]> sigrok.org Git - libsigrok.git/blame_incremental - src/strutil.c
Demo: Convert white spaces to dashes for walking one/zero pattern
[libsigrok.git] / src / strutil.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdint.h>
22#include <stdlib.h>
23#include <string.h>
24#include <strings.h>
25#include <errno.h>
26#include <libsigrok/libsigrok.h>
27#include "libsigrok-internal.h"
28
29/** @cond PRIVATE */
30#define LOG_PREFIX "strutil"
31/** @endcond */
32
33/**
34 * @file
35 *
36 * Helper functions for handling or converting libsigrok-related strings.
37 */
38
39/**
40 * @defgroup grp_strutil String utilities
41 *
42 * Helper functions for handling or converting libsigrok-related strings.
43 *
44 * @{
45 */
46
47/**
48 * @private
49 *
50 * Convert a string representation of a numeric value (base 10) to a long integer. The
51 * conversion is strict and will fail if the complete string does not represent
52 * a valid long integer. The function sets errno according to the details of the
53 * failure.
54 *
55 * @param str The string representation to convert.
56 * @param ret Pointer to long where the result of the conversion will be stored.
57 *
58 * @retval SR_OK Conversion successful.
59 * @retval SR_ERR Failure.
60 */
61SR_PRIV int sr_atol(const char *str, long *ret)
62{
63 long tmp;
64 char *endptr = NULL;
65
66 errno = 0;
67 tmp = strtol(str, &endptr, 10);
68
69 if (!endptr || *endptr || errno) {
70 if (!errno)
71 errno = EINVAL;
72 return SR_ERR;
73 }
74
75 *ret = tmp;
76 return SR_OK;
77}
78
79/**
80 * @private
81 *
82 * Convert a string representation of a numeric value (base 10) to an integer. The
83 * conversion is strict and will fail if the complete string does not represent
84 * a valid integer. The function sets errno according to the details of the
85 * failure.
86 *
87 * @param str The string representation to convert.
88 * @param ret Pointer to int where the result of the conversion will be stored.
89 *
90 * @retval SR_OK Conversion successful.
91 * @retval SR_ERR Failure.
92 */
93SR_PRIV int sr_atoi(const char *str, int *ret)
94{
95 long tmp;
96
97 if (sr_atol(str, &tmp) != SR_OK)
98 return SR_ERR;
99
100 if ((int) tmp != tmp) {
101 errno = ERANGE;
102 return SR_ERR;
103 }
104
105 *ret = (int) tmp;
106 return SR_OK;
107}
108
109/**
110 * @private
111 *
112 * Convert a string representation of a numeric value to a double. The
113 * conversion is strict and will fail if the complete string does not represent
114 * a valid double. The function sets errno according to the details of the
115 * failure.
116 *
117 * @param str The string representation to convert.
118 * @param ret Pointer to double where the result of the conversion will be stored.
119 *
120 * @retval SR_OK Conversion successful.
121 * @retval SR_ERR Failure.
122 */
123SR_PRIV int sr_atod(const char *str, double *ret)
124{
125 double tmp;
126 char *endptr = NULL;
127
128 errno = 0;
129 tmp = strtof(str, &endptr);
130
131 if (!endptr || *endptr || errno) {
132 if (!errno)
133 errno = EINVAL;
134 return SR_ERR;
135 }
136
137 *ret = tmp;
138 return SR_OK;
139}
140
141/**
142 * @private
143 *
144 * Convert a string representation of a numeric value to a float. The
145 * conversion is strict and will fail if the complete string does not represent
146 * a valid float. The function sets errno according to the details of the
147 * failure.
148 *
149 * @param str The string representation to convert.
150 * @param ret Pointer to float where the result of the conversion will be stored.
151 *
152 * @retval SR_OK Conversion successful.
153 * @retval SR_ERR Failure.
154 */
155SR_PRIV int sr_atof(const char *str, float *ret)
156{
157 double tmp;
158
159 if (sr_atod(str, &tmp) != SR_OK)
160 return SR_ERR;
161
162 if ((float) tmp != tmp) {
163 errno = ERANGE;
164 return SR_ERR;
165 }
166
167 *ret = (float) tmp;
168 return SR_OK;
169}
170
171/**
172 * @private
173 *
174 * Convert a string representation of a numeric value to a float. The
175 * conversion is strict and will fail if the complete string does not represent
176 * a valid float. The function sets errno according to the details of the
177 * failure. This version ignores the locale.
178 *
179 * @param str The string representation to convert.
180 * @param ret Pointer to float where the result of the conversion will be stored.
181 *
182 * @retval SR_OK Conversion successful.
183 * @retval SR_ERR Failure.
