]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
Drop trailing whitespace in various files.
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64 {SR_CONF_SIGNAL_GENERATOR, SR_T_STRING, NULL, "Signal generator", NULL},
65
66 /* Driver scan options */
67 {SR_CONF_CONN, SR_T_STRING, "conn",
68 "Connection", NULL},
69 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
70 "Serial communication", NULL},
71 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
72 "Modbus slave address", NULL},
73
74 /* Device (or channel group) configuration */
75 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
76 "Sample rate", NULL},
77 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
78 "Pre-trigger capture ratio", NULL},
79 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
80 "Pattern", NULL},
81 {SR_CONF_RLE, SR_T_BOOL, "rle",
82 "Run length encoding", NULL},
83 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
84 "Trigger slope", NULL},
85 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
86 "Averaging", NULL},
87 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
88 "Number of samples to average over", NULL},
89 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
90 "Trigger source", NULL},
91 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
92 "Horizontal trigger position", NULL},
93 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
94 "Buffer size", NULL},
95 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
96 "Time base", NULL},
97 {SR_CONF_FILTER, SR_T_BOOL, "filter",
98 "Filter", NULL},
99 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
100 "Volts/div", NULL},
101 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
102 "Coupling", NULL},
103 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
104 "Trigger matches", NULL},
105 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
106 "Sample interval", NULL},
107 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
108 "Number of horizontal divisions", NULL},
109 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
110 "Number of vertical divisions", NULL},
111 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
112 "Sound pressure level frequency weighting", NULL},
113 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
114 "Sound pressure level time weighting", NULL},
115 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
116 "Sound pressure level measurement range", NULL},
117 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
118 "Hold max", NULL},
119 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
120 "Hold min", NULL},
121 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
122 "Voltage threshold", NULL },
123 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
124 "External clock mode", NULL},
125 {SR_CONF_SWAP, SR_T_BOOL, "swap",
126 "Swap channel order", NULL},
127 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
128 "Center frequency", NULL},
129 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
130 "Number of logic channels", NULL},
131 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
132 "Number of analog channels", NULL},
133 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
134 "Current voltage", NULL},
135 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
136 "Voltage target", NULL},
137 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
138 "Current current", NULL},
139 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
140 "Current limit", NULL},
141 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
142 "Channel enabled", NULL},
143 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
144 "Channel modes", NULL},
145 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
146 "Over-voltage protection enabled", NULL},
147 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
148 "Over-voltage protection active", NULL},
149 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
150 "Over-voltage protection threshold", NULL},
151 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
152 "Over-current protection enabled", NULL},
153 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
154 "Over-current protection active", NULL},
155 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
156 "Over-current protection threshold", NULL},
157 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
158 "Clock edge", NULL},
159 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
160 "Amplitude", NULL},
161 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
162 "Channel regulation", NULL},
163 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
164 "Over-temperature protection", NULL},
165 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
166 "Output frequency", NULL},
167 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
168 "Output frequency target", NULL},
169 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
170 "Measured quantity", NULL},
171 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
172 "Equivalent circuit model", NULL},
173 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
174 "Over-temperature protection active", NULL},
175 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
176 "Under-voltage condition", NULL},
177 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
178 "Under-voltage condition active", NULL},
179 {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
180 "Trigger level", NULL},
181
182 /* Special stuff */
183 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
184 "Session file", NULL},
185 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
186 "Capture file", NULL},
187 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
188 "Capture unitsize", NULL},
189 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
190 "Power off", NULL},
191 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
192 "Data source", NULL},
193 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
194 "Probe factor", NULL},
195 {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
196 "Number of ADC powerline cycles", NULL},
197
198 /* Acquisition modes, sample limiting */
199 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
200 "Time limit", NULL},
201 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
202 "Sample limit", NULL},
203 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
204 "Frame limit", NULL},
205 {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
206 "Continuous sampling", NULL},
207 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
208 "Datalog", NULL},
209 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
210 "Device mode", NULL},
211 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
212 "Test mode", NULL},
213
214 ALL_ZERO
215};
216
217/* Please use the same order as in enum sr_mq (libsigrok.h). */
218static struct sr_key_info sr_key_info_mq[] = {
219 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
220 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
