MQ_PARALLEL_CAPACITANCE : SR_MQ_SERIES_CAPACITANCE;
427         case 0x003:
428         case 0x103:
429                 return is_parallel ?
430                         SR_MQ_PARALLEL_RESISTANCE : SR_MQ_SERIES_RESISTANCE;
431         case 0x004:
432                 return SR_MQ_RESISTANCE;
433         case 0x100:
434                 return SR_MQ_DIFFERENCE;
435         case 0x101:
436                 return SR_MQ_DISSIPATION_FACTOR;
437         case 0x102:
438                 return SR_MQ_QUALITY_FACTOR;
439         case 0x104:
440                 return SR_MQ_PHASE_ANGLE;
441         }
442
443         sr_err("Unknown quantity 0x%03x.", is_secondary << 8 | buf[0]);
444
445         return 0;
446 }
447
448 static float parse_value(const uint8_t *buf, int *digits)
449 {
450         static const int exponents[] = {0, -1, -2, -3, -4, -5, -6, -7};
451         int exponent;
452         int16_t val;
453
454         exponent = exponents[buf[3] & 7];
455         *digits = -exponent;
456         val = (buf[1] << 8) | buf[2];
457         return (float)val * powf(10, exponent);
458 }
459
460 static void parse_measurement(const uint8_t *pkt, float *floatval,
461                               struct sr_datafeed_analog *analog,
462                               int is_secondary)
463 {
464         static const struct {
465                 int unit;
466                 int exponent;
467         } units[] = {
468                 { SR_UNIT_UNITLESS,   0 }, /* no unit */
469                 { SR_UNIT_OHM,        0 }, /* Ohm */
470                 { SR_UNIT_OHM,        3 }, /* kOhm */
471                 { SR_UNIT_OHM,        6 }, /* MOhm */
472                 { -1,                 0 }, /* ??? */
473                 { SR_UNIT_HENRY,     -6 }, /* uH */
474                 { SR_UNIT_HENRY,     -3 }, /* mH */
475                 { SR_UNIT_HENRY,      0 }, /* H */
476                 { SR_UNIT_HENRY,      3 }, /* kH */
477                 { SR_UNIT_FARAD,    -12 }, /* pF */
478                 { SR_UNIT_FARAD,     -9 }, /* nF */
479                 { SR_UNIT_FARAD,     -6 }, /* uF */
480                 { SR_UNIT_FARAD,     -3 }, /* mF */
481                 { SR_UNIT_PERCENTAGE, 0 }, /* % */
482                 { SR_UNIT_DEGREE,     0 }, /* degree */
483         };
484         const uint8_t *buf;
485         int digits, exponent;
486         int state;
487
488         buf = pkt_to_buf(pkt, is_secondary);
489
490         analog->meaning->mq = 0;
491         analog->meaning->mqflags = 0;
492
493         state = buf[4] & 0xf;
494
495         if (state != 0 && state != 3)
496                 return;
497
498         if (pkt[2] & 0x18) {
499                 /* Calibration and Sorting modes not supported. */
500                 return;
501         }
502
503         if (!is_secondary) {
504                 if (pkt[2] & 0x01)
505                         analog->meaning->mqflags |= SR_MQFLAG_HOLD;
506                 if (pkt[2] & 0x02)
507                         analog->meaning->mqflags |= SR_MQFLAG_REFERENCE;
508         } else {
509                 if (pkt[2] & 0x04)
510                         analog->meaning->mqflags |= SR_MQFLAG_RELATIVE;
511         }
512
513         if ((analog->meaning->mq = parse_mq(pkt, is_secondary, pkt[2] & 0x80)) == 0)
514                 return;
515
516         if ((buf[3] >> 3) >= ARRAY_SIZE(units)) {
517                 sr_err("Unknown unit %u.", buf[3] >> 3);
518                 analog->meaning->mq = 0;
519                 return;
520         }
521
522         analog->meaning->unit = units[buf[3] >> 3].unit;
523
524         exponent = units[buf[3] >> 3].exponent;
525         *floatval = parse_value(buf, &digits);
526         *floatval *= (state == 0) ? powf(10, exponent) : INFINITY;
527         analog->encoding->digits = digits - exponent;
528         analog->spec->spec_digits = digits - exponent;
529 }
530
531 static unsigned int parse_freq(const uint8_t *pkt)
532 {
533         unsigned int freq;
