]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
asix-sigma: reword list of sample rates, (try to) use 1/2/5 steps
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64 {SR_CONF_SIGNAL_GENERATOR, SR_T_STRING, NULL, "Signal generator", NULL},
65 {SR_CONF_POWERMETER, SR_T_STRING, NULL, "Power meter", NULL},
66
67 /* Driver scan options */
68 {SR_CONF_CONN, SR_T_STRING, "conn",
69 "Connection", NULL},
70 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
71 "Serial communication", NULL},
72 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
73 "Modbus slave address", NULL},
74
75 /* Device (or channel group) configuration */
76 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
77 "Sample rate", NULL},
78 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
79 "Pre-trigger capture ratio", NULL},
80 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
81 "Pattern", NULL},
82 {SR_CONF_RLE, SR_T_BOOL, "rle",
83 "Run length encoding", NULL},
84 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
85 "Trigger slope", NULL},
86 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
87 "Averaging", NULL},
88 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
89 "Number of samples to average over", NULL},
90 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
91 "Trigger source", NULL},
92 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
93 "Horizontal trigger position", NULL},
94 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
95 "Buffer size", NULL},
96 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
97 "Time base", NULL},
98 {SR_CONF_FILTER, SR_T_BOOL, "filter",
99 "Filter", NULL},
100 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
101 "Volts/div", NULL},
102 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
103 "Coupling", NULL},
104 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
105 "Trigger matches", NULL},
106 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
107 "Sample interval", NULL},
108 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
109 "Number of horizontal divisions", NULL},
110 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
111 "Number of vertical divisions", NULL},
112 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
113 "Sound pressure level frequency weighting", NULL},
114 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
115 "Sound pressure level time weighting", NULL},
116 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
117 "Sound pressure level measurement range", NULL},
118 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
119 "Hold max", NULL},
120 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
121 "Hold min", NULL},
122 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
123 "Voltage threshold", NULL },
124 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
125 "External clock mode", NULL},
126 {SR_CONF_SWAP, SR_T_BOOL, "swap",
127 "Swap channel order", NULL},
128 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
129 "Center frequency", NULL},
130 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
131 "Number of logic channels", NULL},
132 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
133 "Number of analog channels", NULL},
134 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
135 "Current voltage", NULL},
136 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
137 "Voltage target", NULL},
138 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
139 "Current current", NULL},
140 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
141 "Current limit", NULL},
142 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
143 "Channel enabled", NULL},
144 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
145 "Channel modes", NULL},
146 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
147 "Over-voltage protection enabled", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
149 "Over-voltage protection active", NULL},
150 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
151 "Over-voltage protection threshold", NULL},
152 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
153 "Over-current protection enabled", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
155 "Over-current protection active", NULL},
156 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
157 "Over-current protection threshold", NULL},
158 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
159 "Clock edge", NULL},
160 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
161 "Amplitude", NULL},
162 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
163 "Channel regulation", NULL},
164 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
165 "Over-temperature protection", NULL},
166 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
167 "Output frequency", NULL},
168 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
169 "Output frequency target", NULL},
170 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
171 "Measured quantity", NULL},
172 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
173 "Equivalent circuit model", NULL},
174 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
175 "Over-temperature protection active", NULL},
176 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
177 "Under-voltage condition", NULL},
178 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
179 "Under-voltage condition active", NULL},
180 {SR_CONF_UNDER_VOLTAGE_CONDITION_THRESHOLD, SR_T_FLOAT, "uvc_threshold",
181 "Under-voltage condition threshold", NULL},
182 {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
183 "Trigger level", NULL},
184 {SR_CONF_EXTERNAL_CLOCK_SOURCE, SR_T_STRING, "external_clock_source",
185 "External clock source", NULL},
186 {SR_CONF_OFFSET, SR_T_FLOAT, "offset",
187 "Offset", NULL},
188 {SR_CONF_TRIGGER_PATTERN, SR_T_STRING, "triggerpattern",
189 "Trigger pattern", NULL},
190 {SR_CONF_HIGH_RESOLUTION, SR_T_BOOL, "highresolution",
191 "High resolution", NULL},
192 {SR_CONF_PEAK_DETECTION, SR_T_BOOL, "peakdetection",
193 "Peak detection", NULL},
194 {SR_CONF_LOGIC_THRESHOLD, SR_T_STRING, "logic_threshold",
195 "Logic threshold (predefined)", NULL},
196 {SR_CONF_LOGIC_THRESHOLD_CUSTOM, SR_T_FLOAT, "logic_threshold_custom",
197 "Logic threshold (custom)", NULL},
198 {SR_CONF_RANGE, SR_T_STRING, "range",
199 "Range", NULL},
200 {SR_CONF_DIGITS, SR_T_STRING, "digits",
201 "Digits", NULL},
202
203 /* Special stuff */
204 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
205 "Session file", NULL},
