]> sigrok.org Git - libsigrok.git/blob - src/hardware/hameg-hmo/protocol.c
drivers: Use g_strdup_printf() where possible.
[libsigrok.git] / src / hardware / hameg-hmo / protocol.c
1 /*
2  * This file is part of the libsigrok project.
3  *
4  * Copyright (C) 2013 poljar (Damir Jelić) <poljarinho@gmail.com>
5  *
6  * This program is free software: you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation, either version 3 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <config.h>
21 #include <math.h>
22 #include <stdlib.h>
23 #include "scpi.h"
24 #include "protocol.h"
25
26 SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
27                                   size_t group, GByteArray *pod_data);
28 SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
29                                    struct dev_context *devc);
30 SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc);
31
32 static const char *hameg_scpi_dialect[] = {
33         [SCPI_CMD_GET_DIG_DATA]             = ":FORM UINT,8;:POD%d:DATA?",
34         [SCPI_CMD_GET_TIMEBASE]             = ":TIM:SCAL?",
35         [SCPI_CMD_SET_TIMEBASE]             = ":TIM:SCAL %s",
36         [SCPI_CMD_GET_COUPLING]             = ":CHAN%d:COUP?",
37         [SCPI_CMD_SET_COUPLING]             = ":CHAN%d:COUP %s",
38         [SCPI_CMD_GET_SAMPLE_RATE]          = ":ACQ:SRAT?",
39         [SCPI_CMD_GET_SAMPLE_RATE_LIVE]     = ":%s:DATA:POINTS?",
40         [SCPI_CMD_GET_ANALOG_DATA]          = ":FORM:BORD %s;" \
41                                               ":FORM REAL,32;:CHAN%d:DATA?",
42         [SCPI_CMD_GET_VERTICAL_DIV]         = ":CHAN%d:SCAL?",
43         [SCPI_CMD_SET_VERTICAL_DIV]         = ":CHAN%d:SCAL %s",
44         [SCPI_CMD_GET_DIG_POD_STATE]        = ":POD%d:STAT?",
45         [SCPI_CMD_SET_DIG_POD_STATE]        = ":POD%d:STAT %d",
46         [SCPI_CMD_GET_TRIGGER_SLOPE]        = ":TRIG:A:EDGE:SLOP?",
47         [SCPI_CMD_SET_TRIGGER_SLOPE]        = ":TRIG:A:EDGE:SLOP %s",
48         [SCPI_CMD_GET_TRIGGER_SOURCE]       = ":TRIG:A:SOUR?",
49         [SCPI_CMD_SET_TRIGGER_SOURCE]       = ":TRIG:A:SOUR %s",
50         [SCPI_CMD_GET_DIG_CHAN_STATE]       = ":LOG%d:STAT?",
51         [SCPI_CMD_SET_DIG_CHAN_STATE]       = ":LOG%d:STAT %d",
52         [SCPI_CMD_GET_VERTICAL_OFFSET]      = ":CHAN%d:POS?",
53         [SCPI_CMD_GET_HORIZ_TRIGGERPOS]     = ":TIM:POS?",
54         [SCPI_CMD_SET_HORIZ_TRIGGERPOS]     = ":TIM:POS %s",
55         [SCPI_CMD_GET_ANALOG_CHAN_STATE]    = ":CHAN%d:STAT?",
56         [SCPI_CMD_SET_ANALOG_CHAN_STATE]    = ":CHAN%d:STAT %d",
57         [SCPI_CMD_GET_PROBE_UNIT]           = ":PROB%d:SET:ATT:UNIT?",
58 };
59
60 static const uint32_t devopts[] = {
61         SR_CONF_OSCILLOSCOPE,
62         SR_CONF_LIMIT_FRAMES | SR_CONF_GET | SR_CONF_SET,
63         SR_CONF_SAMPLERATE | SR_CONF_GET,
64         SR_CONF_TIMEBASE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
65         SR_CONF_NUM_HDIV | SR_CONF_GET,
66         SR_CONF_HORIZ_TRIGGERPOS | SR_CONF_GET | SR_CONF_SET,
67         SR_CONF_TRIGGER_SOURCE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
68         SR_CONF_TRIGGER_SLOPE | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
69 };
70
71 static const uint32_t devopts_cg_analog[] = {
72         SR_CONF_NUM_VDIV | SR_CONF_GET,
73         SR_CONF_VDIV | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
74         SR_CONF_COUPLING | SR_CONF_GET | SR_CONF_SET | SR_CONF_LIST,
75 };
76
77 static const char *coupling_options[] = {
78         "AC",  // AC with 50 Ohm termination (152x, 202x, 30xx, 1202)
79         "ACL", // AC with 1 MOhm termination
80         "DC",  // DC with 50 Ohm termination
81         "DCL", // DC with 1 MOhm termination
82         "GND",
83 };
84
85 static const char *scope_trigger_slopes[] = {
86         "POS",
87         "NEG",
88         "EITH",
89 };
90
91 static const char *compact2_trigger_sources[] = {
92         "CH1", "CH2",
93         "LINE", "EXT", "PATT", "BUS1", "BUS2",
94         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
95 };
96
97 static const char *compact4_trigger_sources[] = {
98         "CH1", "CH2", "CH3", "CH4",
99         "LINE", "EXT", "PATT", "BUS1", "BUS2",
100         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
101 };
102
103 static const char *compact4_dig16_trigger_sources[] = {
104         "CH1", "CH2", "CH3", "CH4",
105         "LINE", "EXT", "PATT", "BUS1", "BUS2",
106         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
