]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
brymen-dmm: improve text to number conversion robustness, signed OL
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64 {SR_CONF_SIGNAL_GENERATOR, SR_T_STRING, NULL, "Signal generator", NULL},
65 {SR_CONF_POWERMETER, SR_T_STRING, NULL, "Power meter", NULL},
66
67 /* Driver scan options */
68 {SR_CONF_CONN, SR_T_STRING, "conn",
69 "Connection", NULL},
70 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
71 "Serial communication", NULL},
72 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
73 "Modbus slave address", NULL},
74 {SR_CONF_FORCE_DETECT, SR_T_STRING, "force_detect",
75 "Forced detection", NULL},
76
77 /* Device (or channel group) configuration */
78 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
79 "Sample rate", NULL},
80 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
81 "Pre-trigger capture ratio", NULL},
82 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
83 "Pattern", NULL},
84 {SR_CONF_RLE, SR_T_BOOL, "rle",
85 "Run length encoding", NULL},
86 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
87 "Trigger slope", NULL},
88 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
89 "Averaging", NULL},
90 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
91 "Number of samples to average over", NULL},
92 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
93 "Trigger source", NULL},
94 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
95 "Horizontal trigger position", NULL},
96 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
97 "Buffer size", NULL},
98 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
99 "Time base", NULL},
100 {SR_CONF_FILTER, SR_T_BOOL, "filter",
101 "Filter", NULL},
102 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
103 "Volts/div", NULL},
104 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
105 "Coupling", NULL},
106 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
107 "Trigger matches", NULL},
108 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
109 "Sample interval", NULL},
110 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
111 "Number of horizontal divisions", NULL},
112 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
113 "Number of vertical divisions", NULL},
114 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
115 "Sound pressure level frequency weighting", NULL},
116 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
117 "Sound pressure level time weighting", NULL},
118 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
119 "Sound pressure level measurement range", NULL},
120 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
121 "Hold max", NULL},
122 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
123 "Hold min", NULL},
124 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
125 "Voltage threshold", NULL },
126 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
127 "External clock mode", NULL},
128 {SR_CONF_SWAP, SR_T_BOOL, "swap",
129 "Swap channel order", NULL},
130 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
131 "Center frequency", NULL},
132 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
133 "Number of logic channels", NULL},
134 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
135 "Number of analog channels", NULL},
136 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
137 "Current voltage", NULL},
138 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
139 "Voltage target", NULL},
140 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
141 "Current current", NULL},
142 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
143 "Current limit", NULL},
144 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
145 "Channel enabled", NULL},
146 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
147 "Channel modes", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
149 "Over-voltage protection enabled", NULL},
150 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
151 "Over-voltage protection active", NULL},
152 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
153 "Over-voltage protection threshold", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
155 "Over-current protection enabled", NULL},
156 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
157 "Over-current protection active", NULL},
158 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
159 "Over-current protection threshold", NULL},
160 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
161 "Clock edge", NULL},
162 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
163 "Amplitude", NULL},
164 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
165 "Channel regulation", NULL},
166 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
167 "Over-temperature protection", NULL},
168 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
169 "Output frequency", NULL},
170 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
171 "Output frequency target", NULL},
172 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
173 "Measured quantity", NULL},
174 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
175 "Equivalent circuit model", NULL},
176 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
177 "Over-temperature protection active", NULL},
178 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
179 "Under-voltage condition", NULL},
180 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
181 "Under-voltage condition active", NULL},
182 {SR_CONF_UNDER_VOLTAGE_CONDITION_THRESHOLD, SR_T_FLOAT, "uvc_threshold",
183 "Under-voltage condition threshold", NULL},
184 {SR_CONF_TRIGGER_LEVEL, SR_T_FLOAT, "triggerlevel",
185 "Trigger level", NULL},
186 {SR_CONF_EXTERNAL_CLOCK_SOURCE, SR_T_STRING, "external_clock_source",
187 "External clock source", NULL},
188 {SR_CONF_OFFSET, SR_T_FLOAT, "offset",
189 "Offset", NULL},
190 {SR_CONF_TRIGGER_PATTERN, SR_T_STRING, "triggerpattern",
191 "Trigger pattern", NULL},
192 {SR_CONF_HIGH_RESOLUTION, SR_T_BOOL, "highresolution",
193 "High resolution", NULL},
194 {SR_CONF_PEAK_DETECTION, SR_T_BOOL, "peakdetection",
195 "Peak detection", NULL},
196 {SR_CONF_LOGIC_THRESHOLD, SR_T_STRING, "logic_threshold",
197 "Logic threshold (predefined)", NULL},
198 {SR_CONF_LOGIC_THRESHOLD_CUSTOM, SR_T_FLOAT, "logic_threshold_custom",
199 "Logic threshold (custom)", NULL},
200 {SR_CONF_RANGE, SR_T_STRING, "range",
201 "Range", NULL},
202 {SR_CONF_DIGITS, SR_T_STRING, "digits",
203 "Digits", NULL},
204
205 /* Special stuff */
206 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
207 "Session file", NULL},