206 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
207 "Capture file", NULL},
208 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
209 "Capture unitsize", NULL},
210 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
211 "Power off", NULL},
212 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
213 "Data source", NULL},
214 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
215 "Probe factor", NULL},
216 {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
217 "Number of ADC powerline cycles", NULL},
218
219 /* Acquisition modes, sample limiting */
220 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
221 "Time limit", NULL},
222 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
223 "Sample limit", NULL},
224 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
225 "Frame limit", NULL},
226 {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
227 "Continuous sampling", NULL},
228 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
229 "Datalog", NULL},
230 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
231 "Device mode", NULL},
232 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
233 "Test mode", NULL},
234
235 ALL_ZERO
236};
237
238/* Please use the same order as in enum sr_mq (libsigrok.h). */
239static struct sr_key_info sr_key_info_mq[] = {
240 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
241 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
242 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
243 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
244 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
245 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
246 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
247 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
248 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
249 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
250 {SR_MQ_POWER, 0, "power", "Power", NULL},
251 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
252 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
253 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
254 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
255 {SR_MQ_TIME, 0, "time", "Time", NULL},
256 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
257 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
258 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
259 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
260 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
261 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
262 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
263 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
264 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
265 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
266 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
267 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
268 {SR_MQ_COUNT, 0, "count", "Count", NULL},
269 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
270 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
271 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
272 {SR_MQ_HARMONIC_RATIO, 0, "harmonic_ratio", "Harmonic ratio", NULL},
273 ALL_ZERO
274};
275
276/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
277static struct sr_key_info sr_key_info_mqflag[] = {
278 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
279 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
280 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
281 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
282 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
283 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
284 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
285 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
286 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
287 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
288 "Frequency weighted (A)", NULL},
289 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
290 "Frequency weighted (C)", NULL},
291 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
292 "Frequency weighted (Z)", NULL},
293 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
294 "Frequency weighted (flat)", NULL},
295 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
296 "Time weighted (S)", NULL},
297 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
298 "Time weighted (F)", NULL},
299 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
300 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
301 "Percentage over alarm", NULL},
302 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
303 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
304 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
305 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
306 {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
307 ALL_ZERO
308};
309
310/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
311/** @private */
312SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
313{
314 switch (datatype) {
315 case SR_T_INT32:
316 return G_VARIANT_TYPE_INT32;
317 case SR_T_UINT64:
318 return G_VARIANT_TYPE_UINT64;
319 case SR_T_STRING:
320 return G_VARIANT_TYPE_STRING;
321 case SR_T_BOOL:
322 return G_VARIANT_TYPE_BOOLEAN;
323 case SR_T_FLOAT:
324 return G_VARIANT_TYPE_DOUBLE;
325 case SR_T_RATIONAL_PERIOD:
326 case SR_T_RATIONAL_VOLT:
327 case SR_T_UINT64_RANGE:
328 case SR_T_DOUBLE_RANGE:
329 return G_VARIANT_TYPE_TUPLE;
330 case SR_T_KEYVALUE:
331 return G_VARIANT_TYPE_DICTIONARY;
332 case SR_T_MQ:
333 return G_VARIANT_TYPE_TUPLE;
334 default:
335 return NULL;
336 }
337}
338
339/** @private */
340SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
341{
342 const struct sr_key_info *info;
343 const GVariantType *type, *expected;
344 char *expected_string, *type_string;
345
346 info = sr_key_info_get(SR_KEY_CONFIG, key);
347 if (!info)
348 return SR_OK;
349
350 expected = sr_variant_type_get(info->datatype);
351 type = g_variant_get_type(value);
352 if (!g_variant_type_equal(type, expected)
353 && !g_variant_type_is_subtype_of(type, expected)) {
354 expected_string = g_variant_type_dup_string(expected);
355 type_string = g_variant_type_dup_string(type);
356 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
357 info->name, expected_string, type_string);
358 g_free(expected_string);
359 g_free(type_string);
360 return SR_ERR_ARG;
361 }
362
363 return SR_OK;
364}
365
366/**
367 * Return the list of supported hardware drivers.