107         "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
108 };
109
110 static const uint64_t timebases[][2] = {
111         /* nanoseconds */
112         { 2, 1000000000 },
113         { 5, 1000000000 },
114         { 10, 1000000000 },
115         { 20, 1000000000 },
116         { 50, 1000000000 },
117         { 100, 1000000000 },
118         { 200, 1000000000 },
119         { 500, 1000000000 },
120         /* microseconds */
121         { 1, 1000000 },
122         { 2, 1000000 },
123         { 5, 1000000 },
124         { 10, 1000000 },
125         { 20, 1000000 },
126         { 50, 1000000 },
127         { 100, 1000000 },
128         { 200, 1000000 },
129         { 500, 1000000 },
130         /* milliseconds */
131         { 1, 1000 },
132         { 2, 1000 },
133         { 5, 1000 },
134         { 10, 1000 },
135         { 20, 1000 },
136         { 50, 1000 },
137         { 100, 1000 },
138         { 200, 1000 },
139         { 500, 1000 },
140         /* seconds */
141         { 1, 1 },
142         { 2, 1 },
143         { 5, 1 },
144         { 10, 1 },
145         { 20, 1 },
146         { 50, 1 },
147 };
148
149 static const uint64_t vdivs[][2] = {
150         /* millivolts */
151         { 1, 1000 },
152         { 2, 1000 },
153         { 5, 1000 },
154         { 10, 1000 },
155         { 20, 1000 },
156         { 50, 1000 },
157         { 100, 1000 },
158         { 200, 1000 },
159         { 500, 1000 },
160         /* volts */
161         { 1, 1 },
162         { 2, 1 },
163         { 5, 1 },
164         { 10, 1 },
165         { 20, 1 },
166         { 50, 1 },
167 };
168
169 static const char *scope_analog_channel_names[] = {
170         "CH1", "CH2", "CH3", "CH4",
171 };
172
173 static const char *scope_digital_channel_names[] = {
174         "D0", "D1", "D2", "D3", "D4", "D5", "D6", "D7",
175         "D8", "D9", "D10", "D11", "D12", "D13", "D14", "D15",
176 };
177
178 static const struct scope_config scope_models[] = {
179         {
180                 /* HMO2522/3032/3042/3052 support 16 digital channels but they're not supported yet. */
181                 .name = {"HMO1002", "HMO722", "HMO1022", "HMO1522", "HMO2022", "HMO2522",
182                                 "HMO3032", "HMO3042", "HMO3052", NULL},
183                 .analog_channels = 2,
184                 .digital_channels = 8,
185                 .digital_pods = 1,
186
187                 .analog_names = &scope_analog_channel_names,
188                 .digital_names = &scope_digital_channel_names,
189
190                 .devopts = &devopts,
191                 .num_devopts = ARRAY_SIZE(devopts),
192
193                 .devopts_cg_analog = &devopts_cg_analog,
194                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
195
196                 .coupling_options = &coupling_options,
197                 .num_coupling_options = ARRAY_SIZE(coupling_options),
198
199                 .trigger_sources = &compact2_trigger_sources,
200                 .num_trigger_sources = ARRAY_SIZE(compact2_trigger_sources),
201
202                 .trigger_slopes = &scope_trigger_slopes,
203                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
204
205                 .timebases = &timebases,
206                 .num_timebases = ARRAY_SIZE(timebases),
207
208                 .vdivs = &vdivs,
209                 .num_vdivs = ARRAY_SIZE(vdivs),
210
211                 .num_xdivs = 12,
212                 .num_ydivs = 8,
213
214                 .scpi_dialect = &hameg_scpi_dialect,
215         },
216         {
217                 .name = {"HMO724", "HMO1024", "HMO1524", "HMO2024", NULL},
218                 .analog_channels = 4,
219                 .digital_channels = 8,
220                 .digital_pods = 1,
221
222                 .analog_names = &scope_analog_channel_names,
223                 .digital_names = &scope_digital_channel_names,
224
225                 .devopts = &devopts,
226                 .num_devopts = ARRAY_SIZE(devopts),
227
228                 .devopts_cg_analog = &devopts_cg_analog,
229                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
230
231                 .coupling_options = &coupling_options,
232                 .num_coupling_options = ARRAY_SIZE(coupling_options),
233
234                 .trigger_sources = &compact4_trigger_sources,
235                 .num_trigger_sources = ARRAY_SIZE(compact4_trigger_sources),
236
237                 .trigger_slopes = &scope_trigger_slopes,