184 */
185SR_PRIV int sr_atof_ascii(const char *str, float *ret)
186{
187 double tmp;
188 char *endptr = NULL;
189
190 errno = 0;
191 tmp = g_ascii_strtod(str, &endptr);
192
193 if (!endptr || *endptr || errno) {
194 if (!errno)
195 errno = EINVAL;
196 return SR_ERR;
197 }
198
199 /* FIXME This fails unexpectedly. Some other method to safel downcast
200 * needs to be found. Checking against FLT_MAX doesn't work as well. */
201 /*
202 if ((float) tmp != tmp) {
203 errno = ERANGE;
204 sr_dbg("ERANGEEEE %e != %e", (float) tmp, tmp);
205 return SR_ERR;
206 }
207 */
208
209 *ret = (float) tmp;
210 return SR_OK;
211}
212
213/**
214 * Convert a string representation of a numeric value to a sr_rational.
215 *
216 * The conversion is strict and will fail if the complete string does not
217 * represent a valid number. The function sets errno according to the details
218 * of the failure. This version ignores the locale.
219 *
220 * @param str The string representation to convert.
221 * @param ret Pointer to sr_rational where the result of the conversion will be stored.
222 *
223 * @retval SR_OK Conversion successful.
224 * @retval SR_ERR Failure.
225 *
226 * @since 0.5.0
227 */
228SR_API int sr_parse_rational(const char *str, struct sr_rational *ret)
229{
230 char *endptr = NULL;
231 int64_t integral;
232 int64_t fractional = 0;
233 int64_t denominator = 1;
234 int32_t fractional_len = 0;
235 int32_t exponent = 0;
236
237 errno = 0;
238 integral = g_ascii_strtoll(str, &endptr, 10);
239
240 if (errno)
241 return SR_ERR;
242
243 if (*endptr == '.') {
244 const char* start = endptr + 1;
245 fractional = g_ascii_strtoll(start, &endptr, 10);
246 if (errno)
247 return SR_ERR;
248 fractional_len = endptr - start;
249 }
250
251 if ((*endptr == 'E') || (*endptr == 'e')) {
252 exponent = g_ascii_strtoll(endptr + 1, &endptr, 10);
253 if (errno)
254 return SR_ERR;
255 }
256
257 if (*endptr != '\0')
258 return SR_ERR;
259
260 for (int i = 0; i < fractional_len; i++)
261 integral *= 10;
262 exponent -= fractional_len;
263
264 if (integral >= 0)
265 integral += fractional;
266 else
267 integral -= fractional;
268
269 while (exponent > 0) {
270 integral *= 10;
271 exponent--;
272 }
273
274 while (exponent < 0) {
275 denominator *= 10;
276 exponent++;
277 }
278
279 ret->p = integral;
280 ret->q = denominator;
281
282 return SR_OK;
283}
284
285/**
286 * Convert a numeric value value to its "natural" string representation
287 * in SI units.
288 *
289 * E.g. a value of 3000000, with units set to "W", would be converted
290 * to "3 MW", 20000 to "20 kW", 31500 would become "31.5 kW".
291 *
292 * @param x The value to convert.
293 * @param unit The unit to append to the string, or NULL if the string
294 * has no units.
295 *
296 * @return A newly allocated string representation of the samplerate value,
297 * or NULL upon errors. The caller is responsible to g_free() the
298 * memory.
299 *
300 * @since 0.2.0
301 */
302SR_API char *sr_si_string_u64(uint64_t x, const char *unit)
303{
304 uint8_t i;
305 uint64_t quot, divisor[] = {
306 SR_HZ(1), SR_KHZ(1), SR_MHZ(1), SR_GHZ(1),
307 SR_GHZ(1000), SR_GHZ(1000 * 1000), SR_GHZ(1000 * 1000 * 1000),
308 };
309 const char *p, prefix[] = "\0kMGTPE";
310 char fmt[16], fract[20] = "", *f;
311
312 if (!unit)
313 unit = "";
314
315 for (i = 0; (quot = x / divisor[i]) >= 1000; i++);
316
317 if (i) {
318 sprintf(fmt, ".%%0%d"PRIu64, i * 3);
319 f = fract + sprintf(fract, fmt, x % divisor[i]) - 1;
320
321 while (f >= fract && strchr("0.", *f))
322 *f-- = 0;
323 }
324
325 p = prefix + i;
326
327 return g_strdup_printf("%" PRIu64 "%s %.1s%s", quot, fract, p, unit);
328}
329
330/**
331 * Convert a numeric samplerate value to its "natural" string representation.