368 *
369 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
370 *
371 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
372 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
373 * The user should NOT g_free() this list, sr_exit() will do that.
374 *
375 * @since 0.4.0
376 */
377SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
378{
379 if (!ctx)
380 return NULL;
381
382 return ctx->driver_list;
383}
384
385/**
386 * Initialize a hardware driver.
387 *
388 * This usually involves memory allocations and variable initializations
389 * within the driver, but _not_ scanning for attached devices.
390 * The API call sr_driver_scan() is used for that.
391 *
392 * @param ctx A libsigrok context object allocated by a previous call to
393 * sr_init(). Must not be NULL.
394 * @param driver The driver to initialize. This must be a pointer to one of
395 * the entries returned by sr_driver_list(). Must not be NULL.
396 *
397 * @retval SR_OK Success
398 * @retval SR_ERR_ARG Invalid parameter(s).
399 * @retval SR_ERR_BUG Internal errors.
400 * @retval other Another negative error code upon other errors.
401 *
402 * @since 0.2.0
403 */
404SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
405{
406 int ret;
407
408 if (!ctx) {
409 sr_err("Invalid libsigrok context, can't initialize.");
410 return SR_ERR_ARG;
411 }
412
413 if (!driver) {
414 sr_err("Invalid driver, can't initialize.");
415 return SR_ERR_ARG;
416 }
417
418 /* No log message here, too verbose and not very useful. */
419
420 if ((ret = driver->init(driver, ctx)) < 0)
421 sr_err("Failed to initialize the driver: %d.", ret);
422
423 return ret;
424}
425
426/**
427 * Enumerate scan options supported by this driver.
428 *
429 * Before calling sr_driver_scan_options_list(), the user must have previously
430 * initialized the driver by calling sr_driver_init().
431 *
432 * @param driver The driver to enumerate options for. This must be a pointer
433 * to one of the entries returned by sr_driver_list(). Must not
434 * be NULL.
435 *
436 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
437 * entry is a configuration key that is supported as a scan option.
438 * The array must be freed by the caller using g_array_free().
439 *
440 * @since 0.4.0
441 */
442SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
443{
444 GVariant *gvar;
445 const uint32_t *opts;
446 gsize num_opts;
447 GArray *result;
448
449 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
450 return NULL;
451
452 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
453
454 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
455
456 g_array_insert_vals(result, 0, opts, num_opts);
457
458 g_variant_unref(gvar);
459
460 return result;
461}
462
463static int check_options(struct sr_dev_driver *driver, GSList *options,
464 uint32_t optlist_key, struct sr_dev_inst *sdi,
465 struct sr_channel_group *cg)
466{
467 struct sr_config *src;
468 const struct sr_key_info *srci;
469 GVariant *gvar_opts;
470 GSList *l;
471 const uint32_t *opts;
472 gsize num_opts, i;
473 int ret;
474
475 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
476 /* Driver publishes no options for this optlist. */
477 return SR_ERR;
478 }
479
480 ret = SR_OK;
481 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
482 for (l = options; l; l = l->next) {
483 src = l->data;
484 for (i = 0; i < num_opts; i++) {
485 if (opts[i] == src->key)
486 break;
487 }
488 if (i == num_opts) {
489 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
490 /* Shouldn't happen. */
491 sr_err("Invalid option %d.", src->key);
492 else
493 sr_err("Invalid option '%s'.", srci->id);
494 ret = SR_ERR_ARG;
495 break;
496 }
497 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
498 ret = SR_ERR_ARG;
499 break;
500 }
501 }
502 g_variant_unref(gvar_opts);
503
504 return ret;
505}
506
507/**
508 * Tell a hardware driver to scan for devices.