238                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
239
240                 .timebases = &timebases,
241                 .num_timebases = ARRAY_SIZE(timebases),
242
243                 .vdivs = &vdivs,
244                 .num_vdivs = ARRAY_SIZE(vdivs),
245
246                 .num_xdivs = 12,
247                 .num_ydivs = 8,
248
249                 .scpi_dialect = &hameg_scpi_dialect,
250         },
251         {
252                 .name = {"HMO2524", "HMO3034", "HMO3044", "HMO3054", "HMO3524", NULL},
253                 .analog_channels = 4,
254                 .digital_channels = 16,
255                 .digital_pods = 2,
256
257                 .analog_names = &scope_analog_channel_names,
258                 .digital_names = &scope_digital_channel_names,
259
260                 .devopts = &devopts,
261                 .num_devopts = ARRAY_SIZE(devopts),
262
263                 .devopts_cg_analog = &devopts_cg_analog,
264                 .num_devopts_cg_analog = ARRAY_SIZE(devopts_cg_analog),
265
266                 .coupling_options = &coupling_options,
267                 .num_coupling_options = ARRAY_SIZE(coupling_options),
268
269                 .trigger_sources = &compact4_dig16_trigger_sources,
270                 .num_trigger_sources = ARRAY_SIZE(compact4_dig16_trigger_sources),
271
272                 .trigger_slopes = &scope_trigger_slopes,
273                 .num_trigger_slopes = ARRAY_SIZE(scope_trigger_slopes),
274
275                 .timebases = &timebases,
276                 .num_timebases = ARRAY_SIZE(timebases),
277
278                 .vdivs = &vdivs,
279                 .num_vdivs = ARRAY_SIZE(vdivs),
280
281                 .num_xdivs = 12,
282                 .num_ydivs = 8,
283
284                 .scpi_dialect = &hameg_scpi_dialect,
285         },
286 };
287
288 static void scope_state_dump(const struct scope_config *config,
289                              struct scope_state *state)
290 {
291         unsigned int i;
292         char *tmp;
293
294         for (i = 0; i < config->analog_channels; i++) {
295                 tmp = sr_voltage_string((*config->vdivs)[state->analog_channels[i].vdiv][0],
296                                              (*config->vdivs)[state->analog_channels[i].vdiv][1]);
297                 sr_info("State of analog channel %d -> %s : %s (coupling) %s (vdiv) %2.2e (offset)",
298                         i + 1, state->analog_channels[i].state ? "On" : "Off",
299                         (*config->coupling_options)[state->analog_channels[i].coupling],
300                         tmp, state->analog_channels[i].vertical_offset);
301         }
302
303         for (i = 0; i < config->digital_channels; i++) {
304                 sr_info("State of digital channel %d -> %s", i,
305                         state->digital_channels[i] ? "On" : "Off");
306         }
307
308         for (i = 0; i < config->digital_pods; i++) {
309                 sr_info("State of digital POD %d -> %s", i,
310                         state->digital_pods[i] ? "On" : "Off");
311         }
312
313         tmp = sr_period_string((*config->timebases)[state->timebase][0],
314                                (*config->timebases)[state->timebase][1]);
315         sr_info("Current timebase: %s", tmp);
316         g_free(tmp);
317
318         tmp = sr_samplerate_string(state->sample_rate);
319         sr_info("Current samplerate: %s", tmp);
320         g_free(tmp);
321
322         sr_info("Current trigger: %s (source), %s (slope) %.2f (offset)",
323                 (*config->trigger_sources)[state->trigger_source],
324                 (*config->trigger_slopes)[state->trigger_slope],
325                 state->horiz_triggerpos);
326 }
327
328 static int scope_state_get_array_option(struct sr_scpi_dev_inst *scpi,
329                 const char *command, const char *(*array)[], unsigned int n, int *result)
330 {
331         char *tmp;
332         int idx;
333
334         if (sr_scpi_get_string(scpi, command, &tmp) != SR_OK) {
335                 g_free(tmp);
336                 return SR_ERR;
337         }
338
339         if ((idx = std_str_idx_s(tmp, *array, n)) < 0) {
340                 g_free(tmp);
341                 return SR_ERR_ARG;
342         }
343
344         *result = idx;
345
346         g_free(tmp);
347
348         return SR_OK;
349 }
350
351 /**
352  * This function takes a value of the form "2.000E-03" and returns the index
353  * of an array where a matching pair was found.