332 *
333 * E.g. a value of 3000000 would be converted to "3 MHz", 20000 to "20 kHz",
334 * 31500 would become "31.5 kHz".
335 *
336 * @param samplerate The samplerate in Hz.
337 *
338 * @return A newly allocated string representation of the samplerate value,
339 * or NULL upon errors. The caller is responsible to g_free() the
340 * memory.
341 *
342 * @since 0.1.0
343 */
344SR_API char *sr_samplerate_string(uint64_t samplerate)
345{
346 return sr_si_string_u64(samplerate, "Hz");
347}
348
349/**
350 * Convert a numeric period value to the "natural" string representation
351 * of its period value.
352 *
353 * The period is specified as a rational number's numerator and denominator.
354 *
355 * E.g. a pair of (1, 5) would be converted to "200 ms", (10, 100) to "100 ms".
356 *
357 * @param v_p The period numerator.
358 * @param v_q The period denominator.
359 *
360 * @return A newly allocated string representation of the period value,
361 * or NULL upon errors. The caller is responsible to g_free() the
362 * memory.
363 *
364 * @since 0.5.0
365 */
366SR_API char *sr_period_string(uint64_t v_p, uint64_t v_q)
367{
368 double freq, v;
369 char *o;
370 int prec, r;
371
372 freq = 1 / ((double)v_p / v_q);
373
374 o = g_malloc0(30 + 1);
375
376 if (freq > SR_GHZ(1)) {
377 v = (double)v_p / v_q * 1000000000000.0;
378 prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
379 r = snprintf(o, 30, "%.*f ps", prec, v);
380 } else if (freq > SR_MHZ(1)) {
381 v = (double)v_p / v_q * 1000000000.0;
382 prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
383 r = snprintf(o, 30, "%.*f ns", prec, v);
384 } else if (freq > SR_KHZ(1)) {
385 v = (double)v_p / v_q * 1000000.0;
386 prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
387 r = snprintf(o, 30, "%.*f us", prec, v);
388 } else if (freq > 1) {
389 v = (double)v_p / v_q * 1000.0;
390 prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
391 r = snprintf(o, 30, "%.*f ms", prec, v);
392 } else {
393 v = (double)v_p / v_q;
394 prec = ((v - (uint64_t)v) < FLT_MIN) ? 0 : 3;
395 r = snprintf(o, 30, "%.*f s", prec, v);
396 }
397
398 if (r < 0) {
399 /* Something went wrong... */
400 g_free(o);
401 return NULL;
402 }
403
404 return o;
405}
406
407/**
408 * Convert a numeric voltage value to the "natural" string representation
409 * of its voltage value. The voltage is specified as a rational number's
410 * numerator and denominator.
411 *
412 * E.g. a value of 300000 would be converted to "300mV", 2 to "2V".
413 *
414 * @param v_p The voltage numerator.
415 * @param v_q The voltage denominator.
416 *
417 * @return A newly allocated string representation of the voltage value,
418 * or NULL upon errors. The caller is responsible to g_free() the
419 * memory.
420 *
421 * @since 0.2.0
422 */
423SR_API char *sr_voltage_string(uint64_t v_p, uint64_t v_q)
424{
425 int r;
426 char *o;
427
428 o = g_malloc0(30 + 1);
429
430 if (v_q == 1000)
431 r = snprintf(o, 30, "%" PRIu64 "mV", v_p);
432 else if (v_q == 1)
433 r = snprintf(o, 30, "%" PRIu64 "V", v_p);
434 else
435 r = snprintf(o, 30, "%gV", (float)v_p / (float)v_q);
436
437 if (r < 0) {
438 /* Something went wrong... */
439 g_free(o);
440 return NULL;
441 }
442
443 return o;
444}
445
446/**
447 * Convert a "natural" string representation of a size value to uint64_t.
448 *
449 * E.g. a value of "3k" or "3 K" would be converted to 3000, a value
450 * of "15M" would be converted to 15000000.
451 *
452 * Value representations other than decimal (such as hex or octal) are not
453 * supported. Only 'k' (kilo), 'm' (mega), 'g' (giga) suffixes are supported.
454 * Spaces (but not other whitespace) between value and suffix are allowed.
455 *
456 * @param sizestring A string containing a (decimal) size value.
457 * @param size Pointer to uint64_t which will contain the string's size value.
458 *
459 * @return SR_OK upon success, SR_ERR upon errors.
