]> sigrok.org Git - libsigrok.git/blob - src/hardware/hantek-6xxx/api.c
hantek-6xxx: Fix coupling selection.
[libsigrok.git] / src / hardware / hantek-6xxx / api.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2015 Christer Ekholm <christerekholm@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include "protocol.h"
23
24 /* Max time in ms before we want to check on USB events */
25 #define TICK 200
26
27 #define RANGE(ch) (((float)vdivs[devc->voltage[ch]][0] / vdivs[devc->voltage[ch]][1]) * VDIV_MULTIPLIER)
28
29 static const uint32_t scanopts[] = {
30         SR_CONF_CONN,
31 };
32
33 static const uint32_t drvopts[] = {
34         SR_CONF_OSCILLOSCOPE,
35 };
36
37 static const uint32_t devopts[] = {
38         SR_CONF_CONN | SR_CONF_GET,
39         SR_CONF_LIMIT_SAMPLES | SR_CONF_GET | SR_CONF_SET,
40         SR_CONF_LIMIT_MSEC | SR_CONF_GET | SR_CONF_SET,
41         SR_CONF_SAMPLERATE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
42         SR_CONF_NUM_VDIV | SR_CONF_GET,
43 };
44
45 static const uint32_t devopts_cg[] = {
46         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
47         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
48 };
49
50 static const char *channel_names[] = {
51         "CH1", "CH2",
52 };
53
54 static const char *dc_coupling[] = {
55         "DC", "DC",
56 };
57
58 static const char *acdc_coupling[] = {
59         "AC", "DC",
60 };
61
62 static const struct hantek_6xxx_profile dev_profiles[] = {
63         {
64                 0x04b4, 0x6022, 0x1d50, 0x608e, 0x0001,
65                 "Hantek", "6022BE", "fx2lafw-hantek-6022be.fw",
66                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
67         },
68         {
69                 0x8102, 0x8102, 0x1d50, 0x608e, 0x0002,
70                 "Sainsmart", "DDS120", "fx2lafw-sainsmart-dds120.fw",
71                 acdc_coupling, ARRAY_SIZE(acdc_coupling), TRUE,
72         },
73         {
74                 0x04b4, 0x602a, 0x1d50, 0x608e, 0x0003,
75                 "Hantek", "6022BL", "fx2lafw-hantek-6022bl.fw",
76                 dc_coupling, ARRAY_SIZE(dc_coupling), FALSE,
77         },
78         ALL_ZERO
79 };
80
81 static const uint64_t samplerates[] = {
82         SAMPLERATE_VALUES
83 };
84
85 static const uint64_t vdivs[][2] = {
86         VDIV_VALUES
87 };
88
89 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount);
90
91 static int dev_acquisition_stop(struct sr_dev_inst *sdi);
92
93 static struct sr_dev_inst *hantek_6xxx_dev_new(const struct hantek_6xxx_profile *prof)
94 {
95         struct sr_dev_inst *sdi;
96         struct sr_channel *ch;
97         struct sr_channel_group *cg;
98         struct dev_context *devc;
99         unsigned int i;
100
101         sdi = g_malloc0(sizeof(struct sr_dev_inst));
102         sdi->status = SR_ST_INITIALIZING;
103         sdi->vendor = g_strdup(prof->vendor);
104         sdi->model = g_strdup(prof->model);
105
106         for (i = 0; i < ARRAY_SIZE(channel_names); i++) {
107                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE, channel_names[i]);
108                 cg = g_malloc0(sizeof(struct sr_channel_group));
109                 cg->name = g_strdup(channel_names[i]);
110                 cg->channels = g_slist_append(cg->channels, ch);
111                 sdi->channel_groups = g_slist_append(sdi->channel_groups, cg);
112         }
113
114         devc = g_malloc0(sizeof(struct dev_context));
115
116         for (i = 0; i < NUM_CHANNELS; i++) {
117                 devc->ch_enabled[i] = TRUE;
118                 devc->voltage[i] = DEFAULT_VOLTAGE;
119                 devc->coupling[i] = DEFAULT_COUPLING;
120         }
121         devc->coupling_vals = prof->coupling_vals;
122         devc->coupling_tab_size = prof->coupling_tab_size;
123         devc->has_coupling = prof->has_coupling;
124
125         devc->sample_buf = NULL;
126         devc->sample_buf_write = 0;
127         devc->sample_buf_size = 0;
128
129         devc->profile = prof;
130         devc->dev_state = IDLE;
131         devc->samplerate = DEFAULT_SAMPLERATE;
132
133         sdi->priv = devc;
134
135         return sdi;
136 }
137
138 static int configure_channels(const struct sr_dev_inst *sdi)
139 {
140         struct dev_context *devc;
141         const GSList *l;