354  *
355  * @param value The string to be parsed.
356  * @param array The array of s/f pairs.
357  * @param array_len The number of pairs in the array.
358  * @param result The index at which a matching pair was found.
359  *
360  * @return SR_ERR on any parsing error, SR_OK otherwise.
361  */
362 static int array_float_get(gchar *value, const uint64_t array[][2],
363                 int array_len, unsigned int *result)
364 {
365         struct sr_rational rval;
366         struct sr_rational aval;
367
368         if (sr_parse_rational(value, &rval) != SR_OK)
369                 return SR_ERR;
370
371         for (int i = 0; i < array_len; i++) {
372                 sr_rational_set(&aval, array[i][0], array[i][1]);
373                 if (sr_rational_eq(&rval, &aval)) {
374                         *result = i;
375                         return SR_OK;
376                 }
377         }
378
379         return SR_ERR;
380 }
381
382 static int analog_channel_state_get(struct sr_scpi_dev_inst *scpi,
383                                     const struct scope_config *config,
384                                     struct scope_state *state)
385 {
386         unsigned int i, j;
387         char command[MAX_COMMAND_SIZE];
388         char *tmp_str;
389
390         for (i = 0; i < config->analog_channels; i++) {
391                 g_snprintf(command, sizeof(command),
392                            (*config->scpi_dialect)[SCPI_CMD_GET_ANALOG_CHAN_STATE],
393                            i + 1);
394
395                 if (sr_scpi_get_bool(scpi, command,
396                                      &state->analog_channels[i].state) != SR_OK)
397                         return SR_ERR;
398
399                 g_snprintf(command, sizeof(command),
400                            (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_DIV],
401                            i + 1);
402
403                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
404                         return SR_ERR;
405
406                 if (array_float_get(tmp_str, ARRAY_AND_SIZE(vdivs), &j) != SR_OK) {
407                         g_free(tmp_str);
408                         sr_err("Could not determine array index for vertical div scale.");
409                         return SR_ERR;
410                 }
411
412                 g_free(tmp_str);
413                 state->analog_channels[i].vdiv = j;
414
415                 g_snprintf(command, sizeof(command),
416                            (*config->scpi_dialect)[SCPI_CMD_GET_VERTICAL_OFFSET],
417                            i + 1);
418
419                 if (sr_scpi_get_float(scpi, command,
420                                      &state->analog_channels[i].vertical_offset) != SR_OK)
421                         return SR_ERR;
422
423                 g_snprintf(command, sizeof(command),
424                            (*config->scpi_dialect)[SCPI_CMD_GET_COUPLING],
425                            i + 1);
426
427                 if (scope_state_get_array_option(scpi, command, config->coupling_options,
428                                          config->num_coupling_options,
429                                          &state->analog_channels[i].coupling) != SR_OK)
430                         return SR_ERR;
431
432                 g_snprintf(command, sizeof(command),
433                            (*config->scpi_dialect)[SCPI_CMD_GET_PROBE_UNIT],
434                            i + 1);
435
436                 if (sr_scpi_get_string(scpi, command, &tmp_str) != SR_OK)
437                         return SR_ERR;
438
439                 if (tmp_str[0] == 'A')
440                         state->analog_channels[i].probe_unit = 'A';
441                 else
442                         state->analog_channels[i].probe_unit = 'V';
443                 g_free(tmp_str);
444         }
445
446         return SR_OK;
447 }
448
449 static int digital_channel_state_get(struct sr_scpi_dev_inst *scpi,
450                                      const struct scope_config *config,
451                                      struct scope_state *state)
452 {
453         unsigned int i;
454         char command[MAX_COMMAND_SIZE];
455
456         for (i = 0; i < config->digital_channels; i++) {
457                 g_snprintf(command, sizeof(command),
458                            (*config->scpi_dialect)[SCPI_CMD_GET_DIG_CHAN_STATE],
459                            i);
460
461                 if (sr_scpi_get_bool(scpi, command,
462                                      &state->digital_channels[i]) != SR_OK)
463                         return SR_ERR;
464         }
465
466         for (i = 0; i < config->digital_pods; i++) {
467                 g_snprintf(command, sizeof(command),
468                            (*config->scpi_dialect)[SCPI_CMD_GET_DIG_POD_STATE],
469                            i + 1);
470
471                 if (sr_scpi_get_bool(scpi, command,
472                                      &state->digital_pods[i]) != SR_OK)
473                         return SR_ERR;
