]> sigrok.org Git - libsigrok.git/blame_incremental - src/hwdriver.c
Enable loading of session files without total probes defined
[libsigrok.git] / src / hwdriver.c
... / ...
CommitLineData
1/*
2 * This file is part of the libsigrok project.
3 *
4 * Copyright (C) 2013 Bert Vermeulen <bert@biot.com>
5 *
6 * This program is free software: you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation, either version 3 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include <config.h>
21#include <stdlib.h>
22#include <stdio.h>
23#include <sys/types.h>
24#include <dirent.h>
25#include <string.h>
26#include <glib.h>
27#include <libsigrok/libsigrok.h>
28#include "libsigrok-internal.h"
29
30/** @cond PRIVATE */
31#define LOG_PREFIX "hwdriver"
32/** @endcond */
33
34/**
35 * @file
36 *
37 * Hardware driver handling in libsigrok.
38 */
39
40/**
41 * @defgroup grp_driver Hardware drivers
42 *
43 * Hardware driver handling in libsigrok.
44 *
45 * @{
46 */
47
48/* Please use the same order/grouping as in enum sr_configkey (libsigrok.h). */
49static struct sr_key_info sr_key_info_config[] = {
50 /* Device classes */
51 {SR_CONF_LOGIC_ANALYZER, SR_T_STRING, NULL, "Logic analyzer", NULL},
52 {SR_CONF_OSCILLOSCOPE, SR_T_STRING, NULL, "Oscilloscope", NULL},
53 {SR_CONF_MULTIMETER, SR_T_STRING, NULL, "Multimeter", NULL},
54 {SR_CONF_DEMO_DEV, SR_T_STRING, NULL, "Demo device", NULL},
55 {SR_CONF_SOUNDLEVELMETER, SR_T_STRING, NULL, "Sound level meter", NULL},
56 {SR_CONF_THERMOMETER, SR_T_STRING, NULL, "Thermometer", NULL},
57 {SR_CONF_HYGROMETER, SR_T_STRING, NULL, "Hygrometer", NULL},
58 {SR_CONF_ENERGYMETER, SR_T_STRING, NULL, "Energy meter", NULL},
59 {SR_CONF_DEMODULATOR, SR_T_STRING, NULL, "Demodulator", NULL},
60 {SR_CONF_POWER_SUPPLY, SR_T_STRING, NULL, "Power supply", NULL},
61 {SR_CONF_LCRMETER, SR_T_STRING, NULL, "LCR meter", NULL},
62 {SR_CONF_ELECTRONIC_LOAD, SR_T_STRING, NULL, "Electronic load", NULL},
63 {SR_CONF_SCALE, SR_T_STRING, NULL, "Scale", NULL},
64
65 /* Driver scan options */
66 {SR_CONF_CONN, SR_T_STRING, "conn",
67 "Connection", NULL},
68 {SR_CONF_SERIALCOMM, SR_T_STRING, "serialcomm",
69 "Serial communication", NULL},
70 {SR_CONF_MODBUSADDR, SR_T_UINT64, "modbusaddr",
71 "Modbus slave address", NULL},
72
73 /* Device (or channel group) configuration */
74 {SR_CONF_SAMPLERATE, SR_T_UINT64, "samplerate",
75 "Sample rate", NULL},
76 {SR_CONF_CAPTURE_RATIO, SR_T_UINT64, "captureratio",
77 "Pre-trigger capture ratio", NULL},
78 {SR_CONF_PATTERN_MODE, SR_T_STRING, "pattern",
79 "Pattern", NULL},
80 {SR_CONF_RLE, SR_T_BOOL, "rle",
81 "Run length encoding", NULL},
82 {SR_CONF_TRIGGER_SLOPE, SR_T_STRING, "triggerslope",
83 "Trigger slope", NULL},
84 {SR_CONF_AVERAGING, SR_T_BOOL, "averaging",
85 "Averaging", NULL},
86 {SR_CONF_AVG_SAMPLES, SR_T_UINT64, "avg_samples",
87 "Number of samples to average over", NULL},
88 {SR_CONF_TRIGGER_SOURCE, SR_T_STRING, "triggersource",
89 "Trigger source", NULL},
90 {SR_CONF_HORIZ_TRIGGERPOS, SR_T_FLOAT, "horiz_triggerpos",
91 "Horizontal trigger position", NULL},
92 {SR_CONF_BUFFERSIZE, SR_T_UINT64, "buffersize",
93 "Buffer size", NULL},
94 {SR_CONF_TIMEBASE, SR_T_RATIONAL_PERIOD, "timebase",
95 "Time base", NULL},
96 {SR_CONF_FILTER, SR_T_BOOL, "filter",
97 "Filter", NULL},
98 {SR_CONF_VDIV, SR_T_RATIONAL_VOLT, "vdiv",
99 "Volts/div", NULL},
100 {SR_CONF_COUPLING, SR_T_STRING, "coupling",
101 "Coupling", NULL},