534
535         freq = pkt[3] >> 5;
536
537         if (freq >= ARRAY_SIZE(frequencies)) {
538                 sr_err("Unknown frequency %u.", freq);
539                 freq = ARRAY_SIZE(frequencies) - 1;
540         }
541
542         return freq;
543 }
544
545 static unsigned int parse_model(const uint8_t *pkt)
546 {
547         if (pkt[2] & 0x40)
548                 return MODEL_AUTO;
549         else if (parse_mq(pkt, 0, 0) == SR_MQ_RESISTANCE)
550                 return MODEL_NONE;
551         else if (pkt[2] & 0x80)
552                 return MODEL_PAR;
553         else
554                 return MODEL_SER;
555 }
556
557 static gboolean packet_valid(const uint8_t *pkt)
558 {
559         /*
560          * If the first two bytes of the packet are indeed a constant
561          * header, they should be checked too. Since we don't know it
562          * for sure, we'll just check the last two for now since they
563          * seem to be constant just like in the other Cyrustek chipset
564          * protocols.
565          */
566         if (pkt[15] == 0xd && pkt[16] == 0xa)
567                 return TRUE;
568
569         return FALSE;
570 }
571
572 static int do_config_update(struct sr_dev_inst *sdi, uint32_t key,
573                             GVariant *var)
574 {
575         return send_config_update_key(sdi, key, var);
576 }
577
578 static int send_freq_update(struct sr_dev_inst *sdi, unsigned int freq)
579 {
580         return do_config_update(sdi, SR_CONF_OUTPUT_FREQUENCY,
581                                 g_variant_new_double(frequencies[freq]));
582 }
583
584 static int send_model_update(struct sr_dev_inst *sdi, unsigned int model)
585 {
586         return do_config_update(sdi, SR_CONF_EQUIV_CIRCUIT_MODEL,
587                                 g_variant_new_string(models[model]));
588 }
589
590 static void handle_packet(struct sr_dev_inst *sdi, const uint8_t *pkt)
591 {
592         struct sr_datafeed_packet packet;
593         struct sr_datafeed_analog analog;
594         struct sr_analog_encoding encoding;
595         struct sr_analog_meaning meaning;
596         struct sr_analog_spec spec;
597         struct dev_context *devc;
598         unsigned int val;
599         float floatval;
600         gboolean frame;
601         struct sr_channel *channel;
602
603         devc = sdi->priv;
604
605         val = parse_freq(pkt);
606         if (val != devc->freq) {
607                 if (send_freq_update(sdi, val) == SR_OK)
608                         devc->freq = val;
609                 else
610                         return;
611         }
612
613         val = parse_model(pkt);
614         if (val != devc->model) {
615                 if (send_model_update(sdi, val) == SR_OK)
616                         devc->model = val;
617                 else
618                         return;
619         }
620
621         frame = FALSE;
622
623         /* Note: digits/spec_digits will be overridden later. */
624         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
625
626         analog.num_samples = 1;
627         analog.data = &floatval;
628
629         channel = sdi->channels->data;
630         analog.meaning->channels = g_slist_append(NULL, channel);
631
632         parse_measurement(pkt, &floatval, &analog, 0);
633         if (analog.meaning->mq != 0 && channel->enabled) {
634                 if (!frame) {
635                         packet.type = SR_DF_FRAME_BEGIN;
636                         sr_session_send(sdi, &packet);
637                         frame = TRUE;
638                 }
639
640                 packet.type = SR_DF_ANALOG;
641                 packet.payload = &analog;
642
643                 sr_session_send(sdi, &packet);
644         }
645
646         g_slist_free(analog.meaning->channels);
647
648         channel = sdi->channels->next->data;
649         analog.meaning->channels = g_slist_append(NULL, channel);
650
651         parse_measurement(pkt, &floatval, &analog, 1);