208 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
209 "Capture file", NULL},
210 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
211 "Capture unitsize", NULL},
212 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
213 "Power off", NULL},
214 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
215 "Data source", NULL},
216 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
217 "Probe factor", NULL},
218 {SR_CONF_ADC_POWERLINE_CYCLES, SR_T_FLOAT, "nplc",
219 "Number of ADC powerline cycles", NULL},
220
221 /* Acquisition modes, sample limiting */
222 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
223 "Time limit", NULL},
224 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
225 "Sample limit", NULL},
226 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
227 "Frame limit", NULL},
228 {SR_CONF_CONTINUOUS, SR_T_BOOL, "continuous",
229 "Continuous sampling", NULL},
230 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
231 "Datalog", NULL},
232 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
233 "Device mode", NULL},
234 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
235 "Test mode", NULL},
236
237 ALL_ZERO
238};
239
240/* Please use the same order as in enum sr_mq (libsigrok.h). */
241static struct sr_key_info sr_key_info_mq[] = {
242 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
243 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
244 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
245 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
246 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
247 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
248 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
249 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
250 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
251 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
252 {SR_MQ_POWER, 0, "power", "Power", NULL},
253 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
254 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
255 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
256 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
257 {SR_MQ_TIME, 0, "time", "Time", NULL},
258 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
259 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
260 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
261 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
262 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
263 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
264 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
265 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
266 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
267 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
268 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
269 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
270 {SR_MQ_COUNT, 0, "count", "Count", NULL},
271 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
272 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
273 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
274 {SR_MQ_HARMONIC_RATIO, 0, "harmonic_ratio", "Harmonic ratio", NULL},
275 {SR_MQ_ENERGY, 0, "energy", "Energy", NULL},
276 {SR_MQ_ELECTRIC_CHARGE, 0, "electric_charge", "Electric charge", NULL},
277 ALL_ZERO
278};
279
280/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
281static struct sr_key_info sr_key_info_mqflag[] = {
282 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
283 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
284 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
285 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
286 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
287 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
288 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
289 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
290 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
291 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
292 "Frequency weighted (A)", NULL},
293 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
294 "Frequency weighted (C)", NULL},
295 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
296 "Frequency weighted (Z)", NULL},
297 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
298 "Frequency weighted (flat)", NULL},
299 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
300 "Time weighted (S)", NULL},
301 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
302 "Time weighted (F)", NULL},
303 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
304 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
305 "Percentage over alarm", NULL},
306 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
307 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
308 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
309 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
310 {SR_MQFLAG_FOUR_WIRE, 0, "four_wire", "4-Wire", NULL},
311 ALL_ZERO
312};
313
314/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
315/** @private */
316SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
317{
318 switch (datatype) {
319 case SR_T_INT32:
320 return G_VARIANT_TYPE_INT32;
321 case SR_T_UINT64:
322 return G_VARIANT_TYPE_UINT64;
323 case SR_T_STRING:
324 return G_VARIANT_TYPE_STRING;
325 case SR_T_BOOL:
326 return G_VARIANT_TYPE_BOOLEAN;
327 case SR_T_FLOAT:
328 return G_VARIANT_TYPE_DOUBLE;
329 case SR_T_RATIONAL_PERIOD:
330 case SR_T_RATIONAL_VOLT:
331 case SR_T_UINT64_RANGE:
332 case SR_T_DOUBLE_RANGE:
333 return G_VARIANT_TYPE_TUPLE;
334 case SR_T_KEYVALUE:
335 return G_VARIANT_TYPE_DICTIONARY;
336 case SR_T_MQ:
337 return G_VARIANT_TYPE_TUPLE;
338 default:
339 return NULL;
340 }
341}
342
343/** @private */
344SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
345{
346 const struct sr_key_info *info;
347 const GVariantType *type, *expected;
348 char *expected_string, *type_string;
349
350 info = sr_key_info_get(SR_KEY_CONFIG, key);
351 if (!info)
352 return SR_OK;
353
354 expected = sr_variant_type_get(info->datatype);
355 type = g_variant_get_type(value);
356 if (!g_variant_type_equal(type, expected)
357 && !g_variant_type_is_subtype_of(type, expected)) {
358 expected_string = g_variant_type_dup_string(expected);
359 type_string = g_variant_type_dup_string(type);
360 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
361 info->name, expected_string, type_string);
362 g_free(expected_string);
363 g_free(type_string);
364 return SR_ERR_ARG;
365 }
366
367 return SR_OK;
368}
369
370/**
371 * Return the list of supported hardware drivers.