102 {SR_CONF_TRIGGER_MATCH, SR_T_INT32, "triggermatch",
103 "Trigger matches", NULL},
104 {SR_CONF_SAMPLE_INTERVAL, SR_T_UINT64, "sample_interval",
105 "Sample interval", NULL},
106 {SR_CONF_NUM_HDIV, SR_T_INT32, "num_hdiv",
107 "Number of horizontal divisions", NULL},
108 {SR_CONF_NUM_VDIV, SR_T_INT32, "num_vdiv",
109 "Number of vertical divisions", NULL},
110 {SR_CONF_SPL_WEIGHT_FREQ, SR_T_STRING, "spl_weight_freq",
111 "Sound pressure level frequency weighting", NULL},
112 {SR_CONF_SPL_WEIGHT_TIME, SR_T_STRING, "spl_weight_time",
113 "Sound pressure level time weighting", NULL},
114 {SR_CONF_SPL_MEASUREMENT_RANGE, SR_T_UINT64_RANGE, "spl_meas_range",
115 "Sound pressure level measurement range", NULL},
116 {SR_CONF_HOLD_MAX, SR_T_BOOL, "hold_max",
117 "Hold max", NULL},
118 {SR_CONF_HOLD_MIN, SR_T_BOOL, "hold_min",
119 "Hold min", NULL},
120 {SR_CONF_VOLTAGE_THRESHOLD, SR_T_DOUBLE_RANGE, "voltage_threshold",
121 "Voltage threshold", NULL },
122 {SR_CONF_EXTERNAL_CLOCK, SR_T_BOOL, "external_clock",
123 "External clock mode", NULL},
124 {SR_CONF_SWAP, SR_T_BOOL, "swap",
125 "Swap channel order", NULL},
126 {SR_CONF_CENTER_FREQUENCY, SR_T_UINT64, "center_frequency",
127 "Center frequency", NULL},
128 {SR_CONF_NUM_LOGIC_CHANNELS, SR_T_INT32, "logic_channels",
129 "Number of logic channels", NULL},
130 {SR_CONF_NUM_ANALOG_CHANNELS, SR_T_INT32, "analog_channels",
131 "Number of analog channels", NULL},
132 {SR_CONF_VOLTAGE, SR_T_FLOAT, "voltage",
133 "Current voltage", NULL},
134 {SR_CONF_VOLTAGE_TARGET, SR_T_FLOAT, "voltage_target",
135 "Voltage target", NULL},
136 {SR_CONF_CURRENT, SR_T_FLOAT, "current",
137 "Current current", NULL},
138 {SR_CONF_CURRENT_LIMIT, SR_T_FLOAT, "current_limit",
139 "Current limit", NULL},
140 {SR_CONF_ENABLED, SR_T_BOOL, "enabled",
141 "Channel enabled", NULL},
142 {SR_CONF_CHANNEL_CONFIG, SR_T_STRING, "channel_config",
143 "Channel modes", NULL},
144 {SR_CONF_OVER_VOLTAGE_PROTECTION_ENABLED, SR_T_BOOL, "ovp_enabled",
145 "Over-voltage protection enabled", NULL},
146 {SR_CONF_OVER_VOLTAGE_PROTECTION_ACTIVE, SR_T_BOOL, "ovp_active",
147 "Over-voltage protection active", NULL},
148 {SR_CONF_OVER_VOLTAGE_PROTECTION_THRESHOLD, SR_T_FLOAT, "ovp_threshold",
149 "Over-voltage protection threshold", NULL},
150 {SR_CONF_OVER_CURRENT_PROTECTION_ENABLED, SR_T_BOOL, "ocp_enabled",
151 "Over-current protection enabled", NULL},
152 {SR_CONF_OVER_CURRENT_PROTECTION_ACTIVE, SR_T_BOOL, "ocp_active",
153 "Over-current protection active", NULL},
154 {SR_CONF_OVER_CURRENT_PROTECTION_THRESHOLD, SR_T_FLOAT, "ocp_threshold",
155 "Over-current protection threshold", NULL},
156 {SR_CONF_CLOCK_EDGE, SR_T_STRING, "clock_edge",
157 "Clock edge", NULL},
158 {SR_CONF_AMPLITUDE, SR_T_FLOAT, "amplitude",
159 "Amplitude", NULL},
160 {SR_CONF_REGULATION, SR_T_STRING, "regulation",
161 "Channel regulation", NULL},
162 {SR_CONF_OVER_TEMPERATURE_PROTECTION, SR_T_BOOL, "otp",
163 "Over-temperature protection", NULL},
164 {SR_CONF_OUTPUT_FREQUENCY, SR_T_FLOAT, "output_frequency",
165 "Output frequency", NULL},
166 {SR_CONF_OUTPUT_FREQUENCY_TARGET, SR_T_FLOAT, "output_frequency_target",
167 "Output frequency target", NULL},
168 {SR_CONF_MEASURED_QUANTITY, SR_T_MQ, "measured_quantity",
169 "Measured quantity", NULL},
170 {SR_CONF_EQUIV_CIRCUIT_MODEL, SR_T_STRING, "equiv_circuit_model",
171 "Equivalent circuit model", NULL},
172 {SR_CONF_OVER_TEMPERATURE_PROTECTION_ACTIVE, SR_T_BOOL, "otp_active",