142         int p;
143         struct sr_channel *ch;
144         devc = sdi->priv;
145
146         g_slist_free(devc->enabled_channels);
147         devc->enabled_channels = NULL;
148         memset(devc->ch_enabled, 0, sizeof(devc->ch_enabled));
149
150         for (l = sdi->channels, p = 0; l; l = l->next, p++) {
151                 ch = l->data;
152                 if (p < NUM_CHANNELS) {
153                         devc->ch_enabled[p] = ch->enabled;
154                         devc->enabled_channels = g_slist_append(devc->enabled_channels, ch);
155                 }
156         }
157
158         return SR_OK;
159 }
160
161 static void clear_dev_context(void *priv)
162 {
163         struct dev_context *devc;
164
165         devc = priv;
166         g_slist_free(devc->enabled_channels);
167         g_free(devc);
168 }
169
170 static int dev_clear(const struct sr_dev_driver *di)
171 {
172         return std_dev_clear(di, clear_dev_context);
173 }
174
175 static GSList *scan(struct sr_dev_driver *di, GSList *options)
176 {
177         struct drv_context *drvc;
178         struct dev_context *devc;
179         struct sr_dev_inst *sdi;
180         struct sr_usb_dev_inst *usb;
181         struct sr_config *src;
182         const struct hantek_6xxx_profile *prof;
183         GSList *l, *devices, *conn_devices;
184         struct libusb_device_descriptor des;
185         libusb_device **devlist;
186         int i, j;
187         const char *conn;
188         char connection_id[64];
189
190         drvc = di->context;
191
192         devices = 0;
193
194         conn = NULL;
195         for (l = options; l; l = l->next) {
196                 src = l->data;
197                 if (src->key == SR_CONF_CONN) {
198                         conn = g_variant_get_string(src->data, NULL);
199                         break;
200                 }
201         }
202         if (conn)
203                 conn_devices = sr_usb_find(drvc->sr_ctx->libusb_ctx, conn);
204         else
205                 conn_devices = NULL;
206
207         /* Find all Hantek 60xx devices and upload firmware to all of them. */
208         libusb_get_device_list(drvc->sr_ctx->libusb_ctx, &devlist);
209         for (i = 0; devlist[i]; i++) {
210                 if (conn) {
211                         usb = NULL;
212                         for (l = conn_devices; l; l = l->next) {
213                                 usb = l->data;
214                                 if (usb->bus == libusb_get_bus_number(devlist[i])
215                                         && usb->address == libusb_get_device_address(devlist[i]))
216                                         break;
217                         }
218                         if (!l)
219                                 /* This device matched none of the ones that
220                                  * matched the conn specification. */
221                                 continue;
222                 }
223
224                 libusb_get_device_descriptor(devlist[i], &des);
225
226                 usb_get_port_path(devlist[i], connection_id, sizeof(connection_id));
227
228                 prof = NULL;
229                 for (j = 0; dev_profiles[j].orig_vid; j++) {
230                         if (des.idVendor == dev_profiles[j].orig_vid
231                                 && des.idProduct == dev_profiles[j].orig_pid) {
232                                 /* Device matches the pre-firmware profile. */
233                                 prof = &dev_profiles[j];
234                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
235                                 sdi = hantek_6xxx_dev_new(prof);
236                                 sdi->connection_id = g_strdup(connection_id);
237                                 devices = g_slist_append(devices, sdi);
238                                 devc = sdi->priv;
239                                 if (ezusb_upload_firmware(drvc->sr_ctx, devlist[i],
240                                                 USB_CONFIGURATION, prof->firmware) == SR_OK)
241                                         /* Remember when the firmware on this device was updated. */
242                                         devc->fw_updated = g_get_monotonic_time();
243                                 else