372 *
373 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
374 *
375 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
376 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
377 * The user should NOT g_free() this list, sr_exit() will do that.
378 *
379 * @since 0.4.0
380 */
381SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
382{
383 if (!ctx)
384 return NULL;
385
386 return ctx->driver_list;
387}
388
389/**
390 * Initialize a hardware driver.
391 *
392 * This usually involves memory allocations and variable initializations
393 * within the driver, but _not_ scanning for attached devices.
394 * The API call sr_driver_scan() is used for that.
395 *
396 * @param ctx A libsigrok context object allocated by a previous call to
397 * sr_init(). Must not be NULL.
398 * @param driver The driver to initialize. This must be a pointer to one of
399 * the entries returned by sr_driver_list(). Must not be NULL.
400 *
401 * @retval SR_OK Success
402 * @retval SR_ERR_ARG Invalid parameter(s).
403 * @retval SR_ERR_BUG Internal errors.
404 * @retval other Another negative error code upon other errors.
405 *
406 * @since 0.2.0
407 */
408SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
409{
410 int ret;
411
412 if (!ctx) {
413 sr_err("Invalid libsigrok context, can't initialize.");
414 return SR_ERR_ARG;
415 }
416
417 if (!driver) {
418 sr_err("Invalid driver, can't initialize.");
419 return SR_ERR_ARG;
420 }
421
422 /* No log message here, too verbose and not very useful. */
423
424 if ((ret = driver->init(driver, ctx)) < 0)
425 sr_err("Failed to initialize the driver: %d.", ret);
426
427 return ret;
428}
429
430/**
431 * Enumerate scan options supported by this driver.
432 *
433 * Before calling sr_driver_scan_options_list(), the user must have previously
434 * initialized the driver by calling sr_driver_init().
435 *
436 * @param driver The driver to enumerate options for. This must be a pointer
437 * to one of the entries returned by sr_driver_list(). Must not
438 * be NULL.
439 *
440 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
441 * entry is a configuration key that is supported as a scan option.
442 * The array must be freed by the caller using g_array_free().
443 *
444 * @since 0.4.0
445 */
446SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
447{
448 GVariant *gvar;
449 const uint32_t *opts;
450 gsize num_opts;
451 GArray *result;
452
453 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
454 return NULL;
455
456 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
457
458 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
459
460 g_array_insert_vals(result, 0, opts, num_opts);
461
462 g_variant_unref(gvar);
463
464 return result;
465}
466
467static int check_options(struct sr_dev_driver *driver, GSList *options,
468 uint32_t optlist_key, struct sr_dev_inst *sdi,
469 struct sr_channel_group *cg)
470{
471 struct sr_config *src;
472 const struct sr_key_info *srci;
473 GVariant *gvar_opts;
474 GSList *l;
475 const uint32_t *opts;
476 gsize num_opts, i;
477 int ret;
478
479 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
480 /* Driver publishes no options for this optlist. */
481 return SR_ERR;
482 }
483
484 ret = SR_OK;
485 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
486 for (l = options; l; l = l->next) {
487 src = l->data;
488 for (i = 0; i < num_opts; i++) {
489 if (opts[i] == src->key)
490 break;
491 }
492 if (i == num_opts) {
493 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
494 /* Shouldn't happen. */
495 sr_err("Invalid option %d.", src->key);
496 else
497 sr_err("Invalid option '%s'.", srci->id);
498 ret = SR_ERR_ARG;
499 break;
500 }
501 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
502 ret = SR_ERR_ARG;
503 break;
504 }
505 }
506 g_variant_unref(gvar_opts);
507
508 return ret;
509}
510
511/**
512 * Tell a hardware driver to scan for devices.