221 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
222 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
223 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
224 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
225 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
226 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
227 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
228 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
229 {SR_MQ_POWER, 0, "power", "Power", NULL},
230 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
231 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
232 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
233 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
234 {SR_MQ_TIME, 0, "time", "Time", NULL},
235 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
236 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
237 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
238 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
239 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
240 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
241 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
242 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
243 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
244 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
245 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
246 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
247 {SR_MQ_COUNT, 0, "count", "Count", NULL},
248 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
249 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
250 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
251 {SR_MQ_HARMONIC_RATIO, 0, "harmonic_ratio", "Harmonic ratio", NULL},
252 ALL_ZERO
253};
254
255/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
256static struct sr_key_info sr_key_info_mqflag[] = {
257 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
258 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
259 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
260 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
261 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
262 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
263 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
264 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
265 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
266 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
267 "Frequency weighted (A)", NULL},
268 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
269 "Frequency weighted (C)", NULL},
270 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
271 "Frequency weighted (Z)", NULL},
272 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
273 "Frequency weighted (flat)", NULL},
274 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
275 "Time weighted (S)", NULL},
276 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
277 "Time weighted (F)", NULL},
278 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
279 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
280 "Percentage over alarm", NULL},
281 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
282 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
283 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
284 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
285 {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
286 ALL_ZERO
287};
288
289/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
290SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
291{
292 switch (datatype) {
293 case SR_T_INT32:
294 return G_VARIANT_TYPE_INT32;
295 case SR_T_UINT64:
296 return G_VARIANT_TYPE_UINT64;
297 case SR_T_STRING:
298 return G_VARIANT_TYPE_STRING;
299 case SR_T_BOOL:
300 return G_VARIANT_TYPE_BOOLEAN;
301 case SR_T_FLOAT:
302 return G_VARIANT_TYPE_DOUBLE;
303 case SR_T_RATIONAL_PERIOD:
304 case SR_T_RATIONAL_VOLT:
305 case SR_T_UINT64_RANGE:
306 case SR_T_DOUBLE_RANGE:
307 return G_VARIANT_TYPE_TUPLE;
308 case SR_T_KEYVALUE:
309 return G_VARIANT_TYPE_DICTIONARY;
310 case SR_T_MQ:
311 return G_VARIANT_TYPE_TUPLE;
312 default:
313 return NULL;
314 }
315}
316
317SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
318{
319 const struct sr_key_info *info;
320 const GVariantType *type, *expected;
321 char *expected_string, *type_string;
322
323 info = sr_key_info_get(SR_KEY_CONFIG, key);
324 if (!info)
325 return SR_OK;
326
327 expected = sr_variant_type_get(info->datatype);
328 type = g_variant_get_type(value);
329 if (!g_variant_type_equal(type, expected)
330 && !g_variant_type_is_subtype_of(type, expected)) {
331 expected_string = g_variant_type_dup_string(expected);
332 type_string = g_variant_type_dup_string(type);
333 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
334 info->name, expected_string, type_string);
335 g_free(expected_string);
336 g_free(type_string);
337 return SR_ERR_ARG;
338 }
339
340 return SR_OK;
341}
342
343/**
344 * Return the list of supported hardware drivers.
345 *
346 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
347 *
348 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
349 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
350 * The user should NOT g_free() this list, sr_exit() will do that.
351 *
352 * @since 0.4.0
353 */
354SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
355{
356 if (!ctx)
357 return NULL;
358
359 return ctx->driver_list;
360}
361
362/**
363 * Initialize a hardware driver.
364 *
365 * This usually involves memory allocations and variable initializations
366 * within the driver, but _not_ scanning for attached devices.
367 * The API call sr_driver_scan() is used for that.
368 *
369 * @param ctx A libsigrok context object allocated by a previous call to
370 * sr_init(). Must not be NULL.
371 * @param driver The driver to initialize. This must be a pointer to one of
372 * the entries returned by sr_driver_list(). Must not be NULL.
373 *
374 * @retval SR_OK Success
375 * @retval SR_ERR_ARG Invalid parameter(s).
376 * @retval SR_ERR_BUG Internal errors.
377 * @retval other Another negative error code upon other errors.
378 *
379 * @since 0.2.0
380 */
381SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
382{
383 int ret;
384
385 if (!ctx) {
386 sr_err("Invalid libsigrok context, can't initialize.");
387 return SR_ERR_ARG;
388 }
389
390 if (!driver) {
391 sr_err("Invalid driver, can't initialize.");
392 return SR_ERR_ARG;
393 }
394
395 if ((ret = driver->init(driver, ctx)) < 0)
396 sr_err("Failed to initialize the driver: %d.", ret);
397
398 return ret;
399}
400
401/**
402 * Enumerate scan options supported by this driver.
403 *
404 * Before calling sr_driver_scan_options_list(), the user must have previously
405 * initialized the driver by calling sr_driver_init().
406 *
407 * @param driver The driver to enumerate options for. This must be a pointer
408 * to one of the entries returned by sr_driver_list(). Must not
409 * be NULL.