652         if (analog.meaning->mq != 0 && channel->enabled) {
653                 if (!frame) {
654                         packet.type = SR_DF_FRAME_BEGIN;
655                         sr_session_send(sdi, &packet);
656                         frame = TRUE;
657                 }
658
659                 packet.type = SR_DF_ANALOG;
660                 packet.payload = &analog;
661
662                 sr_session_send(sdi, &packet);
663         }
664
665         g_slist_free(analog.meaning->channels);
666
667         if (frame) {
668                 packet.type = SR_DF_FRAME_END;
669                 sr_session_send(sdi, &packet);
670                 dev_limit_counter_inc(&devc->frame_count);
671         }
672 }
673
674 static int handle_new_data(struct sr_dev_inst *sdi)
675 {
676         struct dev_context *devc;
677         uint8_t *pkt;
678         int ret;
679
680         devc = sdi->priv;
681
682         ret = dev_buffer_fill_serial(devc->buf, sdi);
683         if (ret < 0)
684                 return ret;
685
686         while ((pkt = dev_buffer_packet_find(devc->buf, packet_valid,
687                                              PACKET_SIZE)))
688                 handle_packet(sdi, pkt);
689
690         return SR_OK;
691 }
692
693 static int receive_data(int fd, int revents, void *cb_data)
694 {
695         struct sr_dev_inst *sdi;
696         struct dev_context *devc;
697
698         (void)fd;
699
700         if (!(sdi = cb_data))
701                 return TRUE;
702
703         if (!(devc = sdi->priv))
704                 return TRUE;
705
706         if (revents == G_IO_IN) {
707                 /* Serial data arrived. */
708                 handle_new_data(sdi);
709         }
710
711         if (dev_limit_counter_limit_reached(&devc->frame_count) ||
712             dev_time_limit_reached(&devc->time_count))
713                 sr_dev_acquisition_stop(sdi);
714
715         return TRUE;
716 }
717
718 static const char *const channel_names[] = { "P1", "P2" };
719
720 static int setup_channels(struct sr_dev_inst *sdi)
721 {
722         unsigned int i;
723
724         for (i = 0; i < ARRAY_SIZE(channel_names); i++)
725                 sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
726
727         return SR_OK;
728 }
729
730 SR_PRIV void es51919_serial_clean(void *priv)
731 {
732         struct dev_context *devc;
733
734         if (!(devc = priv))
735                 return;
736
737         dev_buffer_destroy(devc->buf);
738 }
739
740 SR_PRIV struct sr_dev_inst *es51919_serial_scan(GSList *options,
741                                                 const char *vendor,
742                                                 const char *model)
743 {
744         struct sr_serial_dev_inst *serial;
745         struct sr_dev_inst *sdi;
746         struct dev_context *devc;
747         int ret;
748
749         serial = NULL;
750         sdi = NULL;
751         devc = NULL;
752
753         if (!(serial = serial_dev_new(options, "9600/8n1/rts=1/dtr=1")))
754                 goto scan_cleanup;
755
756         ret = serial_stream_check(serial, PACKET_SIZE, packet_valid,
757                                   3000, 9600);
758         if (ret != SR_OK)
759                 goto scan_cleanup;
760
761         sr_info("Found device on port %s.", serial->port);
762
763         sdi = g_malloc0(sizeof(struct sr_dev_inst));
764         sdi->status = SR_ST_INACTIVE;
765         sdi->vendor = g_strdup(vendor);
766         sdi->model = g_strdup(model);
767         devc = g_malloc0(sizeof(struct dev_context));
768         devc->buf = dev_buffer_new(PACKET_SIZE * 8);
769         sdi->inst_type = SR_INST_SERIAL;
770         sdi->conn = serial;
771         sdi->priv = devc;
772
773         if (setup_channels(sdi) != SR_OK)
774                 goto scan_cleanup;
775
776         return sdi;
777
778 scan_cleanup:
779         es51919_serial_clean(devc);
780         sr_dev_inst_free(sdi);
781         sr_serial_dev_inst_free(serial);