509 *
510 * In addition to the detection, the devices that are found are also
511 * initialized automatically. On some devices, this involves a firmware upload,
512 * or other such measures.
513 *
514 * The order in which the system is scanned for devices is not specified. The
515 * caller should not assume or rely on any specific order.
516 *
517 * Before calling sr_driver_scan(), the user must have previously initialized
518 * the driver by calling sr_driver_init().
519 *
520 * @param driver The driver that should scan. This must be a pointer to one of
521 * the entries returned by sr_driver_list(). Must not be NULL.
522 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
523 * scanner. Can be NULL/empty.
524 *
525 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
526 * found (or errors were encountered). This list must be freed by the
527 * caller using g_slist_free(), but without freeing the data pointed
528 * to in the list.
529 *
530 * @since 0.2.0
531 */
532SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
533{
534 GSList *l;
535
536 if (!driver) {
537 sr_err("Invalid driver, can't scan for devices.");
538 return NULL;
539 }
540
541 if (!driver->context) {
542 sr_err("Driver not initialized, can't scan for devices.");
543 return NULL;
544 }
545
546 if (options) {
547 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
548 return NULL;
549 }
550
551 l = driver->scan(driver, options);
552
553 sr_spew("Scan found %d devices (%s).", g_slist_length(l), driver->name);
554
555 return l;
556}
557
558/**
559 * Call driver cleanup function for all drivers.
560 *
561 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
562 *
563 * @private
564 */
565SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
566{
567 int i;
568 struct sr_dev_driver **drivers;
569
570 if (!ctx)
571 return;
572
573 sr_dbg("Cleaning up all drivers.");
574
575 drivers = sr_driver_list(ctx);
576 for (i = 0; drivers[i]; i++) {
577 if (drivers[i]->cleanup)
578 drivers[i]->cleanup(drivers[i]);
579 drivers[i]->context = NULL;
580 }
581}
582
583/**
584 * Allocate struct sr_config.
585 *
586 * A floating reference can be passed in for data.
587 *
588 * @param key The config key to use.
589 * @param data The GVariant data to use.
590 *
591 * @return The newly allocated struct sr_config. This function is assumed
592 * to never fail.
593 *
594 * @private
595 */
596SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
597{
598 struct sr_config *src;
599
600 src = g_malloc0(sizeof(struct sr_config));
601 src->key = key;
602 src->data = g_variant_ref_sink(data);
603
604 return src;
605}
606
607/**
608 * Free struct sr_config.
609 *
610 * @private
611 */
612SR_PRIV void sr_config_free(struct sr_config *src)
613{
614 if (!src || !src->data) {
615 sr_err("%s: invalid data!", __func__);
616 return;
617 }
618
619 g_variant_unref(src->data);
620 g_free(src);
621}
622
623/** @private */
624SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi)
625{
626 if (!sdi || !sdi->driver) {
627 sr_err("%s: Invalid arguments.", __func__);
628 return SR_ERR_ARG;
629 }
630
631 if (sdi->status != SR_ST_ACTIVE) {
632 sr_err("%s: Device instance not active, can't start.",
633 sdi->driver->name);
634 return SR_ERR_DEV_CLOSED;
635 }
636
637 sr_dbg("%s: Starting acquisition.", sdi->driver->name);
638
639 return sdi->driver->dev_acquisition_start(sdi);
640}
641
642/** @private */
643SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi)
644{
645 if (!sdi || !sdi->driver) {
646 sr_err("%s: Invalid arguments.", __func__);
647 return SR_ERR_ARG;
648 }
649
650 if (sdi->status != SR_ST_ACTIVE) {
651 sr_err("%s: Device instance not active, can't stop.",
652 sdi->driver->name);
653 return SR_ERR_DEV_CLOSED;
654 }
655
656 sr_dbg("%s: Stopping acquisition.", sdi->driver->name);
657