513 *
514 * In addition to the detection, the devices that are found are also
515 * initialized automatically. On some devices, this involves a firmware upload,
516 * or other such measures.
517 *
518 * The order in which the system is scanned for devices is not specified. The
519 * caller should not assume or rely on any specific order.
520 *
521 * Before calling sr_driver_scan(), the user must have previously initialized
522 * the driver by calling sr_driver_init().
523 *
524 * @param driver The driver that should scan. This must be a pointer to one of
525 * the entries returned by sr_driver_list(). Must not be NULL.
526 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
527 * scanner. Can be NULL/empty.
528 *
529 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
530 * found (or errors were encountered). This list must be freed by the
531 * caller using g_slist_free(), but without freeing the data pointed
532 * to in the list.
533 *
534 * @since 0.2.0
535 */
536SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
537{
538 GSList *l;
539
540 if (!driver) {
541 sr_err("Invalid driver, can't scan for devices.");
542 return NULL;
543 }
544
545 if (!driver->context) {
546 sr_err("Driver not initialized, can't scan for devices.");
547 return NULL;
548 }
549
550 if (options) {
551 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
552 return NULL;
553 }
554
555 l = driver->scan(driver, options);
556
557 sr_spew("Scan found %d devices (%s).", g_slist_length(l), driver->name);
558
559 return l;
560}
561
562/**
563 * Call driver cleanup function for all drivers.
564 *
565 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
566 *
567 * @private
568 */
569SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
570{
571 int i;
572 struct sr_dev_driver **drivers;
573
574 if (!ctx)
575 return;
576
577 sr_dbg("Cleaning up all drivers.");
578
579 drivers = sr_driver_list(ctx);
580 for (i = 0; drivers[i]; i++) {
581 if (drivers[i]->cleanup)
582 drivers[i]->cleanup(drivers[i]);
583 drivers[i]->context = NULL;
584 }
585}
586
587/**
588 * Allocate struct sr_config.
589 *
590 * A floating reference can be passed in for data.
591 *
592 * @param key The config key to use.
593 * @param data The GVariant data to use.
594 *
595 * @return The newly allocated struct sr_config. This function is assumed
596 * to never fail.
597 *
598 * @private
599 */
600SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
601{
602 struct sr_config *src;
603
604 src = g_malloc0(sizeof(struct sr_config));
605 src->key = key;
606 src->data = g_variant_ref_sink(data);
607
608 return src;
609}
610
611/**
612 * Free struct sr_config.
613 *
614 * @private
615 */
616SR_PRIV void sr_config_free(struct sr_config *src)
617{
618 if (!src || !src->data) {
619 sr_err("%s: invalid data!", __func__);
620 return;
621 }
622
623 g_variant_unref(src->data);
624 g_free(src);
625}
626
627/** @private */
628SR_PRIV int sr_dev_acquisition_start(struct sr_dev_inst *sdi)
629{
630 if (!sdi || !sdi->driver) {
631 sr_err("%s: Invalid arguments.", __func__);
632 return SR_ERR_ARG;
633 }
634
635 if (sdi->status != SR_ST_ACTIVE) {
636 sr_err("%s: Device instance not active, can't start.",
637 sdi->driver->name);
638 return SR_ERR_DEV_CLOSED;
639 }
640
641 sr_dbg("%s: Starting acquisition.", sdi->driver->name);
642
643 return sdi->driver->dev_acquisition_start(sdi);
644}
645
646/** @private */
647SR_PRIV int sr_dev_acquisition_stop(struct sr_dev_inst *sdi)
648{
649 if (!sdi || !sdi->driver) {
650 sr_err("%s: Invalid arguments.", __func__);
651 return SR_ERR_ARG;
652 }
653
654 if (sdi->status != SR_ST_ACTIVE) {
655 sr_err("%s: Device instance not active, can't stop.",
656 sdi->driver->name);
657 return SR_ERR_DEV_CLOSED;
658 }
659
660 sr_dbg("%s: Stopping acquisition.", sdi->driver->name);
661