173 "Over-temperature protection active", NULL},
174 {SR_CONF_UNDER_VOLTAGE_CONDITION, SR_T_BOOL, "uvc",
175 "Under-voltage condition", NULL},
176 {SR_CONF_UNDER_VOLTAGE_CONDITION_ACTIVE, SR_T_BOOL, "uvc_active",
177 "Under-voltage condition active", NULL},
178
179 /* Special stuff */
180 {SR_CONF_SESSIONFILE, SR_T_STRING, "sessionfile",
181 "Session file", NULL},
182 {SR_CONF_CAPTUREFILE, SR_T_STRING, "capturefile",
183 "Capture file", NULL},
184 {SR_CONF_CAPTURE_UNITSIZE, SR_T_UINT64, "capture_unitsize",
185 "Capture unitsize", NULL},
186 {SR_CONF_POWER_OFF, SR_T_BOOL, "power_off",
187 "Power off", NULL},
188 {SR_CONF_DATA_SOURCE, SR_T_STRING, "data_source",
189 "Data source", NULL},
190 {SR_CONF_PROBE_FACTOR, SR_T_UINT64, "probe_factor",
191 "Probe factor", NULL},
192
193 /* Acquisition modes, sample limiting */
194 {SR_CONF_LIMIT_MSEC, SR_T_UINT64, "limit_time",
195 "Time limit", NULL},
196 {SR_CONF_LIMIT_SAMPLES, SR_T_UINT64, "limit_samples",
197 "Sample limit", NULL},
198 {SR_CONF_LIMIT_FRAMES, SR_T_UINT64, "limit_frames",
199 "Frame limit", NULL},
200 {SR_CONF_CONTINUOUS, SR_T_UINT64, "continuous",
201 "Continuous sampling", NULL},
202 {SR_CONF_DATALOG, SR_T_BOOL, "datalog",
203 "Datalog", NULL},
204 {SR_CONF_DEVICE_MODE, SR_T_STRING, "device_mode",
205 "Device mode", NULL},
206 {SR_CONF_TEST_MODE, SR_T_STRING, "test_mode",
207 "Test mode", NULL},
208
209 ALL_ZERO
210};
211
212/* Please use the same order as in enum sr_mq (libsigrok.h). */
213static struct sr_key_info sr_key_info_mq[] = {
214 {SR_MQ_VOLTAGE, 0, "voltage", "Voltage", NULL},
215 {SR_MQ_CURRENT, 0, "current", "Current", NULL},
216 {SR_MQ_RESISTANCE, 0, "resistance", "Resistance", NULL},
217 {SR_MQ_CAPACITANCE, 0, "capacitance", "Capacitance", NULL},
218 {SR_MQ_TEMPERATURE, 0, "temperature", "Temperature", NULL},
219 {SR_MQ_FREQUENCY, 0, "frequency", "Frequency", NULL},
220 {SR_MQ_DUTY_CYCLE, 0, "duty_cycle", "Duty cycle", NULL},
221 {SR_MQ_CONTINUITY, 0, "continuity", "Continuity", NULL},
222 {SR_MQ_PULSE_WIDTH, 0, "pulse_width", "Pulse width", NULL},
223 {SR_MQ_CONDUCTANCE, 0, "conductance", "Conductance", NULL},
224 {SR_MQ_POWER, 0, "power", "Power", NULL},
225 {SR_MQ_GAIN, 0, "gain", "Gain", NULL},
226 {SR_MQ_SOUND_PRESSURE_LEVEL, 0, "spl", "Sound pressure level", NULL},
227 {SR_MQ_CARBON_MONOXIDE, 0, "co", "Carbon monoxide", NULL},
228 {SR_MQ_RELATIVE_HUMIDITY, 0, "rh", "Relative humidity", NULL},
229 {SR_MQ_TIME, 0, "time", "Time", NULL},
230 {SR_MQ_WIND_SPEED, 0, "wind_speed", "Wind speed", NULL},
231 {SR_MQ_PRESSURE, 0, "pressure", "Pressure", NULL},
232 {SR_MQ_PARALLEL_INDUCTANCE, 0, "parallel_inductance", "Parallel inductance", NULL},
233 {SR_MQ_PARALLEL_CAPACITANCE, 0, "parallel_capacitance", "Parallel capacitance", NULL},
234 {SR_MQ_PARALLEL_RESISTANCE, 0, "parallel_resistance", "Parallel resistance", NULL},
235 {SR_MQ_SERIES_INDUCTANCE, 0, "series_inductance", "Series inductance", NULL},
236 {SR_MQ_SERIES_CAPACITANCE, 0, "series_capacitance", "Series capacitance", NULL},
237 {SR_MQ_SERIES_RESISTANCE, 0, "series_resistance", "Series resistance", NULL},
238 {SR_MQ_DISSIPATION_FACTOR, 0, "dissipation_factor", "Dissipation factor", NULL},
239 {SR_MQ_QUALITY_FACTOR, 0, "quality_factor", "Quality factor", NULL},
240 {SR_MQ_PHASE_ANGLE, 0, "phase_angle", "Phase angle", NULL},
241 {SR_MQ_DIFFERENCE, 0, "difference", "Difference", NULL},