658 return sdi->driver->dev_acquisition_stop(sdi);
659}
660
661static void log_key(const struct sr_dev_inst *sdi,
662 const struct sr_channel_group *cg, uint32_t key, unsigned int op,
663 GVariant *data)
664{
665 const char *opstr;
666 const struct sr_key_info *srci;
667 gchar *tmp_str;
668
669 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
670 if (key == SR_CONF_DEVICE_OPTIONS)
671 return;
672
673 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
674 srci = sr_key_info_get(SR_KEY_CONFIG, key);
675
676 tmp_str = g_variant_print(data, TRUE);
677 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
678 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
679 data ? tmp_str : "NULL");
680 g_free(tmp_str);
681}
682
683static int check_key(const struct sr_dev_driver *driver,
684 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
685 uint32_t key, unsigned int op, GVariant *data)
686{
687 const struct sr_key_info *srci;
688 gsize num_opts, i;
689 GVariant *gvar_opts;
690 const uint32_t *opts;
691 uint32_t pub_opt;
692 const char *suffix;
693 const char *opstr;
694
695 if (sdi && cg)
696 suffix = " for this device instance and channel group";
697 else if (sdi)
698 suffix = " for this device instance";
699 else
700 suffix = "";
701
702 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
703 sr_err("Invalid key %d.", key);
704 return SR_ERR_ARG;
705 }
706 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
707
708 switch (key) {
709 case SR_CONF_LIMIT_MSEC:
710 case SR_CONF_LIMIT_SAMPLES:
711 case SR_CONF_SAMPLERATE:
712 /* Setting any of these to 0 is not useful. */
713 if (op != SR_CONF_SET || !data)
714 break;
715 if (g_variant_get_uint64(data) == 0) {
716 sr_err("Cannot set '%s' to 0.", srci->id);
717 return SR_ERR_ARG;
718 }
719 break;
720 case SR_CONF_CAPTURE_RATIO:
721 /* Capture ratio must always be between 0 and 100. */
722 if (op != SR_CONF_SET || !data)
723 break;
724 if (g_variant_get_uint64(data) > 100) {
725 sr_err("Capture ratio must be 0..100.");
726 return SR_ERR_ARG;
727 }
728 break;
729 }
730
731 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
732 /* Driver publishes no options. */
733 sr_err("No options available%s.", suffix);
734 return SR_ERR_ARG;
735 }
736 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
737 pub_opt = 0;
738 for (i = 0; i < num_opts; i++) {
739 if ((opts[i] & SR_CONF_MASK) == key) {
740 pub_opt = opts[i];
741 break;
742 }
743 }
744 g_variant_unref(gvar_opts);
745 if (!pub_opt) {
746 sr_err("Option '%s' not available%s.", srci->id, suffix);
747 return SR_ERR_ARG;
748 }
749
750 if (!(pub_opt & op)) {
751 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
752 return SR_ERR_ARG;
753 }
754
755 return SR_OK;
756}
757
758/**
759 * Query value of a configuration key at the given driver or device instance.
760 *
761 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
762 * @param[in] sdi (optional) If the key is specific to a device, this must
763 * contain a pointer to the struct sr_dev_inst to be checked.
764 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
765 * also be != NULL.
766 * @param[in] cg The channel group on the device for which to list the
767 * values, or NULL.
768 * @param[in] key The configuration key (SR_CONF_*).
769 * @param[in,out] data Pointer to a GVariant where the value will be stored.
770 * Must not be NULL. The caller is given ownership of the GVariant
771 * and must thus decrease the refcount after use. However if
772 * this function returns an error code, the field should be
773 * considered unused, and should not be unreferenced.
774 *
775 * @retval SR_OK Success.
776 * @retval SR_ERR Error.
777 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
778 * interpreted as an error by the caller; merely as an indication
779 * that it's not applicable.