410 *
411 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
412 * entry is a configuration key that is supported as a scan option.
413 * The array must be freed by the caller using g_array_free().
414 *
415 * @since 0.4.0
416 */
417SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
418{
419 GVariant *gvar;
420 const uint32_t *opts;
421 gsize num_opts;
422 GArray *result;
423
424 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
425 return NULL;
426
427 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
428
429 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
430
431 g_array_insert_vals(result, 0, opts, num_opts);
432
433 g_variant_unref(gvar);
434
435 return result;
436}
437
438static int check_options(struct sr_dev_driver *driver, GSList *options,
439 uint32_t optlist_key, struct sr_dev_inst *sdi,
440 struct sr_channel_group *cg)
441{
442 struct sr_config *src;
443 const struct sr_key_info *srci;
444 GVariant *gvar_opts;
445 GSList *l;
446 const uint32_t *opts;
447 gsize num_opts, i;
448 int ret;
449
450 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
451 /* Driver publishes no options for this optlist. */
452 return SR_ERR;
453 }
454
455 ret = SR_OK;
456 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
457 for (l = options; l; l = l->next) {
458 src = l->data;
459 for (i = 0; i < num_opts; i++) {
460 if (opts[i] == src->key)
461 break;
462 }
463 if (i == num_opts) {
464 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
465 /* Shouldn't happen. */
466 sr_err("Invalid option %d.", src->key);
467 else
468 sr_err("Invalid option '%s'.", srci->id);
469 ret = SR_ERR_ARG;
470 break;
471 }
472 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
473 ret = SR_ERR_ARG;
474 break;
475 }
476 }
477 g_variant_unref(gvar_opts);
478
479 return ret;
480}
481
482/**
483 * Tell a hardware driver to scan for devices.
484 *
485 * In addition to the detection, the devices that are found are also
486 * initialized automatically. On some devices, this involves a firmware upload,
487 * or other such measures.
488 *
489 * The order in which the system is scanned for devices is not specified. The
490 * caller should not assume or rely on any specific order.
491 *
492 * Before calling sr_driver_scan(), the user must have previously initialized
493 * the driver by calling sr_driver_init().
494 *
495 * @param driver The driver that should scan. This must be a pointer to one of
496 * the entries returned by sr_driver_list(). Must not be NULL.
497 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
498 * scanner. Can be NULL/empty.
499 *
500 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
501 * found (or errors were encountered). This list must be freed by the
502 * caller using g_slist_free(), but without freeing the data pointed
503 * to in the list.
504 *
505 * @since 0.2.0
506 */
507SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
508{
509 GSList *l;
510
511 if (!driver) {
512 sr_err("Invalid driver, can't scan for devices.");
513 return NULL;
514 }
515
516 if (!driver->context) {
517 sr_err("Driver not initialized, can't scan for devices.");
518 return NULL;
519 }
520
521 if (options) {
522 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
523 return NULL;
524 }
525
526 l = driver->scan(driver, options);
527
528 sr_spew("Scan of '%s' found %d devices.", driver->name,
529 g_slist_length(l));
530
531 return l;
532}
533
534/**
535 * Call driver cleanup function for all drivers.
536 *
537 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
538 *
539 * @private
540 */
541SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
542{
543 int i;
544 struct sr_dev_driver **drivers;
545
546 if (!ctx)
547 return;
548
549 drivers = sr_driver_list(ctx);
550 for (i = 0; drivers[i]; i++) {
551 if (drivers[i]->cleanup)
552 drivers[i]->cleanup(drivers[i]);
553 drivers[i]->context = NULL;
554 }
555}
556
557/**
558 * Allocate struct sr_config.
559 *
560 * A floating reference can be passed in for data.
561 *
562 * @private
563 */
564SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
565{
566 struct sr_config *src;
567
568 src = g_malloc0(sizeof(struct sr_config));
569 src->key = key;
570 src->data = g_variant_ref_sink(data);
571
572 return src;
573}
574
575/**
576 * Free struct sr_config.