244                                         sr_err("Firmware upload failed.");
245                                 /* Dummy USB address of 0xff will get overwritten later. */
246                                 sdi->conn = sr_usb_dev_inst_new(
247                                                 libusb_get_bus_number(devlist[i]), 0xff, NULL);
248                                 break;
249                         } else if (des.idVendor == dev_profiles[j].fw_vid
250                                 && des.idProduct == dev_profiles[j].fw_pid
251                                 && des.bcdDevice == dev_profiles[j].fw_prod_ver) {
252                                 /* Device matches the post-firmware profile. */
253                                 prof = &dev_profiles[j];
254                                 sr_dbg("Found a %s %s.", prof->vendor, prof->model);
255                                 sdi = hantek_6xxx_dev_new(prof);
256                                 sdi->connection_id = g_strdup(connection_id);
257                                 sdi->status = SR_ST_INACTIVE;
258                                 devices = g_slist_append(devices, sdi);
259                                 sdi->inst_type = SR_INST_USB;
260                                 sdi->conn = sr_usb_dev_inst_new(
261                                                 libusb_get_bus_number(devlist[i]),
262                                                 libusb_get_device_address(devlist[i]), NULL);
263                                 break;
264                         }
265                 }
266                 if (!prof)
267                         /* Not a supported VID/PID. */
268                         continue;
269         }
270         libusb_free_device_list(devlist, 1);
271
272         return std_scan_complete(di, devices);
273 }
274
275 static int dev_open(struct sr_dev_inst *sdi)
276 {
277         struct dev_context *devc;
278         struct sr_usb_dev_inst *usb;
279         int64_t timediff_us, timediff_ms;
280         int err;
281
282         devc = sdi->priv;
283         usb = sdi->conn;
284
285         /*
286          * If the firmware was recently uploaded, wait up to MAX_RENUM_DELAY_MS
287          * for the FX2 to renumerate.
288          */
289         err = SR_ERR;
290         if (devc->fw_updated > 0) {
291                 sr_info("Waiting for device to reset.");
292                 /* Takes >= 300ms for the FX2 to be gone from the USB bus. */
293                 g_usleep(300 * 1000);
294                 timediff_ms = 0;
295                 while (timediff_ms < MAX_RENUM_DELAY_MS) {
296                         if ((err = hantek_6xxx_open(sdi)) == SR_OK)
297                                 break;
298                         g_usleep(100 * 1000);
299                         timediff_us = g_get_monotonic_time() - devc->fw_updated;
300                         timediff_ms = timediff_us / 1000;
301                         sr_spew("Waited %" PRIi64 " ms.", timediff_ms);
302                 }
303                 if (timediff_ms < MAX_RENUM_DELAY_MS)
304                         sr_info("Device came back after %"PRIu64" ms.", timediff_ms);
305         } else {
306                 err = hantek_6xxx_open(sdi);
307         }
308
309         if (err != SR_OK) {
310                 sr_err("Unable to open device.");
311                 return SR_ERR;
312         }
313
314         err = libusb_claim_interface(usb->devhdl, USB_INTERFACE);
315         if (err != 0) {
316                 sr_err("Unable to claim interface: %s.",
317                         libusb_error_name(err));
318                 return SR_ERR;
319         }
320
321         return SR_OK;
322 }
323
324 static int dev_close(struct sr_dev_inst *sdi)
325 {
326         hantek_6xxx_close(sdi);
327
328         return SR_OK;
329 }
330
331 static int config_get(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
332                 const struct sr_channel_group *cg)
333 {
334         struct dev_context *devc;
335         struct sr_usb_dev_inst *usb;
336         char str[128];
337         const uint64_t *vdiv;
338         int ch_idx;
339
340         switch (key) {
341         case SR_CONF_NUM_VDIV:
342                 *data = g_variant_new_int32(ARRAY_SIZE(vdivs));
343                 break;
344         }
345