474         }
475
476         return SR_OK;
477 }
478
479 SR_PRIV int hmo_update_sample_rate(const struct sr_dev_inst *sdi)
480 {
481         struct dev_context *devc;
482         struct scope_state *state;
483         const struct scope_config *config;
484         int tmp;
485         unsigned int i;
486         float tmp_float;
487         gboolean channel_found;
488         char tmp_str[MAX_COMMAND_SIZE];
489         char chan_name[20];
490
491         devc = sdi->priv;
492         config = devc->model_config;
493         state = devc->model_state;
494         channel_found = FALSE;
495
496         for (i = 0; i < config->analog_channels; i++) {
497                 if (!state->analog_channels[i].state)
498                         continue;
499                 g_snprintf(chan_name, sizeof(chan_name), "CHAN%d", i + 1);
500                 g_snprintf(tmp_str, sizeof(tmp_str),
501                            (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
502                            chan_name);
503                 channel_found = TRUE;
504                 break;
505         }
506
507         if (!channel_found) {
508                 for (i = 0; i < config->digital_pods; i++) {
509                         if (!state->digital_pods[i])
510                                 continue;
511                         g_snprintf(chan_name, sizeof(chan_name), "POD%d", i);
512                         g_snprintf(tmp_str, sizeof(tmp_str),
513                                    (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE_LIVE],
514                                    chan_name);
515                         channel_found = TRUE;
516                         break;
517                 }
518         }
519
520         /* No channel is active, ask the instrument for the sample rate
521          * in single shot mode */
522         if (!channel_found) {
523                 if (sr_scpi_get_float(sdi->conn,
524                                       (*config->scpi_dialect)[SCPI_CMD_GET_SAMPLE_RATE],
525                                       &tmp_float) != SR_OK)
526                         return SR_ERR;
527
528                 state->sample_rate = tmp_float;
529         } else {
530                 if (sr_scpi_get_int(sdi->conn, tmp_str, &tmp) != SR_OK)
531                         return SR_ERR;
532                 state->sample_rate = tmp / (((float) (*config->timebases)[state->timebase][0] /
533                                              (*config->timebases)[state->timebase][1]) *
534                                             config->num_xdivs);
535         }
536
537         return SR_OK;
538 }
539
540 SR_PRIV int hmo_scope_state_get(struct sr_dev_inst *sdi)
541 {
542         struct dev_context *devc;
543         struct scope_state *state;
544         const struct scope_config *config;
545         float tmp_float;
546         unsigned int i;
547         char *tmp_str;
548
549         devc = sdi->priv;
550         config = devc->model_config;
551         state = devc->model_state;
552
553         sr_info("Fetching scope state");
554
555         if (analog_channel_state_get(sdi->conn, config, state) != SR_OK)
556                 return SR_ERR;
557
558         if (digital_channel_state_get(sdi->conn, config, state) != SR_OK)
559                 return SR_ERR;
560
561         if (sr_scpi_get_float(sdi->conn,
562                         (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
563                         &tmp_float) != SR_OK)
564                 return SR_ERR;
565
566         if (sr_scpi_get_string(sdi->conn,
567                         (*config->scpi_dialect)[SCPI_CMD_GET_TIMEBASE],
568                         &tmp_str) != SR_OK)
569                 return SR_ERR;
570
571         if (array_float_get(tmp_str, ARRAY_AND_SIZE(timebases), &i) != SR_OK) {
572                 g_free(tmp_str);
573                 sr_err("Could not determine array index for time base.");
574                 return SR_ERR;
575         }
576         g_free(tmp_str);
577
578         state->timebase = i;
579
580         if (sr_scpi_get_float(sdi->conn,
581                         (*config->scpi_dialect)[SCPI_CMD_GET_HORIZ_TRIGGERPOS],
582                         &tmp_float) != SR_OK)
583                 return SR_ERR;
584         state->horiz_triggerpos = tmp_float /
585                 (((double) (*config->timebases)[state->timebase][0] /
586                   (*config->timebases)[state->timebase][1]) * config->num_xdivs);
587         state->horiz_triggerpos -= 0.5;
588         state->horiz_triggerpos *= -1;
589
590         if (scope_state_get_array_option(sdi->conn,
591                         (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SOURCE],
592                         config->trigger_sources, config->num_trigger_sources,
593                         &state->trigger_source) != SR_OK)
594                 return SR_ERR;
595
596         if (scope_state_get_array_option(sdi->conn,
597                         (*config->scpi_dialect)[SCPI_CMD_GET_TRIGGER_SLOPE],