577 *
578 * @private
579 */
580SR_PRIV void sr_config_free(struct sr_config *src)
581{
582
583 if (!src || !src->data) {
584 sr_err("%s: invalid data!", __func__);
585 return;
586 }
587
588 g_variant_unref(src->data);
589 g_free(src);
590
591}
592
593static void log_key(const struct sr_dev_inst *sdi,
594 const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
595{
596 const char *opstr;
597 const struct sr_key_info *srci;
598 gchar *tmp_str;
599
600 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
601 if (key == SR_CONF_DEVICE_OPTIONS)
602 return;
603
604 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
605 srci = sr_key_info_get(SR_KEY_CONFIG, key);
606
607 tmp_str = g_variant_print(data, TRUE);
608 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
609 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
610 data ? tmp_str : "NULL");
611 g_free(tmp_str);
612}
613
614static int check_key(const struct sr_dev_driver *driver,
615 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
616 uint32_t key, int op, GVariant *data)
617{
618 const struct sr_key_info *srci;
619 gsize num_opts, i;
620 GVariant *gvar_opts;
621 const uint32_t *opts;
622 uint32_t pub_opt;
623 const char *suffix;
624 const char *opstr;
625
626 if (sdi && cg)
627 suffix = " for this device and channel group";
628 else if (sdi)
629 suffix = " for this device";
630 else
631 suffix = "";
632
633 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
634 sr_err("Invalid key %d.", key);
635 return SR_ERR_ARG;
636 }
637 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
638
639 switch (key) {
640 case SR_CONF_LIMIT_MSEC:
641 case SR_CONF_LIMIT_SAMPLES:
642 case SR_CONF_SAMPLERATE:
643 /* Setting any of these to 0 is not useful. */
644 if (op != SR_CONF_SET || !data)
645 break;
646 if (g_variant_get_uint64(data) == 0) {
647 sr_err("Cannot set '%s' to 0.", srci->id);
648 return SR_ERR_ARG;
649 }
650 break;
651 }
652
653 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
654 /* Driver publishes no options. */
655 sr_err("No options available%s.", suffix);
656 return SR_ERR_ARG;
657 }
658 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
659 pub_opt = 0;
660 for (i = 0; i < num_opts; i++) {
661 if ((opts[i] & SR_CONF_MASK) == key) {
662 pub_opt = opts[i];
663 break;
664 }
665 }
666 g_variant_unref(gvar_opts);
667 if (!pub_opt) {
668 sr_err("Option '%s' not available%s.", srci->id, suffix);
669 return SR_ERR_ARG;
670 }
671
672 if (!(pub_opt & op)) {
673 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
674 return SR_ERR_ARG;
675 }
676
677 return SR_OK;
678}
679
680/**
681 * Query value of a configuration key at the given driver or device instance.
682 *
683 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
684 * @param[in] sdi (optional) If the key is specific to a device, this must
685 * contain a pointer to the struct sr_dev_inst to be checked.
686 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
687 * also be != NULL.
688 * @param[in] cg The channel group on the device for which to list the
689 * values, or NULL.
690 * @param[in] key The configuration key (SR_CONF_*).
691 * @param[in,out] data Pointer to a GVariant where the value will be stored.
692 * Must not be NULL. The caller is given ownership of the GVariant
693 * and must thus decrease the refcount after use. However if
694 * this function returns an error code, the field should be
695 * considered unused, and should not be unreferenced.
696 *
697 * @retval SR_OK Success.
698 * @retval SR_ERR Error.
699 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
700 * interpreted as an error by the caller; merely as an indication
701 * that it's not applicable.
702 *
703 * @since 0.3.0
704 */
705SR_API int sr_config_get(const struct sr_dev_driver *driver,
706 const struct sr_dev_inst *sdi,
707 const struct sr_channel_group *cg,
708 uint32_t key, GVariant **data)
709{
710 int ret;
711
712 if (!driver || !data)
713 return SR_ERR;
714
715 if (!driver->config_get)
716 return SR_ERR_ARG;
717
718 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
719 return SR_ERR_ARG;
720
721 if (sdi && !sdi->priv) {
722 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
723 return SR_ERR;
724 }
725
726 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
727 log_key(sdi, cg, key, SR_CONF_GET, *data);
728 /* Got a floating reference from the driver. Sink it here,
729 * caller will need to unref when done with it. */
730 g_variant_ref_sink(*data);
731 }
732
733 return ret;
734}
735
736/**
737 * Set value of a configuration key in a device instance.
738 *
739 * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
740 * sdi->priv must not be NULL either.
741 * @param[in] cg The channel group on the device for which to list the
742 * values, or NULL.
743 * @param[in] key The configuration key (SR_CONF_*).
744 * @param data The new value for the key, as a GVariant with GVariantType
745 * appropriate to that key. A floating reference can be passed
746 * in; its refcount will be sunk and unreferenced after use.
747 *
748 * @retval SR_OK Success.
749 * @retval SR_ERR Error.
750 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
751 * interpreted as an error by the caller; merely as an indication
752 * that it's not applicable.