242 {SR_MQ_COUNT, 0, "count", "Count", NULL},
243 {SR_MQ_POWER_FACTOR, 0, "power_factor", "Power factor", NULL},
244 {SR_MQ_APPARENT_POWER, 0, "apparent_power", "Apparent power", NULL},
245 {SR_MQ_MASS, 0, "mass", "Mass", NULL},
246 ALL_ZERO
247};
248
249/* Please use the same order as in enum sr_mqflag (libsigrok.h). */
250static struct sr_key_info sr_key_info_mqflag[] = {
251 {SR_MQFLAG_AC, 0, "ac", "AC", NULL},
252 {SR_MQFLAG_DC, 0, "dc", "DC", NULL},
253 {SR_MQFLAG_RMS, 0, "rms", "RMS", NULL},
254 {SR_MQFLAG_DIODE, 0, "diode", "Diode", NULL},
255 {SR_MQFLAG_HOLD, 0, "hold", "Hold", NULL},
256 {SR_MQFLAG_MAX, 0, "max", "Max", NULL},
257 {SR_MQFLAG_MIN, 0, "min", "Min", NULL},
258 {SR_MQFLAG_AUTORANGE, 0, "auto_range", "Auto range", NULL},
259 {SR_MQFLAG_RELATIVE, 0, "relative", "Relative", NULL},
260 {SR_MQFLAG_SPL_FREQ_WEIGHT_A, 0, "spl_freq_weight_a",
261 "Frequency weighted (A)", NULL},
262 {SR_MQFLAG_SPL_FREQ_WEIGHT_C, 0, "spl_freq_weight_c",
263 "Frequency weighted (C)", NULL},
264 {SR_MQFLAG_SPL_FREQ_WEIGHT_Z, 0, "spl_freq_weight_z",
265 "Frequency weighted (Z)", NULL},
266 {SR_MQFLAG_SPL_FREQ_WEIGHT_FLAT, 0, "spl_freq_weight_flat",
267 "Frequency weighted (flat)", NULL},
268 {SR_MQFLAG_SPL_TIME_WEIGHT_S, 0, "spl_time_weight_s",
269 "Time weighted (S)", NULL},
270 {SR_MQFLAG_SPL_TIME_WEIGHT_F, 0, "spl_time_weight_f",
271 "Time weighted (F)", NULL},
272 {SR_MQFLAG_SPL_LAT, 0, "spl_time_average", "Time-averaged (LEQ)", NULL},
273 {SR_MQFLAG_SPL_PCT_OVER_ALARM, 0, "spl_pct_over_alarm",
274 "Percentage over alarm", NULL},
275 {SR_MQFLAG_DURATION, 0, "duration", "Duration", NULL},
276 {SR_MQFLAG_AVG, 0, "average", "Average", NULL},
277 {SR_MQFLAG_REFERENCE, 0, "reference", "Reference", NULL},
278 {SR_MQFLAG_UNSTABLE, 0, "unstable", "Unstable", NULL},
279 ALL_ZERO
280};
281
282/* This must handle all the keys from enum sr_datatype (libsigrok.h). */
283SR_PRIV const GVariantType *sr_variant_type_get(int datatype)
284{
285 switch (datatype) {
286 case SR_T_INT32:
287 return G_VARIANT_TYPE_INT32;
288 case SR_T_UINT64:
289 return G_VARIANT_TYPE_UINT64;
290 case SR_T_STRING:
291 return G_VARIANT_TYPE_STRING;
292 case SR_T_BOOL:
293 return G_VARIANT_TYPE_BOOLEAN;
294 case SR_T_FLOAT:
295 return G_VARIANT_TYPE_DOUBLE;
296 case SR_T_RATIONAL_PERIOD:
297 case SR_T_RATIONAL_VOLT:
298 case SR_T_UINT64_RANGE:
299 case SR_T_DOUBLE_RANGE:
300 return G_VARIANT_TYPE_TUPLE;
301 case SR_T_KEYVALUE:
302 return G_VARIANT_TYPE_DICTIONARY;
303 case SR_T_MQ:
304 return G_VARIANT_TYPE_TUPLE;
305 default:
306 return NULL;
307 }
308}
309
310SR_PRIV int sr_variant_type_check(uint32_t key, GVariant *value)
311{
312 const struct sr_key_info *info;
313 const GVariantType *type, *expected;
314 char *expected_string, *type_string;
315
316 info = sr_key_info_get(SR_KEY_CONFIG, key);
317 if (!info)
318 return SR_OK;
319
320 expected = sr_variant_type_get(info->datatype);
321 type = g_variant_get_type(value);
322 if (!g_variant_type_equal(type, expected)
323 && !g_variant_type_is_subtype_of(type, expected)) {
324 expected_string = g_variant_type_dup_string(expected);
325 type_string = g_variant_type_dup_string(type);
326 sr_err("Wrong variant type for key '%s': expected '%s', got '%s'",
327 info->name, expected_string, type_string);
328 g_free(expected_string);
329 g_free(type_string);
330 return SR_ERR_ARG;
331 }
332
333 return SR_OK;
334}
335
336/**
337 * Return the list of supported hardware drivers.