598                         config->trigger_slopes, config->num_trigger_slopes,
599                         &state->trigger_slope) != SR_OK)
600                 return SR_ERR;
601
602         if (hmo_update_sample_rate(sdi) != SR_OK)
603                 return SR_ERR;
604
605         sr_info("Fetching finished.");
606
607         scope_state_dump(config, state);
608
609         return SR_OK;
610 }
611
612 static struct scope_state *scope_state_new(const struct scope_config *config)
613 {
614         struct scope_state *state;
615
616         state = g_malloc0(sizeof(struct scope_state));
617         state->analog_channels = g_malloc0_n(config->analog_channels,
618                         sizeof(struct analog_channel_state));
619         state->digital_channels = g_malloc0_n(
620                         config->digital_channels, sizeof(gboolean));
621         state->digital_pods = g_malloc0_n(config->digital_pods,
622                         sizeof(gboolean));
623
624         return state;
625 }
626
627 SR_PRIV void hmo_scope_state_free(struct scope_state *state)
628 {
629         g_free(state->analog_channels);
630         g_free(state->digital_channels);
631         g_free(state->digital_pods);
632         g_free(state);
633 }
634
635 SR_PRIV int hmo_init_device(struct sr_dev_inst *sdi)
636 {
637         int model_index;
638         unsigned int i, j, group;
639         struct sr_channel *ch;
640         struct dev_context *devc;
641
642         devc = sdi->priv;
643         model_index = -1;
644
645         /* Find the exact model. */
646         for (i = 0; i < ARRAY_SIZE(scope_models); i++) {
647                 for (j = 0; scope_models[i].name[j]; j++) {
648                         if (!strcmp(sdi->model, scope_models[i].name[j])) {
649                                 model_index = i;
650                                 break;
651                         }
652                 }
653                 if (model_index != -1)
654                         break;
655         }
656
657         if (model_index == -1) {
658                 sr_dbg("Unsupported HMO device.");
659                 return SR_ERR_NA;
660         }
661
662         devc->analog_groups = g_malloc0(sizeof(struct sr_channel_group*) *
663                                         scope_models[model_index].analog_channels);
664
665         devc->digital_groups = g_malloc0(sizeof(struct sr_channel_group*) *
666                                          scope_models[model_index].digital_pods);
667
668         /* Add analog channels. */
669         for (i = 0; i < scope_models[model_index].analog_channels; i++) {
670                 ch = sr_channel_new(sdi, i, SR_CHANNEL_ANALOG, TRUE,
671                            (*scope_models[model_index].analog_names)[i]);
672
673                 devc->analog_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
674
675                 devc->analog_groups[i]->name = g_strdup(
676                         (char *)(*scope_models[model_index].analog_names)[i]);
677                 devc->analog_groups[i]->channels = g_slist_append(NULL, ch);
678
679                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
680                                                    devc->analog_groups[i]);
681         }
682
683         /* Add digital channel groups. */
684         for (i = 0; i < scope_models[model_index].digital_pods; i++) {
685                 devc->digital_groups[i] = g_malloc0(sizeof(struct sr_channel_group));
686                 devc->digital_groups[i]->name = g_strdup_printf("POD%d", i);
687                 sdi->channel_groups = g_slist_append(sdi->channel_groups,
688                                    devc->digital_groups[i]);
689         }
690
691         /* Add digital channels. */
692         for (i = 0; i < scope_models[model_index].digital_channels; i++) {
693                 ch = sr_channel_new(sdi, i, SR_CHANNEL_LOGIC, TRUE,
694                            (*scope_models[model_index].digital_names)[i]);
695
696                 group = i / 8;
697                 devc->digital_groups[group]->channels = g_slist_append(
698                         devc->digital_groups[group]->channels, ch);
699         }
700
701         devc->model_config = &scope_models[model_index];
702         devc->frame_limit = 0;
703
704         if (!(devc->model_state = scope_state_new(devc->model_config)))
705                 return SR_ERR_MALLOC;
706
707         return SR_OK;
708 }
709
710 /* Queue data of one channel group, for later submission. */
711 SR_PRIV void hmo_queue_logic_data(struct dev_context *devc,
712                                   size_t group, GByteArray *pod_data)
713 {
714         size_t size;
715         GByteArray *store;
716         uint8_t *logic_data;
717         size_t idx, logic_step;
718
719         /*
720          * Upon first invocation, allocate the array which can hold the
721          * combined logic data for all channels. Assume that each channel
722          * will yield an identical number of samples per receive call.