662 return sdi->driver->dev_acquisition_stop(sdi);
663}
664
665static void log_key(const struct sr_dev_inst *sdi,
666 const struct sr_channel_group *cg, uint32_t key, unsigned int op,
667 GVariant *data)
668{
669 const char *opstr;
670 const struct sr_key_info *srci;
671 gchar *tmp_str;
672
673 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
674 if (key == SR_CONF_DEVICE_OPTIONS)
675 return;
676
677 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
678 srci = sr_key_info_get(SR_KEY_CONFIG, key);
679
680 tmp_str = g_variant_print(data, TRUE);
681 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
682 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
683 data ? tmp_str : "NULL");
684 g_free(tmp_str);
685}
686
687static int check_key(const struct sr_dev_driver *driver,
688 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
689 uint32_t key, unsigned int op, GVariant *data)
690{
691 const struct sr_key_info *srci;
692 gsize num_opts, i;
693 GVariant *gvar_opts;
694 const uint32_t *opts;
695 uint32_t pub_opt;
696 const char *suffix;
697 const char *opstr;
698
699 if (sdi && cg)
700 suffix = " for this device instance and channel group";
701 else if (sdi)
702 suffix = " for this device instance";
703 else
704 suffix = "";
705
706 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
707 sr_err("Invalid key %d.", key);
708 return SR_ERR_ARG;
709 }
710 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
711
712 switch (key) {
713 case SR_CONF_LIMIT_MSEC:
714 case SR_CONF_LIMIT_SAMPLES:
715 case SR_CONF_SAMPLERATE:
716 /* Setting any of these to 0 is not useful. */
717 if (op != SR_CONF_SET || !data)
718 break;
719 if (g_variant_get_uint64(data) == 0) {
720 sr_err("Cannot set '%s' to 0.", srci->id);
721 return SR_ERR_ARG;
722 }
723 break;
724 case SR_CONF_CAPTURE_RATIO:
725 /* Capture ratio must always be between 0 and 100. */
726 if (op != SR_CONF_SET || !data)
727 break;
728 if (g_variant_get_uint64(data) > 100) {
729 sr_err("Capture ratio must be 0..100.");
730 return SR_ERR_ARG;
731 }
732 break;
733 }
734
735 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
736 /* Driver publishes no options. */
737 sr_err("No options available%s.", suffix);
738 return SR_ERR_ARG;
739 }
740 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
741 pub_opt = 0;
742 for (i = 0; i < num_opts; i++) {
743 if ((opts[i] & SR_CONF_MASK) == key) {
744 pub_opt = opts[i];
745 break;
746 }
747 }
748 g_variant_unref(gvar_opts);
749 if (!pub_opt) {
750 sr_err("Option '%s' not available%s.", srci->id, suffix);
751 return SR_ERR_ARG;
752 }
753
754 if (!(pub_opt & op)) {
755 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
756 return SR_ERR_ARG;
757 }
758
759 return SR_OK;
760}
761
762/**
763 * Query value of a configuration key at the given driver or device instance.
764 *
765 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
766 * @param[in] sdi (optional) If the key is specific to a device, this must
767 * contain a pointer to the struct sr_dev_inst to be checked.
768 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
769 * also be != NULL.
770 * @param[in] cg The channel group on the device for which to list the
771 * values, or NULL.
772 * @param[in] key The configuration key (SR_CONF_*).
773 * @param[in,out] data Pointer to a GVariant where the value will be stored.
774 * Must not be NULL. The caller is given ownership of the GVariant
775 * and must thus decrease the refcount after use. However if
776 * this function returns an error code, the field should be
777 * considered unused, and should not be unreferenced.
778 *
779 * @retval SR_OK Success.
780 * @retval SR_ERR Error.
781 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
782 * interpreted as an error by the caller; merely as an indication
783 * that it's not applicable.