780 *
781 * @since 0.3.0
782 */
783SR_API int sr_config_get(const struct sr_dev_driver *driver,
784 const struct sr_dev_inst *sdi,
785 const struct sr_channel_group *cg,
786 uint32_t key, GVariant **data)
787{
788 int ret;
789
790 if (!driver || !data)
791 return SR_ERR;
792
793 if (!driver->config_get)
794 return SR_ERR_ARG;
795
796 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
797 return SR_ERR_ARG;
798
799 if (sdi && !sdi->priv) {
800 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
801 return SR_ERR;
802 }
803
804 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
805 log_key(sdi, cg, key, SR_CONF_GET, *data);
806 /* Got a floating reference from the driver. Sink it here,
807 * caller will need to unref when done with it. */
808 g_variant_ref_sink(*data);
809 }
810
811 if (ret == SR_ERR_CHANNEL_GROUP)
812 sr_err("%s: No channel group specified.",
813 (sdi) ? sdi->driver->name : "unknown");
814
815 return ret;
816}
817
818/**
819 * Set value of a configuration key in a device instance.
820 *
821 * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
822 * sdi->priv must not be NULL either.
823 * @param[in] cg The channel group on the device for which to list the
824 * values, or NULL.
825 * @param[in] key The configuration key (SR_CONF_*).
826 * @param data The new value for the key, as a GVariant with GVariantType
827 * appropriate to that key. A floating reference can be passed
828 * in; its refcount will be sunk and unreferenced after use.
829 *
830 * @retval SR_OK Success.
831 * @retval SR_ERR Error.
832 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
833 * interpreted as an error by the caller; merely as an indication
834 * that it's not applicable.
835 *
836 * @since 0.3.0
837 */
838SR_API int sr_config_set(const struct sr_dev_inst *sdi,
839 const struct sr_channel_group *cg,
840 uint32_t key, GVariant *data)
841{
842 int ret;
843
844 g_variant_ref_sink(data);
845
846 if (!sdi || !sdi->driver || !sdi->priv || !data)
847 ret = SR_ERR;
848 else if (!sdi->driver->config_set)
849 ret = SR_ERR_ARG;
850 else if (sdi->status != SR_ST_ACTIVE) {
851 sr_err("%s: Device instance not active, can't set config.",
852 sdi->driver->name);
853 ret = SR_ERR_DEV_CLOSED;
854 } else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
855 return SR_ERR_ARG;
856 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
857 log_key(sdi, cg, key, SR_CONF_SET, data);
858 ret = sdi->driver->config_set(key, data, sdi, cg);
859 }
860
861 g_variant_unref(data);
862
863 if (ret == SR_ERR_CHANNEL_GROUP)
864 sr_err("%s: No channel group specified.",
865 (sdi) ? sdi->driver->name : "unknown");
866
867 return ret;
868}
869
870/**
871 * Apply configuration settings to the device hardware.
872 *
873 * @param sdi The device instance.
874 *
875 * @return SR_OK upon success or SR_ERR in case of error.
876 *
877 * @since 0.3.0
878 */
879SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
880{
881 int ret;
882
883 if (!sdi || !sdi->driver)
884 ret = SR_ERR;
885 else if (!sdi->driver->config_commit)
886 ret = SR_OK;
887 else if (sdi->status != SR_ST_ACTIVE) {
888 sr_err("%s: Device instance not active, can't commit config.",
889 sdi->driver->name);
890 ret = SR_ERR_DEV_CLOSED;
891 } else
892 ret = sdi->driver->config_commit(sdi);
893
894 return ret;
895}
896
897/**
898 * List all possible values for a configuration key.
899 *
900 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
901 * @param[in] sdi (optional) If the key is specific to a device instance, this
902 * must contain a pointer to the struct sr_dev_inst to be checked.
903 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
904 * also be != NULL.
905 * @param[in] cg The channel group on the device instance for which to list
906 * the values, or NULL. If this device instance doesn't
907 * have channel groups, this must not be != NULL.
908 * If cg is NULL, this function will return the "common" device
909 * instance options that are channel-group independent. Otherwise
910 * it will return the channel-group specific options.
911 * @param[in] key The configuration key (SR_CONF_*).
912 * @param[in,out] data A pointer to a GVariant where the list will be stored.