338 *
339 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
340 *
341 * @retval NULL The ctx argument was NULL, or there are no supported drivers.
342 * @retval Other Pointer to the NULL-terminated list of hardware drivers.
343 * The user should NOT g_free() this list, sr_exit() will do that.
344 *
345 * @since 0.4.0
346 */
347SR_API struct sr_dev_driver **sr_driver_list(const struct sr_context *ctx)
348{
349 if (!ctx)
350 return NULL;
351
352 return ctx->driver_list;
353}
354
355/**
356 * Initialize a hardware driver.
357 *
358 * This usually involves memory allocations and variable initializations
359 * within the driver, but _not_ scanning for attached devices.
360 * The API call sr_driver_scan() is used for that.
361 *
362 * @param ctx A libsigrok context object allocated by a previous call to
363 * sr_init(). Must not be NULL.
364 * @param driver The driver to initialize. This must be a pointer to one of
365 * the entries returned by sr_driver_list(). Must not be NULL.
366 *
367 * @retval SR_OK Success
368 * @retval SR_ERR_ARG Invalid parameter(s).
369 * @retval SR_ERR_BUG Internal errors.
370 * @retval other Another negative error code upon other errors.
371 *
372 * @since 0.2.0
373 */
374SR_API int sr_driver_init(struct sr_context *ctx, struct sr_dev_driver *driver)
375{
376 int ret;
377
378 if (!ctx) {
379 sr_err("Invalid libsigrok context, can't initialize.");
380 return SR_ERR_ARG;
381 }
382
383 if (!driver) {
384 sr_err("Invalid driver, can't initialize.");
385 return SR_ERR_ARG;
386 }
387
388 sr_spew("Initializing driver '%s'.", driver->name);
389 if ((ret = driver->init(driver, ctx)) < 0)
390 sr_err("Failed to initialize the driver: %d.", ret);
391
392 return ret;
393}
394
395/**
396 * Enumerate scan options supported by this driver.
397 *
398 * Before calling sr_driver_scan_options_list(), the user must have previously
399 * initialized the driver by calling sr_driver_init().
400 *
401 * @param driver The driver to enumerate options for. This must be a pointer
402 * to one of the entries returned by sr_driver_list(). Must not
403 * be NULL.
404 *
405 * @return A GArray * of uint32_t entries, or NULL on invalid arguments. Each
406 * entry is a configuration key that is supported as a scan option.
407 * The array must be freed by the caller using g_array_free().
408 *
409 * @since 0.4.0
410 */
411SR_API GArray *sr_driver_scan_options_list(const struct sr_dev_driver *driver)
412{
413 GVariant *gvar;
414 const uint32_t *opts;
415 gsize num_opts;
416 GArray *result;
417
418 if (sr_config_list(driver, NULL, NULL, SR_CONF_SCAN_OPTIONS, &gvar) != SR_OK)
419 return NULL;
420
421 opts = g_variant_get_fixed_array(gvar, &num_opts, sizeof(uint32_t));
422
423 result = g_array_sized_new(FALSE, FALSE, sizeof(uint32_t), num_opts);
424
425 g_array_insert_vals(result, 0, opts, num_opts);
426
427 g_variant_unref(gvar);
428
429 return result;
430}
431
432static int check_options(struct sr_dev_driver *driver, GSList *options,
433 uint32_t optlist_key, struct sr_dev_inst *sdi,
434 struct sr_channel_group *cg)
435{
436 struct sr_config *src;
437 const struct sr_key_info *srci;
438 GVariant *gvar_opts;
439 GSList *l;
440 const uint32_t *opts;
441 gsize num_opts, i;
442 int ret;
443
444 if (sr_config_list(driver, sdi, cg, optlist_key, &gvar_opts) != SR_OK) {
445 /* Driver publishes no options for this optlist. */
446 return SR_ERR;
447 }
448
449 ret = SR_OK;
450 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
451 for (l = options; l; l = l->next) {
452 src = l->data;
453 for (i = 0; i < num_opts; i++) {
454 if (opts[i] == src->key)
455 break;
456 }
457 if (i == num_opts) {
458 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, src->key)))
459 /* Shouldn't happen. */
460 sr_err("Invalid option %d.", src->key);
461 else
462 sr_err("Invalid option '%s'.", srci->id);
463 ret = SR_ERR_ARG;
464 break;
465 }
466 if (sr_variant_type_check(src->key, src->data) != SR_OK) {
467 ret = SR_ERR_ARG;
468 break;
469 }
470 }
471 g_variant_unref(gvar_opts);
472
473 return ret;
474}
475
476/**
477 * Tell a hardware driver to scan for devices.