723          *
724          * As a poor man's safety measure: (Silently) skip processing
725          * for unexpected sample counts, and ignore samples for
726          * unexpected channel groups. Don't bother with complicated
727          * resize logic, considering that many models only support one
728          * pod, and the most capable supported models have two pods of
729          * identical size. We haven't yet seen any "odd" configuration.
730          */
731         if (!devc->logic_data) {
732                 size = pod_data->len * devc->pod_count;
733                 store = g_byte_array_sized_new(size);
734                 memset(store->data, 0, size);
735                 store = g_byte_array_set_size(store, size);
736                 devc->logic_data = store;
737         } else {
738                 store = devc->logic_data;
739                 size = store->len / devc->pod_count;
740                 if (size != pod_data->len)
741                         return;
742                 if (group >= devc->pod_count)
743                         return;
744         }
745
746         /*
747          * Fold the data of the most recently received channel group into
748          * the storage, where data resides for all channels combined.
749          */
750         logic_data = store->data;
751         logic_data += group;
752         logic_step = devc->pod_count;
753         for (idx = 0; idx < pod_data->len; idx++) {
754                 *logic_data = pod_data->data[idx];
755                 logic_data += logic_step;
756         }
757 }
758
759 /* Submit data for all channels, after the individual groups got collected. */
760 SR_PRIV void hmo_send_logic_packet(struct sr_dev_inst *sdi,
761                                    struct dev_context *devc)
762 {
763         struct sr_datafeed_packet packet;
764         struct sr_datafeed_logic logic;
765
766         if (!devc->logic_data)
767                 return;
768
769         logic.data = devc->logic_data->data;
770         logic.length = devc->logic_data->len;
771         logic.unitsize = devc->pod_count;
772
773         packet.type = SR_DF_LOGIC;
774         packet.payload = &logic;
775
776         sr_session_send(sdi, &packet);
777 }
778
779 /* Undo previous resource allocation. */
780 SR_PRIV void hmo_cleanup_logic_data(struct dev_context *devc)
781 {
782
783         if (devc->logic_data) {
784                 g_byte_array_free(devc->logic_data, TRUE);
785                 devc->logic_data = NULL;
786         }
787         /*
788          * Keep 'pod_count'! It's required when more frames will be
789          * received, and does not harm when kept after acquisition.
790          */
791 }
792
793 SR_PRIV int hmo_receive_data(int fd, int revents, void *cb_data)
794 {
795         struct sr_channel *ch;
796         struct sr_dev_inst *sdi;
797         struct dev_context *devc;
798         struct scope_state *state;
799         struct sr_datafeed_packet packet;
800         GByteArray *data;
801         struct sr_datafeed_analog analog;
802         struct sr_analog_encoding encoding;
803         struct sr_analog_meaning meaning;
804         struct sr_analog_spec spec;
805         struct sr_datafeed_logic logic;
806         size_t group;
807
808         (void)fd;
809         (void)revents;
810
811         data = NULL;
812
813         if (!(sdi = cb_data))
814                 return TRUE;
815
816         if (!(devc = sdi->priv))
817                 return TRUE;
818
819         /* Although this is correct in general, the USBTMC libusb implementation
820          * currently does not generate an event prior to the first read. Often
821          * it is ok to start reading just after the 50ms timeout. See bug #785.
822         if (revents != G_IO_IN)
823                 return TRUE;
824         */
825
826         ch = devc->current_channel->data;
827         state = devc->model_state;
828
829         /*
830          * Send "frame begin" packet upon reception of data for the
831          * first enabled channel.
832          */
833         if (devc->current_channel == devc->enabled_channels) {
834                 packet.type = SR_DF_FRAME_BEGIN;
835                 sr_session_send(sdi, &packet);
836         }
837
838         /*
839          * Pass on the received data of the channel(s).