913 * The caller is given ownership of the GVariant and must thus
914 * unref the GVariant after use. However if this function
915 * returns an error code, the field should be considered
916 * unused, and should not be unreferenced.
917 *
918 * @retval SR_OK Success.
919 * @retval SR_ERR Error.
920 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
921 * interpreted as an error by the caller; merely as an indication
922 * that it's not applicable.
923 *
924 * @since 0.3.0
925 */
926SR_API int sr_config_list(const struct sr_dev_driver *driver,
927 const struct sr_dev_inst *sdi,
928 const struct sr_channel_group *cg,
929 uint32_t key, GVariant **data)
930{
931 int ret;
932
933 if (!driver || !data)
934 return SR_ERR;
935
936 if (!driver->config_list)
937 return SR_ERR_ARG;
938
939 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
940 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
941 return SR_ERR_ARG;
942 }
943
944 if (sdi && !sdi->priv) {
945 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
946 return SR_ERR;
947 }
948
949 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS && !sdi) {
950 sr_err("Config keys other than SR_CONF_SCAN_OPTIONS and "
951 "SR_CONF_DEVICE_OPTIONS always need an sdi.");
952 return SR_ERR_ARG;
953 }
954
955 if (cg && sdi && !sdi->channel_groups) {
956 sr_err("Can't list config for channel group, there are none.");
957 return SR_ERR_ARG;
958 }
959
960 if (cg && sdi && !g_slist_find(sdi->channel_groups, cg)) {
961 sr_err("If a channel group is specified, it must be a valid one.");
962 return SR_ERR_ARG;
963 }
964
965 if (cg && !sdi) {
966 sr_err("Need sdi when a channel group is specified.");
967 return SR_ERR_ARG;
968 }
969
970 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
971 log_key(sdi, cg, key, SR_CONF_LIST, *data);
972 g_variant_ref_sink(*data);
973 }
974
975 if (ret == SR_ERR_CHANNEL_GROUP)
976 sr_err("%s: No channel group specified.",
977 (sdi) ? sdi->driver->name : "unknown");
978
979 return ret;
980}
981
982static struct sr_key_info *get_keytable(int keytype)
983{
984 struct sr_key_info *table;
985
986 switch (keytype) {
987 case SR_KEY_CONFIG:
988 table = sr_key_info_config;
989 break;
990 case SR_KEY_MQ:
991 table = sr_key_info_mq;
992 break;
993 case SR_KEY_MQFLAGS:
994 table = sr_key_info_mqflag;
995 break;
996 default:
997 sr_err("Invalid keytype %d", keytype);
998 return NULL;
999 }
1000
1001 return table;
1002}
1003
1004/**
1005 * Get information about a key, by key.
1006 *
1007 * @param[in] keytype The namespace the key is in.
1008 * @param[in] key The key to find.
1009 *
1010 * @return A pointer to a struct sr_key_info, or NULL if the key
1011 * was not found.
1012 *
1013 * @since 0.3.0
1014 */
1015SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
1016{
1017 struct sr_key_info *table;
1018 int i;
1019
1020 if (!(table = get_keytable(keytype)))
1021 return NULL;
1022
1023 for (i = 0; table[i].key; i++) {
1024 if (table[i].key == key)
1025 return &table[i];
1026 }
1027
1028 return NULL;
1029}
1030
1031/**
1032 * Get information about a key, by name.
1033 *
1034 * @param[in] keytype The namespace the key is in.
1035 * @param[in] keyid The key id string.
1036 *
1037 * @return A pointer to a struct sr_key_info, or NULL if the key
1038 * was not found.
1039 *
1040 * @since 0.2.0
1041 */
1042SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
1043{
1044 struct sr_key_info *table;
1045 int i;
1046
1047 if (!(table = get_keytable(keytype)))
1048 return NULL;
1049
1050 for (i = 0; table[i].key; i++) {
1051 if (!table[i].id)
1052 continue;
1053 if (!strcmp(table[i].id, keyid))
1054 return &table[i];
1055 }
1056
1057 return NULL;
1058}
1059
1060/** @} */