478 *
479 * In addition to the detection, the devices that are found are also
480 * initialized automatically. On some devices, this involves a firmware upload,
481 * or other such measures.
482 *
483 * The order in which the system is scanned for devices is not specified. The
484 * caller should not assume or rely on any specific order.
485 *
486 * Before calling sr_driver_scan(), the user must have previously initialized
487 * the driver by calling sr_driver_init().
488 *
489 * @param driver The driver that should scan. This must be a pointer to one of
490 * the entries returned by sr_driver_list(). Must not be NULL.
491 * @param options A list of 'struct sr_hwopt' options to pass to the driver's
492 * scanner. Can be NULL/empty.
493 *
494 * @return A GSList * of 'struct sr_dev_inst', or NULL if no devices were
495 * found (or errors were encountered). This list must be freed by the
496 * caller using g_slist_free(), but without freeing the data pointed
497 * to in the list.
498 *
499 * @since 0.2.0
500 */
501SR_API GSList *sr_driver_scan(struct sr_dev_driver *driver, GSList *options)
502{
503 GSList *l;
504
505 if (!driver) {
506 sr_err("Invalid driver, can't scan for devices.");
507 return NULL;
508 }
509
510 if (!driver->context) {
511 sr_err("Driver not initialized, can't scan for devices.");
512 return NULL;
513 }
514
515 if (options) {
516 if (check_options(driver, options, SR_CONF_SCAN_OPTIONS, NULL, NULL) != SR_OK)
517 return NULL;
518 }
519
520 l = driver->scan(driver, options);
521
522 sr_spew("Scan of '%s' found %d devices.", driver->name,
523 g_slist_length(l));
524
525 return l;
526}
527
528/**
529 * Call driver cleanup function for all drivers.
530 *
531 * @param[in] ctx Pointer to a libsigrok context struct. Must not be NULL.
532 *
533 * @private
534 */
535SR_PRIV void sr_hw_cleanup_all(const struct sr_context *ctx)
536{
537 int i;
538 struct sr_dev_driver **drivers;
539
540 if (!ctx)
541 return;
542
543 drivers = sr_driver_list(ctx);
544 for (i = 0; drivers[i]; i++) {
545 if (drivers[i]->cleanup)
546 drivers[i]->cleanup(drivers[i]);
547 drivers[i]->context = NULL;
548 }
549}
550
551/** Allocate struct sr_config.
552 * A floating reference can be passed in for data.
553 * @private
554 */
555SR_PRIV struct sr_config *sr_config_new(uint32_t key, GVariant *data)
556{
557 struct sr_config *src;
558
559 src = g_malloc0(sizeof(struct sr_config));
560 src->key = key;
561 src->data = g_variant_ref_sink(data);
562
563 return src;
564}
565
566/** Free struct sr_config.
567 * @private
568 */
569SR_PRIV void sr_config_free(struct sr_config *src)
570{
571
572 if (!src || !src->data) {
573 sr_err("%s: invalid data!", __func__);
574 return;
575 }
576
577 g_variant_unref(src->data);
578 g_free(src);
579
580}
581
582static void log_key(const struct sr_dev_inst *sdi,
583 const struct sr_channel_group *cg, uint32_t key, int op, GVariant *data)
584{
585 const char *opstr;
586 const struct sr_key_info *srci;
587
588 /* Don't log SR_CONF_DEVICE_OPTIONS, it's verbose and not too useful. */
589 if (key == SR_CONF_DEVICE_OPTIONS)
590 return;
591
592 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
593 srci = sr_key_info_get(SR_KEY_CONFIG, key);
594
595 sr_spew("sr_config_%s(): key %d (%s) sdi %p cg %s -> %s", opstr, key,
596 srci ? srci->id : "NULL", sdi, cg ? cg->name : "NULL",
597 data ? g_variant_print(data, TRUE) : "NULL");
598}
599
600static int check_key(const struct sr_dev_driver *driver,
601 const struct sr_dev_inst *sdi, const struct sr_channel_group *cg,
602 uint32_t key, int op, GVariant *data)
603{
604 const struct sr_key_info *srci;
605 gsize num_opts, i;
606 GVariant *gvar_opts;
607 const uint32_t *opts;
608 uint32_t pub_opt;
609 const char *suffix;
610 const char *opstr;
611
612 if (sdi && cg)
613 suffix = " for this device and channel group";