840          */
841         switch (ch->type) {
842         case SR_CHANNEL_ANALOG:
843                 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
844                         if (data)
845                                 g_byte_array_free(data, TRUE);
846
847                         return TRUE;
848                 }
849
850                 packet.type = SR_DF_ANALOG;
851
852                 analog.data = data->data;
853                 analog.num_samples = data->len / sizeof(float);
854                 analog.encoding = &encoding;
855                 analog.meaning = &meaning;
856                 analog.spec = &spec;
857
858                 encoding.unitsize = sizeof(float);
859                 encoding.is_signed = TRUE;
860                 encoding.is_float = TRUE;
861 #ifdef WORDS_BIGENDIAN
862                 encoding.is_bigendian = TRUE;
863 #else
864                 encoding.is_bigendian = FALSE;
865 #endif
866                 /* TODO: Use proper 'digits' value for this device (and its modes). */
867                 encoding.digits = 2;
868                 encoding.is_digits_decimal = FALSE;
869                 encoding.scale.p = 1;
870                 encoding.scale.q = 1;
871                 encoding.offset.p = 0;
872                 encoding.offset.q = 1;
873                 if (state->analog_channels[ch->index].probe_unit == 'V') {
874                         meaning.mq = SR_MQ_VOLTAGE;
875                         meaning.unit = SR_UNIT_VOLT;
876                 } else {
877                         meaning.mq = SR_MQ_CURRENT;
878                         meaning.unit = SR_UNIT_AMPERE;
879                 }
880                 meaning.mqflags = 0;
881                 meaning.channels = g_slist_append(NULL, ch);
882                 /* TODO: Use proper 'digits' value for this device (and its modes). */
883                 spec.spec_digits = 2;
884                 packet.payload = &analog;
885                 sr_session_send(sdi, &packet);
886                 g_slist_free(meaning.channels);
887                 g_byte_array_free(data, TRUE);
888                 data = NULL;
889                 break;
890         case SR_CHANNEL_LOGIC:
891                 if (sr_scpi_get_block(sdi->conn, NULL, &data) != SR_OK) {
892                         g_free(data);
893                         return TRUE;
894                 }
895
896                 /*
897                  * If only data from the first pod is involved in the
898                  * acquisition, then the raw input bytes can get passed
899                  * forward for performance reasons. When the second pod
900                  * is involved (either alone, or in combination with the
901                  * first pod), then the received bytes need to be put
902                  * into memory in such a layout that all channel groups
903                  * get combined, and a unitsize larger than a single byte
904                  * applies. The "queue" logic transparently copes with
905                  * any such configuration. This works around the lack
906                  * of support for "meaning" to logic data, which is used
907                  * above for analog data.
908                  */
909                 if (devc->pod_count == 1) {
910                         packet.type = SR_DF_LOGIC;
911                         logic.data = data->data;
912                         logic.length = data->len;
913                         logic.unitsize = 1;
914                         packet.payload = &logic;
915                         sr_session_send(sdi, &packet);
916                 } else {
917                         group = ch->index / 8;
918                         hmo_queue_logic_data(devc, group, data);
919                 }
920
921                 g_byte_array_free(data, TRUE);
922                 data = NULL;
923                 break;
924         default:
925                 sr_err("Invalid channel type.");
926                 break;
927         }
928
929         /*
930          * Advance to the next enabled channel. When data for all enabled
931          * channels was received, then flush potentially queued logic data,
932          * and send the "frame end" packet.
933          */
934         if (devc->current_channel->next) {
935                 devc->current_channel = devc->current_channel->next;
936                 hmo_request_data(sdi);
937                 return TRUE;
938         }
939         hmo_send_logic_packet(sdi, devc);
940
941         /*
942          * Release the logic data storage after each frame. This copes
943          * with sample counts that differ in length per frame. -- Is
944          * this a real constraint when acquiring multiple frames with
945          * identical device settings?
946          */
947         hmo_cleanup_logic_data(devc);
948
949         packet.type = SR_DF_FRAME_END;
950         sr_session_send(sdi, &packet);
951
952         /*
953          * End of frame was reached. Stop acquisition after the specified
954          * number of frames, or continue reception by starting over at
955          * the first enabled channel.
956          */
957         if (++devc->num_frames == devc->frame_limit) {
958                 sr_dev_acquisition_stop(sdi);
959                 hmo_cleanup_logic_data(devc);
960         } else {
961                 devc->current_channel = devc->enabled_channels;
962                 hmo_request_data(sdi);
963         }
964
965         return TRUE;
966 }