782
783         return NULL;
784 }
785
786 SR_PRIV int es51919_serial_config_get(uint32_t key, GVariant **data,
787                                       const struct sr_dev_inst *sdi,
788                                       const struct sr_channel_group *cg)
789 {
790         struct dev_context *devc;
791
792         (void)cg;
793
794         devc = sdi->priv;
795
796         switch (key) {
797         case SR_CONF_OUTPUT_FREQUENCY:
798                 *data = g_variant_new_double(frequencies[devc->freq]);
799                 break;
800         case SR_CONF_EQUIV_CIRCUIT_MODEL:
801                 *data = g_variant_new_string(models[devc->model]);
802                 break;
803         default:
804                 return SR_ERR_NA;
805         }
806
807         return SR_OK;
808 }
809
810 SR_PRIV int es51919_serial_config_set(uint32_t key, GVariant *data,
811                                       const struct sr_dev_inst *sdi,
812                                       const struct sr_channel_group *cg)
813 {
814         struct dev_context *devc;
815         uint64_t val;
816
817         (void)cg;
818
819         if (!(devc = sdi->priv))
820                 return SR_ERR_BUG;
821
822         switch (key) {
823         case SR_CONF_LIMIT_MSEC:
824                 val = g_variant_get_uint64(data);
825                 dev_time_limit_set(&devc->time_count, val);
826                 sr_dbg("Setting time limit to %" PRIu64 ".", val);
827                 break;
828         case SR_CONF_LIMIT_FRAMES:
829                 val = g_variant_get_uint64(data);
830                 dev_limit_counter_limit_set(&devc->frame_count, val);
831                 sr_dbg("Setting frame limit to %" PRIu64 ".", val);
832                 break;
833         default:
834                 sr_spew("%s: Unsupported key %u", __func__, key);
835                 return SR_ERR_NA;
836         }
837
838         return SR_OK;
839 }
840
841 static const uint32_t scanopts[] = {
842         SR_CONF_CONN,
843         SR_CONF_SERIALCOMM,
844 };
845
846 static const uint32_t drvopts[] = {
847         SR_CONF_LCRMETER,
848 };
849
850 static const uint32_t devopts[] = {
851         SR_CONF_CONTINUOUS,
852         SR_CONF_LIMIT_FRAMES | SR_CONF_SET,
853         SR_CONF_LIMIT_MSEC | SR_CONF_SET,
854         SR_CONF_OUTPUT_FREQUENCY | SR_CONF_GET | SR_CONF_LIST,
855         SR_CONF_EQUIV_CIRCUIT_MODEL | SR_CONF_GET | SR_CONF_LIST,
856 };
857
858 SR_PRIV int es51919_serial_config_list(uint32_t key, GVariant **data,
859                                        const struct sr_dev_inst *sdi,
860                                        const struct sr_channel_group *cg)
861 {
862         switch (key) {
863         case SR_CONF_SCAN_OPTIONS:
864         case SR_CONF_DEVICE_OPTIONS:
865                 return STD_CONFIG_LIST(key, data, sdi, cg, scanopts, drvopts, devopts);
866         case SR_CONF_OUTPUT_FREQUENCY:
867                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_DOUBLE,
868                         ARRAY_AND_SIZE(frequencies), sizeof(double));
869                 break;
870         case SR_CONF_EQUIV_CIRCUIT_MODEL:
871                 *data = g_variant_new_strv(ARRAY_AND_SIZE(models));
872                 break;
873         default:
874                 return SR_ERR_NA;
875         }
876
877         return SR_OK;
878 }
879
880 SR_PRIV int es51919_serial_acquisition_start(const struct sr_dev_inst *sdi)
881 {
882         struct dev_context *devc;
883         struct sr_serial_dev_inst *serial;
884
885         if (!(devc = sdi->priv))
886                 return SR_ERR_BUG;
887
888         dev_limit_counter_start(&devc->frame_count);
889         dev_time_counter_start(&devc->time_count);
890
891         std_session_send_df_header(sdi);
892
893         serial = sdi->conn;
894         serial_source_add(sdi->session, serial, G_IO_IN, 50,
895                           receive_data, (void *)sdi);
896
897         return SR_OK;
898 }