614 else if (sdi)
615 suffix = " for this device";
616 else
617 suffix = "";
618
619 if (!(srci = sr_key_info_get(SR_KEY_CONFIG, key))) {
620 sr_err("Invalid key %d.", key);
621 return SR_ERR_ARG;
622 }
623 opstr = op == SR_CONF_GET ? "get" : op == SR_CONF_SET ? "set" : "list";
624
625 switch (key) {
626 case SR_CONF_LIMIT_MSEC:
627 case SR_CONF_LIMIT_SAMPLES:
628 case SR_CONF_SAMPLERATE:
629 /* Setting any of these to 0 is not useful. */
630 if (op != SR_CONF_SET || !data)
631 break;
632 if (g_variant_get_uint64(data) == 0) {
633 sr_err("Cannot set '%s' to 0.", srci->id);
634 return SR_ERR_ARG;
635 }
636 break;
637 }
638
639 if (sr_config_list(driver, sdi, cg, SR_CONF_DEVICE_OPTIONS, &gvar_opts) != SR_OK) {
640 /* Driver publishes no options. */
641 sr_err("No options available%s.", suffix);
642 return SR_ERR_ARG;
643 }
644 opts = g_variant_get_fixed_array(gvar_opts, &num_opts, sizeof(uint32_t));
645 pub_opt = 0;
646 for (i = 0; i < num_opts; i++) {
647 if ((opts[i] & SR_CONF_MASK) == key) {
648 pub_opt = opts[i];
649 break;
650 }
651 }
652 g_variant_unref(gvar_opts);
653 if (!pub_opt) {
654 sr_err("Option '%s' not available%s.", srci->id, suffix);
655 return SR_ERR_ARG;
656 }
657
658 if (!(pub_opt & op)) {
659 sr_err("Option '%s' not available to %s%s.", srci->id, opstr, suffix);
660 return SR_ERR_ARG;
661 }
662
663 return SR_OK;
664}
665
666/**
667 * Query value of a configuration key at the given driver or device instance.
668 *
669 * @param[in] driver The sr_dev_driver struct to query.
670 * @param[in] sdi (optional) If the key is specific to a device, this must
671 * contain a pointer to the struct sr_dev_inst to be checked.
672 * Otherwise it must be NULL.
673 * @param[in] cg The channel group on the device for which to list the
674 * values, or NULL.
675 * @param[in] key The configuration key (SR_CONF_*).
676 * @param[in,out] data Pointer to a GVariant where the value will be stored.
677 * Must not be NULL. The caller is given ownership of the GVariant
678 * and must thus decrease the refcount after use. However if
679 * this function returns an error code, the field should be
680 * considered unused, and should not be unreferenced.
681 *
682 * @retval SR_OK Success.
683 * @retval SR_ERR Error.
684 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
685 * interpreted as an error by the caller; merely as an indication
686 * that it's not applicable.
687 *
688 * @since 0.3.0
689 */
690SR_API int sr_config_get(const struct sr_dev_driver *driver,
691 const struct sr_dev_inst *sdi,
692 const struct sr_channel_group *cg,
693 uint32_t key, GVariant **data)
694{
695 int ret;
696
697 if (!driver || !data)
698 return SR_ERR;
699
700 if (!driver->config_get)
701 return SR_ERR_ARG;
702
703 if (check_key(driver, sdi, cg, key, SR_CONF_GET, NULL) != SR_OK)
704 return SR_ERR_ARG;
705
706 if ((ret = driver->config_get(key, data, sdi, cg)) == SR_OK) {
707 log_key(sdi, cg, key, SR_CONF_GET, *data);
708 /* Got a floating reference from the driver. Sink it here,
709 * caller will need to unref when done with it. */
710 g_variant_ref_sink(*data);
711 }
712
713 return ret;
714}
715
716/**
717 * Set value of a configuration key in a device instance.
718 *
719 * @param[in] sdi The device instance.
720 * @param[in] cg The channel group on the device for which to list the
721 * values, or NULL.
722 * @param[in] key The configuration key (SR_CONF_*).
723 * @param data The new value for the key, as a GVariant with GVariantType
724 * appropriate to that key. A floating reference can be passed
725 * in; its refcount will be sunk and unreferenced after use.
726 *
727 * @retval SR_OK Success.
728 * @retval SR_ERR Error.
729 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
730 * interpreted as an error by the caller; merely as an indication
731 * that it's not applicable.