346         if (!sdi)
347                 return SR_ERR_ARG;
348
349         devc = sdi->priv;
350         if (!cg) {
351                 switch (key) {
352                 case SR_CONF_SAMPLERATE:
353                         *data = g_variant_new_uint64(devc->samplerate);
354                         break;
355                 case SR_CONF_LIMIT_MSEC:
356                         *data = g_variant_new_uint64(devc->limit_msec);
357                         break;
358                 case SR_CONF_LIMIT_SAMPLES:
359                         *data = g_variant_new_uint64(devc->limit_samples);
360                         break;
361                 case SR_CONF_CONN:
362                         if (!sdi->conn)
363                                 return SR_ERR_ARG;
364                         usb = sdi->conn;
365                         if (usb->address == 255)
366                                 /* Device still needs to re-enumerate after firmware
367                                  * upload, so we don't know its (future) address. */
368                                 return SR_ERR;
369                         snprintf(str, 128, "%d.%d", usb->bus, usb->address);
370                         *data = g_variant_new_string(str);
371                         break;
372                 default:
373                         return SR_ERR_NA;
374                 }
375         } else {
376                 if (sdi->channel_groups->data == cg)
377                         ch_idx = 0;
378                 else if (sdi->channel_groups->next->data == cg)
379                         ch_idx = 1;
380                 else
381                         return SR_ERR_ARG;
382                 switch (key) {
383                 case SR_CONF_VDIV:
384                         vdiv = vdivs[devc->voltage[ch_idx]];
385                         *data = g_variant_new("(tt)", vdiv[0], vdiv[1]);
386                         break;
387                 case SR_CONF_COUPLING:
388                         *data = g_variant_new_string(devc->coupling_vals[devc->coupling[ch_idx]]);
389                         break;
390                 }
391         }
392
393         return SR_OK;
394 }
395
396 static int config_set(uint32_t key, GVariant *data, const struct sr_dev_inst *sdi,
397                 const struct sr_channel_group *cg)
398 {
399         struct dev_context *devc;
400         uint64_t p, q;
401         int tmp_int, ch_idx, ret;
402         unsigned int i;
403         const char *tmp_str;
404
405         if (sdi->status != SR_ST_ACTIVE)
406                 return SR_ERR_DEV_CLOSED;
407
408         ret = SR_OK;
409         devc = sdi->priv;
410         if (!cg) {
411                 switch (key) {
412                 case SR_CONF_SAMPLERATE:
413                         devc->samplerate = g_variant_get_uint64(data);
414                         hantek_6xxx_update_samplerate(sdi);
415                         break;
416                 case SR_CONF_LIMIT_MSEC:
417                         devc->limit_msec = g_variant_get_uint64(data);
418                         break;
419                 case SR_CONF_LIMIT_SAMPLES:
420                         devc->limit_samples = g_variant_get_uint64(data);
421                         break;
422                 default:
423                         ret = SR_ERR_NA;
424                         break;
425                 }
426         } else {
427                 if (sdi->channel_groups->data == cg)
428                         ch_idx = 0;
429                 else if (sdi->channel_groups->next->data == cg)
430                         ch_idx = 1;
431                 else
432                         return SR_ERR_ARG;
433                 switch (key) {
434                 case SR_CONF_VDIV:
435                         g_variant_get(data, "(tt)", &p, &q);
436                         tmp_int = -1;
437                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
438                                 if (vdivs[i][0] == p && vdivs[i][1] == q) {
439                                         tmp_int = i;
440                                         break;
441                                 }
442                         }
443                         if (tmp_int >= 0) {
444                                 devc->voltage[ch_idx] = tmp_int;