784 *
785 * @since 0.3.0
786 */
787SR_API int sr_config_get(const struct sr_dev_driver *driver,
788 const struct sr_dev_inst *sdi,
789 const struct sr_channel_group *cg,
790 uint32_t key, GVariant **data)
791{
792 int ret;
793
794 if (!driver || !data)
795 return SR_ERR;
796
797 if (!driver->config_get)
798 return SR_ERR_ARG;
799
800 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
801 return SR_ERR_ARG;
802
803 if (sdi && !sdi->priv) {
804 sr_err("Can't get config (sdi != NULL, sdi->priv == NULL).");
805 return SR_ERR;
806 }
807
808 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
809 log_key(sdi, cg, key, SR_CONF_GET, *data);
810 /* Got a floating reference from the driver. Sink it here,
811 * caller will need to unref when done with it. */
812 g_variant_ref_sink(*data);
813 }
814
815 if (ret == SR_ERR_CHANNEL_GROUP)
816 sr_err("%s: No channel group specified.",
817 (sdi) ? sdi->driver->name : "unknown");
818
819 return ret;
820}
821
822/**
823 * Set value of a configuration key in a device instance.
824 *
825 * @param[in] sdi The device instance. Must not be NULL. sdi->driver and
826 * sdi->priv must not be NULL either.
827 * @param[in] cg The channel group on the device for which to list the
828 * values, or NULL.
829 * @param[in] key The configuration key (SR_CONF_*).
830 * @param data The new value for the key, as a GVariant with GVariantType
831 * appropriate to that key. A floating reference can be passed
832 * in; its refcount will be sunk and unreferenced after use.
833 *
834 * @retval SR_OK Success.
835 * @retval SR_ERR Error.
836 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
837 * interpreted as an error by the caller; merely as an indication
838 * that it's not applicable.
839 *
840 * @since 0.3.0
841 */
842SR_API int sr_config_set(const struct sr_dev_inst *sdi,
843 const struct sr_channel_group *cg,
844 uint32_t key, GVariant *data)
845{
846 int ret;
847
848 g_variant_ref_sink(data);
849
850 if (!sdi || !sdi->driver || !sdi->priv || !data)
851 ret = SR_ERR;
852 else if (!sdi->driver->config_set)
853 ret = SR_ERR_ARG;
854 else if (sdi->status != SR_ST_ACTIVE) {
855 sr_err("%s: Device instance not active, can't set config.",
856 sdi->driver->name);
857 ret = SR_ERR_DEV_CLOSED;
858 } else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
859 return SR_ERR_ARG;
860 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
861 log_key(sdi, cg, key, SR_CONF_SET, data);
862 ret = sdi->driver->config_set(key, data, sdi, cg);
863 }
864
865 g_variant_unref(data);
866
867 if (ret == SR_ERR_CHANNEL_GROUP)
868 sr_err("%s: No channel group specified.",
869 (sdi) ? sdi->driver->name : "unknown");
870
871 return ret;
872}
873
874/**
875 * Apply configuration settings to the device hardware.
876 *
877 * @param sdi The device instance.
878 *
879 * @return SR_OK upon success or SR_ERR in case of error.
880 *
881 * @since 0.3.0
882 */
883SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
884{
885 int ret;
886
887 if (!sdi || !sdi->driver)
888 ret = SR_ERR;
889 else if (!sdi->driver->config_commit)
890 ret = SR_OK;
891 else if (sdi->status != SR_ST_ACTIVE) {
892 sr_err("%s: Device instance not active, can't commit config.",
893 sdi->driver->name);
894 ret = SR_ERR_DEV_CLOSED;
895 } else
896 ret = sdi->driver->config_commit(sdi);
897
898 return ret;
899}
900
901/**
902 * List all possible values for a configuration key.
903 *
904 * @param[in] driver The sr_dev_driver struct to query. Must not be NULL.
905 * @param[in] sdi (optional) If the key is specific to a device instance, this
906 * must contain a pointer to the struct sr_dev_inst to be checked.
907 * Otherwise it must be NULL. If sdi is != NULL, sdi->priv must
908 * also be != NULL.
909 * @param[in] cg The channel group on the device instance for which to list
910 * the values, or NULL. If this device instance doesn't
911 * have channel groups, this must not be != NULL.
912 * If cg is NULL, this function will return the "common" device
913 * instance options that are channel-group independent. Otherwise
914 * it will return the channel-group specific options.
915 * @param[in] key The configuration key (SR_CONF_*).