732 *
733 * @since 0.3.0
734 */
735SR_API int sr_config_set(const struct sr_dev_inst *sdi,
736 const struct sr_channel_group *cg,
737 uint32_t key, GVariant *data)
738{
739 int ret;
740
741 g_variant_ref_sink(data);
742
743 if (!sdi || !sdi->driver || !data)
744 ret = SR_ERR;
745 else if (!sdi->driver->config_set)
746 ret = SR_ERR_ARG;
747 else if (check_key(sdi->driver, sdi, cg, key, SR_CONF_SET, data) != SR_OK)
748 return SR_ERR_ARG;
749 else if ((ret = sr_variant_type_check(key, data)) == SR_OK) {
750 log_key(sdi, cg, key, SR_CONF_SET, data);
751 ret = sdi->driver->config_set(key, data, sdi, cg);
752 }
753
754 g_variant_unref(data);
755
756 return ret;
757}
758
759/**
760 * Apply configuration settings to the device hardware.
761 *
762 * @param sdi The device instance.
763 *
764 * @return SR_OK upon success or SR_ERR in case of error.
765 *
766 * @since 0.3.0
767 */
768SR_API int sr_config_commit(const struct sr_dev_inst *sdi)
769{
770 int ret;
771
772 if (!sdi || !sdi->driver)
773 ret = SR_ERR;
774 else if (!sdi->driver->config_commit)
775 ret = SR_OK;
776 else
777 ret = sdi->driver->config_commit(sdi);
778
779 return ret;
780}
781
782/**
783 * List all possible values for a configuration key.
784 *
785 * @param[in] driver The sr_dev_driver struct to query.
786 * @param[in] sdi (optional) If the key is specific to a device, this must
787 * contain a pointer to the struct sr_dev_inst to be checked.
788 * @param[in] cg The channel group on the device for which to list the
789 * values, or NULL.
790 * @param[in] key The configuration key (SR_CONF_*).
791 * @param[in,out] data A pointer to a GVariant where the list will be stored.
792 * The caller is given ownership of the GVariant and must thus
793 * unref the GVariant after use. However if this function
794 * returns an error code, the field should be considered
795 * unused, and should not be unreferenced.
796 *
797 * @retval SR_OK Success.
798 * @retval SR_ERR Error.
799 * @retval SR_ERR_ARG The driver doesn't know that key, but this is not to be
800 * interpreted as an error by the caller; merely as an indication
801 * that it's not applicable.
802 *
803 * @since 0.3.0
804 */
805SR_API int sr_config_list(const struct sr_dev_driver *driver,
806 const struct sr_dev_inst *sdi,
807 const struct sr_channel_group *cg,
808 uint32_t key, GVariant **data)
809{
810 int ret;
811
812 if (!driver || !data)
813 return SR_ERR;
814 else if (!driver->config_list)
815 return SR_ERR_ARG;
816 else if (key != SR_CONF_SCAN_OPTIONS && key != SR_CONF_DEVICE_OPTIONS) {
817 if (check_key(driver, sdi, cg, key, SR_CONF_LIST, NULL) != SR_OK)
818 return SR_ERR_ARG;
819 }
820 if ((ret = driver->config_list(key, data, sdi, cg)) == SR_OK) {
821 log_key(sdi, cg, key, SR_CONF_LIST, *data);
822 g_variant_ref_sink(*data);
823 }
824
825 return ret;
826}
827
828static struct sr_key_info *get_keytable(int keytype)
829{
830 struct sr_key_info *table;
831
832 switch (keytype) {
833 case SR_KEY_CONFIG:
834 table = sr_key_info_config;
835 break;
836 case SR_KEY_MQ:
837 table = sr_key_info_mq;
838 break;
839 case SR_KEY_MQFLAGS:
840 table = sr_key_info_mqflag;
841 break;
842 default:
843 sr_err("Invalid keytype %d", keytype);
844 return NULL;
845 }
846
847 return table;
848}
849
850/**
851 * Get information about a key, by key.
852 *
853 * @param[in] keytype The namespace the key is in.
854 * @param[in] key The key to find.
855 *
856 * @return A pointer to a struct sr_key_info, or NULL if the key
857 * was not found.
858 *
859 * @since 0.3.0
860 */
861SR_API const struct sr_key_info *sr_key_info_get(int keytype, uint32_t key)
862{
863 struct sr_key_info *table;
864 int i;
865
866 if (!(table = get_keytable(keytype)))
867 return NULL;
868
869 for (i = 0; table[i].key; i++) {
870 if (table[i].key == key)
871 return &table[i];
872 }
873
874 return NULL;
875}
876
877/**
878 * Get information about a key, by name.
879 *
880 * @param[in] keytype The namespace the key is in.
881 * @param[in] keyid The key id string.
882 *
883 * @return A pointer to a struct sr_key_info, or NULL if the key
884 * was not found.
885 *
886 * @since 0.2.0
887 */
888SR_API const struct sr_key_info *sr_key_info_name_get(int keytype, const char *keyid)
889{
890 struct sr_key_info *table;
891 int i;
892
893 if (!(table = get_keytable(keytype)))
894 return NULL;
895
896 for (i = 0; table[i].key; i++) {
897 if (!table[i].id)
898 continue;
899 if (!strcmp(table[i].id, keyid))
900 return &table[i];
901 }
902
903 return NULL;
904}
905
906/** @} */