445                                 hantek_6xxx_update_vdiv(sdi);
446                         } else
447                                 ret = SR_ERR_ARG;
448                         break;
449                 case SR_CONF_COUPLING:
450                         tmp_str = g_variant_get_string(data, NULL);
451                         for (i = 0; i < devc->coupling_tab_size; i++) {
452                                 if (!strcmp(tmp_str, devc->coupling_vals[i])) {
453                                         devc->coupling[ch_idx] = i;
454                                         break;
455                                 }
456                         }
457                         if (i == devc->coupling_tab_size)
458                                 ret = SR_ERR_ARG;
459                         break;
460                 default:
461                         ret = SR_ERR_NA;
462                         break;
463                 }
464         }
465
466         return ret;
467 }
468
469 static int config_list(uint32_t key, GVariant **data, const struct sr_dev_inst *sdi,
470                 const struct sr_channel_group *cg)
471 {
472         GVariant *tuple, *rational[2];
473         GVariantBuilder gvb;
474         unsigned int i;
475         GVariant *gvar;
476         struct dev_context *devc = NULL;
477
478         if (key == SR_CONF_SCAN_OPTIONS) {
479                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
480                         scanopts, ARRAY_SIZE(scanopts), sizeof(uint32_t));
481                 return SR_OK;
482         } else if (key == SR_CONF_DEVICE_OPTIONS && !sdi) {
483                 *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
484                         drvopts, ARRAY_SIZE(drvopts), sizeof(uint32_t));
485                 return SR_OK;
486         }
487
488         if (sdi)
489                 devc = sdi->priv;
490
491         if (!cg) {
492                 switch (key) {
493                 case SR_CONF_DEVICE_OPTIONS:
494                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
495                                 devopts, ARRAY_SIZE(devopts), sizeof(uint32_t));
496                         break;
497                 case SR_CONF_SAMPLERATE:
498                         g_variant_builder_init(&gvb, G_VARIANT_TYPE("a{sv}"));
499                         gvar = g_variant_new_fixed_array(G_VARIANT_TYPE("t"),
500                                 samplerates, ARRAY_SIZE(samplerates),
501                                 sizeof(uint64_t));
502                         g_variant_builder_add(&gvb, "{sv}", "samplerates", gvar);
503                         *data = g_variant_builder_end(&gvb);
504                         break;
505                 default:
506                         return SR_ERR_NA;
507                 }
508         } else {
509                 switch (key) {
510                 case SR_CONF_DEVICE_OPTIONS:
511                         *data = g_variant_new_fixed_array(G_VARIANT_TYPE_UINT32,
512                                 devopts_cg, ARRAY_SIZE(devopts_cg), sizeof(uint32_t));
513                         break;
514                 case SR_CONF_COUPLING:
515                         if (!devc)
516                                 return SR_ERR_NA;
517                         *data = g_variant_new_strv(devc->coupling_vals, devc->coupling_tab_size);
518                         break;
519                 case SR_CONF_VDIV:
520                         g_variant_builder_init(&gvb, G_VARIANT_TYPE_ARRAY);
521                         for (i = 0; i < ARRAY_SIZE(vdivs); i++) {
522                                 rational[0] = g_variant_new_uint64(vdivs[i][0]);
523                                 rational[1] = g_variant_new_uint64(vdivs[i][1]);
524                                 tuple = g_variant_new_tuple(rational, 2);
525                                 g_variant_builder_add_value(&gvb, tuple);
526                         }
527                         *data = g_variant_builder_end(&gvb);
528                         break;
529                 default:
530                         return SR_ERR_NA;
531                 }
532         }
533
534         return SR_OK;
535 }
536
537 /* Minimise data amount for limit_samples and limit_msec limits. */
538 static uint32_t data_amount(const struct sr_dev_inst *sdi)
539 {