916 * @param[in,out] data A pointer to a GVariant where the list will be stored.
917 * The caller is given ownership of the GVariant and must thus
918 * unref the GVariant after use. However if this function
919 * returns an error code, the field should be considered
920 * unused, and should not be unreferenced.
921 *
922 * @retval SR_OK Success.
923 * @retval SR_ERR Error.
924 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
925 * interpreted as an error by the caller; merely as an indication
926 * that it's not applicable.
927 *
928 * @since 0.3.0
929 */
930SR_API int sr_config_list(const struct sr_dev_driver *driver,
931 const struct sr_dev_inst *sdi,
932 const struct sr_channel_group *cg,
933 uint32_t key, GVariant **data)
934{
935 int ret;
936
937 if (!driver || !data)
938 return SR_ERR;
939
940 if (!driver->config_list)
941 return SR_ERR_ARG;
942
943 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
944 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
945 return SR_ERR_ARG;
946 }
947
948 if (sdi && !sdi->priv) {
949 sr_err("Can't list config (sdi != NULL, sdi->priv == NULL).");
950 return SR_ERR;
951 }
952
953 if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS && !sdi) {
954 sr_err("Config keys other than SR_CONF_SCAN_OPTIONS and "
955 "SR_CONF_DEVICE_OPTIONS always need an sdi.");
956 return SR_ERR_ARG;
957 }
958
959 if (cg && sdi && !sdi->channel_groups) {
960 sr_err("Can't list config for channel group, there are none.");
961 return SR_ERR_ARG;
962 }
963
964 if (cg && sdi && !g_slist_find(sdi->channel_groups, cg)) {
965 sr_err("If a channel group is specified, it must be a valid one.");
966 return SR_ERR_ARG;
967 }
968
969 if (cg && !sdi) {
970 sr_err("Need sdi when a channel group is specified.");
971 return SR_ERR_ARG;
972 }
973
974 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
975 log_key(sdi, cg, key, SR_CONF_LIST, *data);
976 g_variant_ref_sink(*data);
977 }
978
979 if (ret == SR_ERR_CHANNEL_GROUP)
980 sr_err("%s: No channel group specified.",
981 (sdi) ? sdi->driver->name : "unknown");
982
983 return ret;
984}
985
986static struct sr_key_info *get_keytable(int keytype)
987{
988 struct sr_key_info *table;
989
990 switch (keytype) {
991 case SR_KEY_CONFIG:
992 table = sr_key_info_config;
993 break;
994 case SR_KEY_MQ:
995 table = sr_key_info_mq;
996 break;
997 case SR_KEY_MQFLAGS:
998 table = sr_key_info_mqflag;
999 break;
1000 default:
1001 sr_err("Invalid keytype %d", keytype);
1002 return NULL;
1003 }
1004
1005 return table;
1006}
1007
1008/**
1009 * Get information about a key, by key.
1010 *
1011 * @param[in] keytype The namespace the key is in.
1012 * @param[in] key The key to find.
1013 *
1014 * @return A pointer to a struct sr_key_info, or NULL if the key
1015 * was not found.
1016 *
1017 * @since 0.3.0
1018 */
1019SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
1020{
1021 struct sr_key_info *table;
1022 int i;
1023
1024 if (!(table = get_keytable(keytype)))
1025 return NULL;
1026
1027 for (i = 0; table[i].key; i++) {
1028 if (table[i].key == key)
1029 return &table[i];
1030 }
1031
1032 return NULL;
1033}
1034
1035/**
1036 * Get information about a key, by name.
1037 *
1038 * @param[in] keytype The namespace the key is in.
1039 * @param[in] keyid The key id string.
1040 *
1041 * @return A pointer to a struct sr_key_info, or NULL if the key
1042 * was not found.
1043 *
1044 * @since 0.2.0
1045 */
1046SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
1047{
1048 struct sr_key_info *table;
1049 int i;
1050
1051 if (!(table = get_keytable(keytype)))
1052 return NULL;
1053
1054 for (i = 0; table[i].key; i++) {
1055 if (!table[i].id)
1056 continue;
1057 if (!strcmp(table[i].id, keyid))
1058 return &table[i];
1059 }
1060
1061 return NULL;
1062}
1063
1064/** @} */