753 *
754 * @since 0.3.0
755 */
756SR_API int sr_config_set(const struct sr_dev_inst *sdi,
757 const struct sr_channel_group *cg,
758 uint32_t key, GVariant *data)
759{
760 int ret;
761
762 g_variant_ref_sink(data);
763
764 if (!sdi || !sdi->driver || !sdi->priv || !data)
765 ret = SR_ERR;
766 else if (!sdi->driver->config_set)
767 ret = SR_ERR_ARG;
768 else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
769 return SR_ERR_ARG;
770 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
771 log_key(sdi, cg, key, SR_CONF_SET, data);
772 ret = sdi->driver->config_set(key, data, sdi, cg);
773 }
774
775 g_variant_unref(data);
776
777 return ret;
778}
779
780/**
781 * Apply configuration settings to the device hardware.
782 *
783 * @param sdi The device instance.
784 *
785 * @return SR_OK upon success or SR_ERR in case of error.
786 *
787 * @since 0.3.0
788 */
789SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
790{
791 int ret;
792
793 if (!sdi || !sdi->driver)
794 ret = SR_ERR;
795 else if (!sdi->driver->config_commit)
796 ret = SR_OK;
797 else
798 ret = sdi->driver->config_commit(sdi);
799
800 return ret;
801}
802
803/**
804 * List all possible values for a configuration key.
805 *
806 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
807 * @param[in] sdi (optional) If the key is specific to a device, this must
808 * contain a pointer to the struct sr_dev_inst to be checked.
809 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
810 * also be != NULL.
811 * @param[in] cg The channel group on the device for which to list the
812 * values, or NULL.
813 * @param[in] key The configuration key (SR_CONF_*).
814 * @param[in,out] data A pointer to a GVariant where the list will be stored.
815 * The caller is given ownership of the GVariant and must thus
816 * unref the GVariant after use. However if this function
817 * returns an error code, the field should be considered
818 * unused, and should not be unreferenced.
819 *
820 * @retval SR_OK Success.
821 * @retval SR_ERR Error.
822 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
823 * interpreted as an error by the caller; merely as an indication
824 * that it's not applicable.
825 *
826 * @since 0.3.0
827 */
828SR_API int sr_config_list(const struct sr_dev_driver *driver,
829 const struct sr_dev_inst *sdi,
830 const struct sr_channel_group *cg,
831 uint32_t key, GVariant **data)
832{
833 int ret;
834
835 if (!driver || !data)
836 return SR_ERR;
837 else if (!driver->config_list)
838 return SR_ERR_ARG;
839 else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
840 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
841 return SR_ERR_ARG;
842 }
843 if (sdi && !sdi->priv) {
844 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
845 return SR_ERR;
846 }
847 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
848 log_key(sdi, cg, key, SR_CONF_LIST, *data);
849 g_variant_ref_sink(*data);
850 }
851
852 return ret;
853}
854
855static struct sr_key_info *get_keytable(int keytype)
856{
857 struct sr_key_info *table;
858
859 switch (keytype) {
860 case SR_KEY_CONFIG:
861 table = sr_key_info_config;
862 break;
863 case SR_KEY_MQ:
864 table = sr_key_info_mq;
865 break;
866 case SR_KEY_MQFLAGS:
867 table = sr_key_info_mqflag;
868 break;
869 default:
870 sr_err("Invalid keytype %d", keytype);
871 return NULL;
872 }
873
874 return table;
875}
876
877/**
878 * Get information about a key, by key.
879 *
880 * @param[in] keytype The namespace the key is in.
881 * @param[in] key The key to find.
882 *
883 * @return A pointer to a struct sr_key_info, or NULL if the key
884 * was not found.
885 *
886 * @since 0.3.0
887 */
888SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
889{
890 struct sr_key_info *table;
891 int i;
892
893 if (!(table = get_keytable(keytype)))
894 return NULL;
895
896 for (i = 0; table[i].key; i++) {
897 if (table[i].key == key)
898 return &table[i];
899 }
900
901 return NULL;
902}
903
904/**
905 * Get information about a key, by name.
906 *
907 * @param[in] keytype The namespace the key is in.
908 * @param[in] keyid The key id string.
909 *
910 * @return A pointer to a struct sr_key_info, or NULL if the key
911 * was not found.
912 *
913 * @since 0.2.0
914 */
915SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
916{
917 struct sr_key_info *table;
918 int i;
919
920 if (!(table = get_keytable(keytype)))
921 return NULL;
922
923 for (i = 0; table[i].key; i++) {
924 if (!table[i].id)
925 continue;
926 if (!strcmp(table[i].id, keyid))
927 return &table[i];
928 }
929
930 return NULL;
931}
932
933/** @} */