540         struct dev_context *devc = sdi->priv;
541         uint32_t data_left, data_left_2, i;
542         int32_t time_left;
543
544         if (devc->limit_msec) {
545                 time_left = devc->limit_msec - (g_get_monotonic_time() - devc->aq_started) / 1000;
546                 data_left = devc->samplerate * MAX(time_left, 0) * NUM_CHANNELS / 1000;
547         } else if (devc->limit_samples) {
548                 data_left = (devc->limit_samples - devc->samp_received) * NUM_CHANNELS;
549         } else {
550                 data_left = devc->samplerate * NUM_CHANNELS;
551         }
552
553         /* Round up to nearest power of two. */
554         for (i = MIN_PACKET_SIZE; i < data_left; i *= 2)
555                 ;
556         data_left_2 = i;
557
558         sr_spew("data_amount: %u (rounded to power of 2: %u)", data_left, data_left_2);
559
560         return data_left_2;
561 }
562
563 static void send_chunk(struct sr_dev_inst *sdi, unsigned char *buf,
564                 int num_samples)
565 {
566         struct sr_datafeed_packet packet;
567         struct sr_datafeed_analog analog;
568         struct sr_analog_encoding encoding;
569         struct sr_analog_meaning meaning;
570         struct sr_analog_spec spec;
571         struct dev_context *devc = sdi->priv;
572         GSList *channels = devc->enabled_channels;
573
574         const float ch_bit[] = { RANGE(0) / 255, RANGE(1) / 255 };
575         const float ch_center[] = { RANGE(0) / 2, RANGE(1) / 2 };
576
577         sr_analog_init(&analog, &encoding, &meaning, &spec, 0);
578
579         packet.type = SR_DF_ANALOG;
580         packet.payload = &analog;
581
582         analog.num_samples = num_samples;
583         analog.meaning->mq = SR_MQ_VOLTAGE;
584         analog.meaning->unit = SR_UNIT_VOLT;
585         analog.meaning->mqflags = 0;
586
587         analog.data = g_try_malloc(num_samples * sizeof(float));
588         if (!analog.data) {
589                 sr_err("Analog data buffer malloc failed.");
590                 devc->dev_state = STOPPING;
591                 return;
592         }
593
594         for (int ch = 0; ch < 2; ch++) {
595                 if (!devc->ch_enabled[ch])
596                         continue;
597
598                 float vdivlog = log10f(ch_bit[ch]);
599                 int digits = -(int)vdivlog + (vdivlog < 0.0);
600                 analog.encoding->digits = digits;
601                 analog.spec->spec_digits = digits;
602                 analog.meaning->channels = g_slist_append(NULL, channels->data);
603
604                 for (int i = 0; i < num_samples; i++) {
605                         /*
606                          * The device always sends data for both channels. If a channel
607                          * is disabled, it contains a copy of the enabled channel's
608                          * data. However, we only send the requested channels to
609                          * the bus.
610                          *
611                          * Voltage values are encoded as a value 0-255, where the
612                          * value is a point in the range represented by the vdiv
613                          * setting. There are 10 vertical divs, so e.g. 500mV/div
614                          * represents 5V peak-to-peak where 0 = -2.5V and 255 = +2.5V.
615                          */
616                         ((float *)analog.data)[i] = ch_bit[ch] * *(buf + i * 2 + ch) - ch_center[ch];
617                 }
618
619                 sr_session_send(sdi, &packet);
620                 g_slist_free(analog.meaning->channels);
621
622                 channels = channels->next;
623         }
624         g_free(analog.data);
625 }
626
627 static void send_data(struct sr_dev_inst *sdi, struct libusb_transfer *buf[], uint64_t samples)
628 {
629         int i = 0;
630         uint64_t send = 0;
631         uint32_t chunk;
632
633         while (send < samples) {
634                 chunk = MIN(samples - send, (uint64_t)(buf[i]->actual_length / NUM_CHANNELS));
635                 send += chunk;
636                 send_chunk(sdi, buf[i]->buffer, chunk);
637
638                 /*
639                  * Everything in this transfer was either copied to the buffer
640                  * or sent to the session bus.