460 *
461 * @since 0.1.0
462 */
463SR_API int sr_parse_sizestring(const char *sizestring, uint64_t *size)
464{
465 int multiplier, done;
466 double frac_part;
467 char *s;
468
469 *size = strtoull(sizestring, &s, 10);
470 multiplier = 0;
471 frac_part = 0;
472 done = FALSE;
473 while (s && *s && multiplier == 0 && !done) {
474 switch (*s) {
475 case ' ':
476 break;
477 case '.':
478 frac_part = g_ascii_strtod(s, &s);
479 break;
480 case 'k':
481 case 'K':
482 multiplier = SR_KHZ(1);
483 break;
484 case 'm':
485 case 'M':
486 multiplier = SR_MHZ(1);
487 break;
488 case 'g':
489 case 'G':
490 multiplier = SR_GHZ(1);
491 break;
492 default:
493 done = TRUE;
494 s--;
495 }
496 s++;
497 }
498 if (multiplier > 0) {
499 *size *= multiplier;
500 *size += frac_part * multiplier;
501 } else
502 *size += frac_part;
503
504 if (s && *s && g_ascii_strcasecmp(s, "Hz"))
505 return SR_ERR;
506
507 return SR_OK;
508}
509
510/**
511 * Convert a "natural" string representation of a time value to an
512 * uint64_t value in milliseconds.
513 *
514 * E.g. a value of "3s" or "3 s" would be converted to 3000, a value
515 * of "15ms" would be converted to 15.
516 *
517 * Value representations other than decimal (such as hex or octal) are not
518 * supported. Only lower-case "s" and "ms" time suffixes are supported.
519 * Spaces (but not other whitespace) between value and suffix are allowed.
520 *
521 * @param timestring A string containing a (decimal) time value.
522 * @return The string's time value as uint64_t, in milliseconds.
523 *
524 * @todo Add support for "m" (minutes) and others.
525 * @todo Add support for picoseconds?
526 * @todo Allow both lower-case and upper-case? If no, document it.
527 *
528 * @since 0.1.0
529 */
530SR_API uint64_t sr_parse_timestring(const char *timestring)
531{
532 uint64_t time_msec;
533 char *s;
534
535 /* TODO: Error handling, logging. */
536
537 time_msec = strtoull(timestring, &s, 10);
538 if (time_msec == 0 && s == timestring)
539 return 0;
540
541 if (s && *s) {
542 while (*s == ' ')
543 s++;
544 if (!strcmp(s, "s"))
545 time_msec *= 1000;
546 else if (!strcmp(s, "ms"))
547 ; /* redundant */
548 else
549 return 0;
550 }
551
552 return time_msec;
553}
554
555/** @since 0.1.0 */
556SR_API gboolean sr_parse_boolstring(const char *boolstr)
557{
558 if (!boolstr)
559 return FALSE;
560
561 if (!g_ascii_strncasecmp(boolstr, "true", 4) ||
562 !g_ascii_strncasecmp(boolstr, "yes", 3) ||
563 !g_ascii_strncasecmp(boolstr, "on", 2) ||
564 !g_ascii_strncasecmp(boolstr, "1", 1))
565 return TRUE;
566
567 return FALSE;
568}
569
570/** @since 0.2.0 */
571SR_API int sr_parse_period(const char *periodstr, uint64_t *p, uint64_t *q)
572{
573 char *s;
574
575 *p = strtoull(periodstr, &s, 10);
576 if (*p == 0 && s == periodstr)
577 /* No digits found. */
578 return SR_ERR_ARG;
579
580 if (s && *s) {
581 while (*s == ' ')
582 s++;
583 if (!strcmp(s, "fs"))
584 *q = 1000000000000000ULL;
585 else if (!strcmp(s, "ps"))
586 *q = 1000000000000ULL;
587 else if (!strcmp(s, "ns"))
588 *q = 1000000000ULL;
589 else if (!strcmp(s, "us"))
590 *q = 1000000;
591 else if (!strcmp(s, "ms"))
592 *q = 1000;
593 else if (!strcmp(s, "s"))
594 *q = 1;
595 else
596 /* Must have a time suffix. */
597 return SR_ERR_ARG;
598 }
599
600 return SR_OK;
601}
602
603/** @since 0.2.0 */
604SR_API int sr_parse_voltage(const char *voltstr, uint64_t *p, uint64_t *q)
605{
606 char *s;
607
608 *p = strtoull(voltstr, &s, 10);
609 if (*p == 0 && s == voltstr)
610 /* No digits found. */
611 return SR_ERR_ARG;
612
613 if (s && *s) {
614 while (*s == ' ')
615 s++;
616 if (!g_ascii_strcasecmp(s, "mv"))
617 *q = 1000L;
618 else if (!g_ascii_strcasecmp(s, "v"))
619 *q = 1;
620 else
621 /* Must have a base suffix. */
622 return SR_ERR_ARG;
623 }
624
625 return SR_OK;
626}
627
628/** @} */