641                  */
642                 g_free(buf[i]->buffer);
643                 libusb_free_transfer(buf[i]);
644                 i++;
645         }
646 }
647
648 /*
649  * Called by libusb (as triggered by handle_event()) when a transfer comes in.
650  * Only channel data comes in asynchronously, and all transfers for this are
651  * queued up beforehand, so this just needs to chuck the incoming data onto
652  * the libsigrok session bus.
653  */
654 static void LIBUSB_CALL receive_transfer(struct libusb_transfer *transfer)
655 {
656         struct sr_dev_inst *sdi;
657         struct dev_context *devc;
658
659         sdi = transfer->user_data;
660         devc = sdi->priv;
661
662         if (devc->dev_state == FLUSH) {
663                 g_free(transfer->buffer);
664                 libusb_free_transfer(transfer);
665                 devc->dev_state = CAPTURE;
666                 devc->aq_started = g_get_monotonic_time();
667                 read_channel(sdi, data_amount(sdi));
668                 return;
669         }
670
671         if (devc->dev_state != CAPTURE)
672                 return;
673
674         if (!devc->sample_buf) {
675                 devc->sample_buf_size = 10;
676                 devc->sample_buf = g_try_malloc(devc->sample_buf_size * sizeof(transfer));
677                 devc->sample_buf_write = 0;
678         }
679
680         if (devc->sample_buf_write >= devc->sample_buf_size) {
681                 devc->sample_buf_size += 10;
682                 devc->sample_buf = g_try_realloc(devc->sample_buf,
683                                 devc->sample_buf_size * sizeof(transfer));
684                 if (!devc->sample_buf) {
685                         sr_err("Sample buffer malloc failed.");
686                         devc->dev_state = STOPPING;
687                         return;
688                 }
689         }
690
691         devc->sample_buf[devc->sample_buf_write++] = transfer;
692         devc->samp_received += transfer->actual_length / NUM_CHANNELS;
693
694         sr_spew("receive_transfer(): calculated samplerate == %" PRIu64 "ks/s",
695                 (uint64_t)(transfer->actual_length * 1000 /
696                 (g_get_monotonic_time() - devc->read_start_ts + 1) /
697                 NUM_CHANNELS));
698
699         sr_spew("receive_transfer(): status %s received %d bytes.",
700                 libusb_error_name(transfer->status), transfer->actual_length);
701
702         if (transfer->actual_length == 0)
703                 /* Nothing to send to the bus. */
704                 return;
705
706         if (devc->limit_samples && devc->samp_received >= devc->limit_samples) {
707                 sr_info("Requested number of samples reached, stopping. %"
708                         PRIu64 " <= %" PRIu64, devc->limit_samples,
709                         devc->samp_received);
710                 send_data(sdi, devc->sample_buf, devc->limit_samples);
711                 sdi->driver->dev_acquisition_stop(sdi);
712         } else if (devc->limit_msec && (g_get_monotonic_time() -
713                         devc->aq_started) / 1000 >= devc->limit_msec) {
714                 sr_info("Requested time limit reached, stopping. %d <= %d",
715                         (uint32_t)devc->limit_msec,
716                         (uint32_t)(g_get_monotonic_time() - devc->aq_started) / 1000);
717                 send_data(sdi, devc->sample_buf, devc->samp_received);
718                 g_free(devc->sample_buf);
719                 devc->sample_buf = NULL;
720                 sdi->driver->dev_acquisition_stop(sdi);
721         } else {
722                 read_channel(sdi, data_amount(sdi));
723         }
724 }
725
726 static int read_channel(const struct sr_dev_inst *sdi, uint32_t amount)
727 {
728         int ret;
729         struct dev_context *devc;
730
731         devc = sdi->priv;
732
733         amount = MIN(amount, MAX_PACKET_SIZE);
734         ret = hantek_6xxx_get_channeldata(sdi, receive_transfer, amount);
735         devc->read_start_ts = g_get_monotonic_time();
736         devc->read_data_amount = amount;
737
738         return ret;
739 }
740
741 static int handle_event(int fd, int revents, void *cb_data)
742 {
743         const struct sr_dev_inst *sdi;
744         struct timeval tv;
745         struct sr_dev_driver *di;
746         struct dev_context *devc;
747         struct drv_context *drvc;
748
749         (void)fd;
750         (void)revents;
751
752         sdi = cb_data;
753         di = sdi->driver;
754         drvc = di->context;
755         devc = sdi->priv;
756
757         /* Always handle pending libusb events. */
758         tv.tv_sec = tv.tv_usec = 0;
759         libusb_handle_events_timeout(drvc->sr_ctx->libusb_ctx, &tv);
760
761         if (devc->dev_state == STOPPING) {
762                 /* We've been told to wind up the acquisition. */
763                 sr_dbg("Stopping acquisition.");
764
765                 hantek_6xxx_stop_data_collecting(sdi);
766                 /*
767                  * TODO: Doesn't really cancel pending transfers so they might
768                  * come in after SR_DF_END is sent.
769                  */
770                 usb_source_remove(sdi->session, drvc->sr_ctx);
771
772                 std_session_send_df_end(sdi);
773
774                 devc->dev_state = IDLE;
775
776                 return TRUE;
777         }
778
779         return TRUE;
780 }
781
782 static int dev_acquisition_start(const struct sr_dev_inst *sdi)
783 {
784         struct dev_context *devc;
785         struct sr_dev_driver *di = sdi->driver;
786         struct drv_context *drvc = di->context;
787
788         if (sdi->status != SR_ST_ACTIVE)
789                 return SR_ERR_DEV_CLOSED;
790
791         devc = sdi->priv;
792
793         if (configure_channels(sdi) != SR_OK) {
794                 sr_err("Failed to configure channels.");
795                 return SR_ERR;
796         }
797
798         if (hantek_6xxx_init(sdi) != SR_OK)
799                 return SR_ERR;
800
801         std_session_send_df_header(sdi);
802
803         devc->samp_received = 0;
804         devc->dev_state = FLUSH;
805
806         usb_source_add(sdi->session, drvc->sr_ctx, TICK,
807                        handle_event, (void *)sdi);
808
809         hantek_6xxx_start_data_collecting(sdi);
810
811         read_channel(sdi, FLUSH_PACKET_SIZE);
812
813         return SR_OK;
814 }
815
816 static int dev_acquisition_stop(struct sr_dev_inst *sdi)
817 {
818         struct dev_context *devc;
819
820         if (sdi->status != SR_ST_ACTIVE)
821                 return SR_ERR;
822
823         devc = sdi->priv;
824         devc->dev_state = STOPPING;
825
826         g_free(devc->sample_buf); devc->sample_buf = NULL;
827
828         return SR_OK;
829 }
830
831 static struct sr_dev_driver hantek_6xxx_driver_info = {
832         .name = "hantek-6xxx",
833         .longname = "Hantek 6xxx",
834         .api_version = 1,
835         .init = std_init,
836         .cleanup = std_cleanup,
837         .scan = scan,
838         .dev_list = std_dev_list,
839         .dev_clear = dev_clear,
840         .config_get = config_get,
841         .config_set = config_set,
842         .config_list = config_list,
843         .dev_open = dev_open,
844         .dev_close = dev_close,
845         .dev_acquisition_start = dev_acquisition_start,
846         .dev_acquisition_stop = dev_acquisition_stop,
847         .context = NULL,
848 };
849 SR_REGISTER_DEV_DRIVER(hantek_6xxx_driver_info);